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Introduction

Ahlfors and Beurling [1] gave a characterization of the removable singularities

for the class of analytic functions with finite Dirichlet integral, in terms of extremal
distances on the complex plane. This result was generalized and extended to the
^-dimensional euclidean space Rd (d^.3) by many authors (see [3], [6], etc.).

Hedberg [3] gave some characterizations of removable sets for the class HDP

of all harmonic functions u with \ \Pu\pdx<ao and for the subclass FDP of HDP

consisting of functions with no flux. In [6] the author considered the notion of
null sets for extremal distances of order p, namely, N£Dp-sets, and characterized

such null sets by the removability for a class of solutions of the Euler equation

for the variational integral \ \Γu\pdx.

In this paper we shall consider some classes consisting of solutions of the

Euler equation for the variational integral \ ψ(x, ?u)dx, where ψ(x, τ): Rd x Rd^>

R is strictly convex and continuously differentiable in τ and ψ(x, τ)«|τ|p, and
define the removable sets for these classes. More precisely, for any bounded
domain G containing a compact set E, we shall consider the class Jf&^G — E)

(resp. ̂ ^5(G-E); JT^(G-E)) of all p-precise functions u (for p-precise
functions, see [4, Chapter IV], [8]) such that

. c, ΓM),
JG-E

for every φ in CQ(G — E) (resp. in (φeQKG); Fφ = 0 on some neighborhood of

E}; in CJ(G)). A compact set E is said to be removable for Jf &)\ (resp. JΓ^J;

«^^P if for some bounded domain G containing E every function in ^^J(G — E)

(resp. Jf^5(G — E); Jf ^J(G —E)) can be extended to a function in «^^5(G).

We shall see that E is removable for ^^J if and only if E is an NEDp-set
(Theorem 1). This result is an improvement of [6, Theorem 2]. We shall

show that E is removable for 3FQ>\ if and only if E is removable for HDP/(P~1)

(Theorem 2) and that E is removable for JΓ^J if and only if E is removable for
pj)pi(p-i} jn case p^2 (Theorem 3). The proofs of these theorems are based

on the results obtained by Hedberg [3]. In the case that ^(x, τ) = \τ\p for all
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(x, τ) 6 Rd x Rd

9 Theorem 3 is shown in [5].

§ 1. Preliminaries

Let p be a finite number such that p> 1 and let G be a domain in Rd. For

fεLp(G)9 let ||/||P>G be its Lp-norm, and for a vector field v = (vί9 v29...9 vd) on

G we define ||ι;||pfG by \\\v\\\ptG. We denote by Cg>(G) the family of infinitely

differentiate functions with compact support in G.

Let Γ be a family of curves in Rd. A non-negative Borel measurable function

/ is called admissible in association with Γ if \ fds ^ 1 for each y e Γ, where ds
J y Γ

is the line element. The p-module MP(Γ) is defined by infy \ fpdx, where the

infimum is taken over all functions / admissible in association with Γ and dx is

the volume element. A property will be said to hold /^-almost everywhere ( = p-
a.e.) on Γ if the p-module of the subfamily of exceptional curves is zero. For a
domain G and a compact subset K c= dG9 we denote by ΓG(K) the family of all

curves in G each of which starts from a point of G and tends to K.
A real valued function u defined in a domain G is called a p-precise function,

if it is absolutely continuous along /?-a.e. curve in G and |Fw| belongs to LP(G).

We denote by ^P(G) the class of all p-precise functions on G. Every ;?-ρrecise
function u on G has a finite curvilinear limit w(y) along p-a.e. curve y in G (see

[4, Theorem 5.4]). The following results are known:
(1.1) Let u be a p-precise function on G such that w(y) = 0 for p-a.e. y e

ΓG(dG). Then there is a sequence {φn} in C^G) such that UΓίu-^JIIp^-^O
as n->oo (see [4, Theorem 6.16]).

(1.2) Let Γ be a family of curves in G. Let u0, uί9 u2,... be p-precise
functions on G such that un(y) = const, for p-a.e. y eΓ for each n^l and ||F(M0 —
wπ)llp,G^O as tt->oo. Then w0(y) = const. for p-a.e. y e Γ (see [5, Lemma 1]).

