Product formula for nonlinear contraction semigroups in Banach spaces

Yoshikazu Kobayashi

(Received May 19, 1986)

1. Introduction

Let H be a Hilbert space and X_{0} a closed convex subset of H. Let A and B be maximal dissipative operators in H such that $X_{0} \subset \overline{D(A)} \cap \overline{D(B)},(I-\lambda A)^{-1}\left(X_{0}\right)$ $\subset X_{0}$ and $(I-\lambda B)^{-1}\left(X_{0}\right) \subset X_{0}$ for $\lambda>0$. We then assume that $A+B$ is also maximal dissipative in H and we write $\left\{T_{A}(t)\right\}_{t \geq 0},\left\{T_{B}(t)\right\}_{t \geq 0}$ and $\{T(t)\}_{t \geq 0}$ for the contraction semigroups generated by A, B and $A+B$, respectively. In the previous paper [7], it was shown that the product formula

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T_{A}\left(\frac{t}{n}\right) T_{b}\left(\frac{t}{n}\right)\right)^{n} x=T(t) x \tag{1.1}
\end{equation*}
$$

holds for $x \in \overline{D(A+B)} \cap X_{0}$ and $t \geq 0$. In this paper, we establish the product formula (1.1) in a Banach space whose norm is uniformly Gâteaux differentiable.

Let X be a real Banach space. The norm $\|\cdot\|$ of X is said to be uniformly Gâteaux differentiable if

$$
\lim _{a \rightarrow 0} a^{-1}(\|x+a y\|-\|x\|)
$$

exists for each $y \in X$ and uniformly for $x \in X$ with $\|x\|=1$. Throughout this paper, we assume that the norm of X is uniformly Gâteaux differentiable. Let X_{0} be a closed convex subset of X. Let A be a dissipative operator in X. We consider the following condition ($R: X_{0}$) on the operator A :
$\left(R: X_{0}\right) \quad \overline{D(A)}=X_{0}, R(A) \subset \overline{\mathrm{sp}}\left(X_{0}-X_{0}\right)$ and $R(I-\lambda A) \supset X_{0}$ for $\lambda>0$,
where $\overline{\mathrm{sp}}\left(X_{0}-X_{0}\right)$ denotes the closed subspace of X spanned by the set $X_{0}-X_{0}=$ $\left\{x-y ; x, y \in X_{0}\right\}$. If the dissipative operator A satisfies condition ($R: X_{0}$), then the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(I-\frac{t}{n} A\right)^{-n} x=T(t) x \tag{1.2}
\end{equation*}
$$

exists for $x \in X_{0}$ and $t \geq 0$ and the family $\{T(t)\}_{t \geq 0}$ becomes a contraction semigroup on X_{0}. Such a family $\{T(t)\}_{t \geq 0}$ is called a (contraction) semigroup on X_{0} generated by A. From the results due to Baillon [1] and Reich [12], it is seen
that if in addition X is reflexive and $\{T(t)\}_{t \geq 0}$ is a contraction semigroup on X_{0}, then there exists a dissipative operator A in X that satisfies $\left(R: X_{0}\right)$ and for which (1.2) holds.

Let $A_{i}, i=1,2, \ldots, N$, and A be dissipative operators in X. Assume that either of A_{i} and A satisfies condition $\left(R: X_{0}\right)$ and let $\left\{T_{i}(t)\right\}_{t \geq 0}, i=1,2, \ldots, N$, and $\{T(t)\}_{t \geq 0}$ be the semigroups on X_{0} generated by $A_{i}, i=1,2, \ldots, N$ and A, respectively. Our objective of this paper is to show that if A is the closure of $A_{1}+A_{2}+\cdots+A_{N}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T_{N}\left(\frac{t}{n}\right) T_{N-1}\left(\frac{t}{n}\right) \cdots T_{1}\left(\frac{t}{n}\right)\right)^{n} x=T(t) x \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\left(I-\frac{t}{n} A_{N}\right)^{-1}\left(I-\frac{t}{n} A_{N-1}\right)^{-1} \cdots\left(I-\frac{t}{n} A_{1}\right)^{-1}\right)^{n} x=T(t) x \tag{1.4}
\end{equation*}
$$

hold for $x \in X_{0}$ and $t \geq 0$. Actually, more general formulae will be obtained from which (1.3) and (1.4) follow simultaneously.

Such product formulae as (1.3) and (1.4) for nonlinear semigroups have been also obtained under different assumptions, for instance, in [2], [6] and [8].

2. The main theorem

To state the product formulae which generalizes (1.3) and (1.4), we introduce a new notion, namely, A-family of contraction operators for a dissipative operator A. Since the norm of X is Gâteaux differentiable, for each $x \in X$, there is a unique $x^{*} \in X^{*}$ such that $\|x\|^{2}=\left\|x^{*}\right\|^{2}=\left\langle x^{*}, x\right\rangle$. (The symbol $\left\langle x^{*}, x\right\rangle$ stands for the value of x^{*} at x.) The mapping $x \rightarrow x^{*}$ is called the duality mapping in X and denoted by F. It is known that the mapping F is continuous with respect to the norm topology in X and the weak* topology in X^{*}.

Definition. Let A be a dissipative operator in X. Let $\{U(t)\}_{t>0}$ be a family of contraction operators of $\overline{D(A)}$ into itself. The family $\{U(t)\}_{t>0}$ is called an A-family if, for each $t>0$, there exists a family $\left\{V_{t}(s)\right\}_{0<s<t}$ of contraction operators of $\overline{D(A)}$ into itself with the following three properties (a), (b) and (c):
(a) For each $x \in \overline{D(A)}, V_{t}(s) x$ is strongly measurable on $(0, t)$ as an X-valued function of s.
(b) For each $x \in \overline{D(A)}$ and each $u \in D(A)$,

$$
\begin{equation*}
\left\|V_{t}(s) u-u\right\| \leq t\|A u\|, \quad 0<s<t \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|U(t) x-u\| \leq\left(\frac{1}{t} \int_{0}^{t}\left\|V_{t}(s) x-u\right\|^{2} d s\right)^{1 / 2}+t\|A u\| \tag{2.2}
\end{equation*}
$$

where $\|A u\| \|=\inf \{\|v\| ; v \in A u\}$.
(c) For each $x \in \overline{D(A)}, u \in D(A)$ and $v \in A u$,

$$
\begin{equation*}
\left.\|U(t) x-u\|^{2}-\|x-u\|^{2} \leq 2 \int_{0}^{t}<F\left(V_{t}(s) x-u\right), v\right\rangle d s \tag{2.3}
\end{equation*}
$$

Remarks. Since $V_{t}(s)$ are contraction operators, (2.1) implies

$$
\begin{align*}
\left\|V_{t}(s) x-u\right\| & \leq\left\|V_{t}(s) x-V_{t}(s) u\right\|+\left\|V_{t}(s) u-u\right\| \tag{2.4}\\
& \leq\|x-u\|+t\|A u\|
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{t} \int_{0}^{t}\left\|V_{t}(s) x-u\right\|^{2} d s\right)^{1 / 2} \leq\|x-u\|+t\|A u\| \tag{2.5}
\end{equation*}
$$

for $0<s<t, x \in \overline{D(A)}$ and $u \in D(A)$. Hence, (b) yields

$$
\begin{equation*}
\|U(t) x-u\| \leq\|x-u\|+2 t\|A u\| \tag{2.6}
\end{equation*}
$$

for $x \in \overline{D(A)}$ and $u \in D(A)$.
Let A be a dissipative operator in X which satisfies condition $\left(R: X_{0}\right)$ for a closed convex set $X_{0} \subset X$. Set $J(t) x=(I-t A)^{-1} x$ for $t>0$ and $x \in \overline{D(A)}$. As is well known, $J(t)$ is a contraction operator of $\overline{D(A)}$ into itself. Let $\{T(t)\}_{t>0}$ be the semigroup on X_{0} generated by A. Several examples of A-familes for the operator A are now in order.

Example 2.1. $\{J(t)\}_{t>0}$ is an A-family with $V_{t}(s)=J(t)$ for $s \in(0, t)$. In fact, (a) is trivially satisfied. Let $x \in \overline{D(A)}, u \in D(A)$ and $v \in A u$. Then, $t^{-1}(J(t) x-$ $x) \in A J(t) x$ and A is dissipative, and so we have

$$
\begin{equation*}
\left\langle F(J(t) x-u), t^{-1}(J(t) x-x)-v\right\rangle \leq 0 \tag{2.7}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
t^{-1} & \|J(t) x-u\|^{2}-\langle F(J(t) x-u), v\rangle \\
& =\left\langle F(J(t) x-u), t^{-1}(J(t) x-u)-v\right\rangle \\
& \leq\left\langle F(J(t) x-u), t^{-1}(x-u)\right\rangle \\
& \leq\|J(t) x-u\| \cdot t^{-1}\|x-u\| \\
& \leq(2 t)^{-1}\left(\|J(t) x-u\|^{2}+\|x-u\|^{2}\right) .
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
\|J(t) x-u\|^{2}-\|x-u\|^{2} \leq 2 t\langle F(J(t) x-u), v\rangle \tag{2.8}
\end{equation*}
$$