Let ψ: Rd x Rd-+R satisfy the following (a)-(c):
(a) \l/ is continuous.
(b) For each xεRd the function τι-*ι/φc, τ) is strictly convex and

continuously differentiate.
(c) There are constants 0<αg/?< oo such that

for all (x, τ)εRdx Rd.

By (b) the gradient Fτ\l/(x, τ) of ^ with respect to τ exists. The following
inequalities are known :

(1.3) <Fτι/<x, τ), τ1-τy^φ(x9 τ^-φ(x9 τ) for all τ, τ, eR4,

where < - , > denotes the inner product in Rd. In particular
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(1.4) α|τ

(1.5) \Fτψ(x, τ)\^c\τ\p~l for all (x, τ) e Rd x Rd, where c is a constant

depending only on d, p and β (see [2, Lemma 3.5]).

§ 2. Removable sets

Let £ be a compact set in Rd and G be a bounded domain containing E.
Throughout this paper we shall always assume that £ is a compact set such that
md(E) = 0 (md denotes the d-dimensional Lebesgue measure) and Ec is a domain.

Let

C5°(G; E) = {φe Cg>(G); Pφ = Q on some neighborhood of E} .

We denote by je$p

φ(G-E) (resp. jr^J(G-E); jf®$(G-E)) the class of all
— E) satisfying the condition that

= 0
JG-E

for every φ in CJ(G - E) (resp. Cf(G; E); C?(G)). From the relations Cf(G-
E)c=C5°(G; E)cCJ(G), it follows that every removable set for je@l is removable

for JΓ^J and every removable set for jf^J is removable for ^f^J.
Let Ω = G-E9 and let Z(Ω) be a linear subspace of {φ\Ω: φ e CgftG)}, where

φ\Ω is the restriction of φ to Ω. Let

ιι(y) = 0 for p-a.e. y e ΓΩ(aG),
= M 6«^p(Ω); there is a sequence {</>„} in X(Ω) such that

LEMMA 1. Lei X(ί2) be as above. Then any fe0>p(Ω) can be decomposed

into the form f=u0 + v0, where u0eXp(Ω) and v0 satisfies the condition that

/or et ery </> in

PROOF. Let /^(0)=\ Ψ(x,?g)dx for gre^p(Ω) and choose

such that

W-Ό - ̂  « Ξ mf {/,(/-!!); l ie JP(Q)} (n->oo).

βy (c)5 {ll^(/-wπ)||p,Ω} is bounded. Hence by standard arguments in LMheory
(Banach Saks' theorem, etc.) and by [4, Theorem 4.21] (also cf. [8, Theorem 4.3]),



144 Hiromichi YAMAMOTO

we find f0e«^p(Ω) and a subsequence {unj} of {un} such that
weakly in LP(Ω) and

Since (unι-\ ----- \-unι)/keXp(Ω), we may assume that v0(γ)=f(γ) for p-a.e.

γeΓΩ(dG) (see (1.2)), so that u0=f-v0eXp(Ω). By (1.3) and (1.5), we see that

which means that Iψ(f— u0) = a. Since -Ϋp(Ω) is a linear space, it follows that v0 =
/—MO is a solution of the Euler equation for /^ (cf. [2, Theorem 3.18]). The proof

is completed.

We say that Cg>(G-E) (resp. C?(G; £)) is dense in W{(G) if for each φe
Cg>(G) there is a sequence {φn} in QftG-E) (resp. C?°(G; £)) such that

LEMMA 2. // £ is removable for tf®^ (resp.tf®^, then C$(G-E)
(resp. Cf(G; £)) is dense in W{(G)for some bounded domain G containing E.

PROOF. Suppose that E is removable for ^^J. Then there is a bounded
domain G containing E such that every function in 3?Q}\(G — E} can be extended

to a function in ̂ ^(G\ Take/e QftG). Let/0=/|G_£ and ̂ (G-£) = CJ(G
— E). By Lemma 1, /0 can be decomposed into the form /0 = w0 + t;0, where

w0eXp(G-E) and I?OG JT ̂ J(G-JB). Then r0(7) = 0 for p-a.e. yeΓG_E(dG).

By assumption there is a p-precise function £0 in ^f^J(G) such that ^0 = ̂ 0 on

G-E. Therefore

for every φ in CJ(G). Since D06^pfG) and £0(y) = 0 for p-a.e. yeΓG(dG), by
using (1.1) and Holder's inequality we have

= 0.

Hence #0 = const. a.e. in G by (1.4), and the constant must be 0. Hence /Oe
Jp(G-E), i.e., there is a sequence {φn} in C£(G-E) such that

0 (n-»oo). Since wd(jE) = 0 we see that ||Γ(/— </>„)!!P,G;

(n->oo). Thus we conclude that C$(G-E) is dense in Wί(G).

In the case that E is removable for JΓ^J, we let Jr(G-E) = C5°(G; £").
Then the result for Cf(G; E) is established in the same manner.
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§ 3. Relations between removable sets

In [6] the author considered the notion of null sets for extremal distances
of order p. A compact set E is called an NEDp-set if Mp(Γ) = Mp(ΓE) for all
pairs of disjoint continua F0 and F{ in Ec, where Γ (resp. F£) is the family of all
curves connecting F0 and Fί in Rd (resp. Ec). The following lemma is known :

LEMMA 3 ([6, Theorems 1 and 2]). The following statements are equivalent

to each other:
(1) E is an NEDp-set.
(2) For some bounded domain (or any bounded domain) G containing E,

every function in 0>p(G — E) can be extended to a function in έPp(G).
c Ά

(3) \ 4^-dx = 0 (i = l, 2,. ..,</) for every u in 0>D(EC) which vanishes
)EC vXi

identically on a neighborhood of {co}.

THEOREM 1. E is removable for ^Q>p^ if and only if E is an NEDp-set.

PROOF. Suppose that E is removable for 3?Qs\. Then there is a bounded

domain G containing E such that every function in 3>i?0$(G — E) can be extended

to a function in ^Q>P^(G). Let fe^p(G — E) vanish identically on a neighbor-

hood of dG and let X(G-£) = {φ|G_£; φeCJftG)}. By Lemma 1, / can be

decomposed into the form /= MO + v0, where w0 e Xp(G — E) and v0 e ̂ (̂̂  ~~ ̂ )
Then ι;0(y) = 0 for p-a.e. yeΓG_E(dG). By assumption there is a p-precise function

£0 in 3f<2>\(G) such that ι;0

 = ̂ o on ^~ ̂  Since v0 is an ^4CL function (cf.
[4, Theorem 4.6], [8, Theorem 4.4]) and md(E) = 0, by Fubini's theorem we have

\ -^~dx = \ -τ^-dx = 0.
JG-E vXi JG VXi

On the other hand there is a sequence {φn} in Co'(G) such that || Γ(t/0 - Φ^\\P)G-E^
0 as n^oo. Since m/F) = 0 it follows that

f ^dx = ( ^JG-E dXi )G-E OXi G-E

( a(«o-».
)G-E cxt

Thus we conclude that

Next, let ue&p(Ec) vanish identically on a neighborhood of {oo}. Set
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wn = max(-n, min(w, n)) for n = l, 2,.... Take a function φeCJ^) such
that supp </> c G and φ = 1 on a neighborhood of E. Since the restriction of φun

to G — E is a p-precise function on G — E which vanishes identically on a neighbor-

hood of <3G, by the above result we obtain

f
JG- E

On the other hand, by Fubini's theorem we have

f S(un(l-
JE° d*i

Hence

f
j

EC Xi

Set Fn = {xeEcι \u(x)\*zn} for n = l, 2,... . Since md(Fw)-»0 as rc->oo, we have

dXi

Thus we conclude that

L
From Lemma 3 ((3)=>(1)), it follows that £ is an 7V£Dp-set.

Conversely we suppose that E is an NEDp-set. By Lemma 3 ((1)=>(2)) we

can take a bounded domain G containing £ such that every function in έPp(G — E)

can be extended to a function in « P̂(G). Let u e Jίf&^G-E). Then there is
a ^-precise function u on G such that u = ύ on G — E. Since md(E) = 0 we have

< rτψ(x , Γfi), Γφ>rfx = < ΓtιA(x, FM), Fψ>^x = 0
JG JG-E

for every φ in CoXG). This implies that E is removable for <#?&$.

In [3], Hedberg considered the following classes of harmonic functions. For
a domain G in Rd, denote by HDp(G) the class of all harmonic functions u on G

with ||Γιι||pfG<oo, by FZ)^(G) the class of all ueHDP(G) with no flux, i.e.,

\ *du = \ du/dvdS = Q for all (d — l)-cycles c in G. For a compact set E its
Jc Jc

p-capacity is defined by

Cp(E) = inf {||Fω||;fJn; ωeC?(Λd), ω^l on £} .

In the case p^d ω's are restricted to Co*(B) for some fixed large ball B containing
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E in its interior. Throughout the rest of this paper we let q = pj(p — 1). Hedberg
proved

THEOREM A ([3, Theorems l.a and 2]). The following statements are equi-

valent to each other:

(1) Cp(E) = 0.
(2) Q?(G — E) is dense in W\(G) for some bounded domain G containing E.
(3) E is removable for HDq.

THEOREM B ([3, Theorem l.b]). Q°(G; £) is dense in W{(G) for some
bounded domain G containing E if and only if E is removable for FDq.

LEMMA 4. // E is an NEDp-set and is removable for HDq (resp. FDq), then
E is removable for J^^^ (resp.

PROOF. Suppose that E is removable for HDq. By Theorem A, C$(G - E) is

dense in W f(G) for some bounded domain G containing E. Therefore, for each

φeC$(G) there is a sequence {φn} in C^G-E) such that ||F(φ-φw)||p>G->0 as
n-»oo. Since E is an NED^-set, by Lemma 3 ((1)=>(2)) every function u in 3f3)\
(G — E) can be extended to a function ύ in 0>P(G). By using Holder's inequality

we have

G—E

Vύ\ P

x, Fu), F0π>dx = 0.

Hence ύ e jf&$(G). This implies that E is removable for
In the case that E is removable for FDq, Cf(G; £) is dense in W{(G) for some

bounded domain G containing E by Theorem B. The result for Jf^J is esta-
blished in the same manner.

THEOREM 2. E is removable for ^2\ if and only ifE is removable for HDq.

PROOF. The only-if part follows from Lemma 2 and Theorem A ((2)=>(3)).

Conversely, assume that E is removable for HDq. By Lemma 4 it is enough

to show that E is an NEDp-set. Let Fθ9 F± be disjoint continua in Ec and let Γ

(resp. ΓE) be the family of curves connecting F0 and F^ in Rd (resp. Ec). Take a

bounded domain Ω disjoint from F0 and Fί such that Ω=>£. Since Cp(E) = 0 by

Theorem A, we can take a sequence {ωn} in CJ(Ω) such that ωπ^ 1 on £ for each

n and ||FωJp>β-»0 as n-»oo (see, e.g., [7, Lemma 4.2]). Obviously |FωJ is
admissible in association with Γ — ΓE. Hence Mp(Γ — ΓE) = Q. From the ine-

qualities Mp(Γ£)^Mp(Γ)^Mp(Γ£) + Mp(Γ-Γ£), it follows that Mp(ΓE) = Mp(Γ).

This implies that E is an NEDp-sεt.
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In the case that ψ(x, τ) = \τ\p for all (x, τ) e Rd x Rd

9 we omit the subscript ψ in

^^5 and J^^fy. The following lemma is a relation between the removability

for Jf$p and that for FDq.

LEMMA 5 ([5, Theorem 11]). // p^2, then E is removable for tf®? if and
only if E is removable for FDq.

THEOREM 3. If p^.2, then E is removable for tfQ}pψ if and only if E is
removable for FDq.

PROOF. The only-if part follows from Lemma 2 and Theorem B for 1 <

p<co.
Conversely, assume that E is removable for FDq. By Lemma 5, E is

removable for Jf@p. Hence E is removable for Jf@p. From Theorem 1 it
follows that E is an NEDp-set. By Lemma 4, we see that E is removable for

REMARK. Theorems 1, 2 and 3 show that the removability for each of the

classes Jί?@ψ, Jf^J and 3? ̂ J does not depend on the choice ψ as long as it
satisfies (a)-(c) in §1.
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