and (c) is satisfied. By (2.7) with $x=u$,

$$
\begin{aligned}
t^{-1}\|J(t) u-u\|^{2} & \leq\langle F(J(t) u-u), v\rangle \\
& \leq\|F(J(t) u-u)\| \cdot\|v\| \\
& =\|J(t) u-u\| \cdot\|v\| .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\|J(t) u-u\| \leq t\|v\| \tag{2.9}
\end{equation*}
$$

and (2.1) holds. Finally, it is easily seen that (2.2) is valid.
Example 2.2. For any fixed positive integer $m,\left\{J(t / m)^{m}\right\}_{t>0}$ is also an A-family with $V_{t}(s)=J(t / m)^{j}$ for $s \in((j-1) t / m, j t / m], j=1,2, \cdots, m$. First, condition (a) is trivially satisfied. Let $x \in \overline{D(A)}, u \in D(A)$ and $v \in A u$. By (2.8),

$$
\left\|J\left(\frac{t}{m}\right)^{j} x-u\right\|^{2}-\left\|J\left(\frac{t}{m}\right)^{j-1} x-u\right\|^{2} \leq 2 \frac{t}{m}\left\langle F\left(J\left(\frac{t}{m}\right)^{j} x-u\right), v\right\rangle
$$

for $j=1,2, \cdots, m$. Adding these inequalities, we have

$$
\left\|J\left(\frac{t}{m}\right)^{m} x-u\right\|^{2}-\|x-u\|^{2} \leq 2 \frac{t}{m} \sum_{j=1}^{m}\left\langle F\left(J\left(\frac{t}{m}\right)^{j} x-u\right), v\right\rangle .
$$

From this we obtain (c). Since each $J(t / m)$ is a contraction operator, (2.9) implies

$$
\begin{align*}
& \left\|J\left(\frac{t}{m}\right)^{j} u-u\right\| \tag{2.10}\\
& \quad \leq \sum_{k=1}^{j}\left\|J\left(\frac{t}{m}\right)^{k} u-J\left(\frac{t}{m}\right)^{k-1} u\right\| \\
& \quad \leq j\left\|J\left(\frac{t}{m}\right) u-u\right\| \leq \frac{j}{m} t\|v\| \leq t\|v\|
\end{align*}
$$

for $j=1,2, \cdots, m$. Hence, (2.1) holds. Using Minkowski's inequality, we have

$$
\begin{aligned}
& \left\|J\left(\frac{t}{m}\right)^{m} x-u\right\|=\left(\frac{1}{m} \sum_{j=1}^{m}\left\|J\left(\frac{t}{m}\right)^{m} x-u\right\|^{2}\right)^{1 / 2} \\
\leq & \left(\frac{1}{m} \sum_{j=1}^{m}\left\|J\left(\frac{t}{m}\right)^{m} x-J\left(\frac{t}{m}\right)^{m-j} u\right\|^{2}\right)^{1 / 2} \\
& +\left(\frac{1}{m} \sum_{j=1}^{m}\left\|J\left(\frac{t}{m}\right)^{m-j} u-u\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

Since (2.10) implies

$$
\left(\frac{1}{m} \sum_{j=1}^{m}\left\|J\left(\frac{t}{m}\right)^{m-j} u-u\right\|^{2}\right)^{1 / 2} \leq t\|v\|
$$

and each $J(t / m)$ is a contraction operator, the above inequality implies

$$
\left\|J\left(\frac{t}{m}\right)^{m} x-u\right\| \leq\left(\frac{1}{m} \sum_{j=1}^{m}\left\|J\left(\frac{t}{m}\right)^{j} x-u\right\|^{2}\right)^{1 / 2}+t\|v\|,
$$

and hence (b) is obtained.
Example 2.3. $\{T(t)\}_{t>0}$ is an A-family with $V_{t}(s)=T(s)$ for $s \in(0, t)$. This follows from Example 2.2, since, for $x \in \overline{D(A)}, T(t) x=\lim _{m \rightarrow \infty} J(t / m)^{m} x$ uniformly for bounded $t \geq 0$ and $T(t) x$ is continuous in $t \geq 0$. (See Miyadera [10].)

We are now in a position to state our main theorem.
Theorem. Let X_{0} be a closed convex set of X. Let $A_{i}, i=1,2, \cdots, N$, be dissipative operators in X and assume that each A_{i} satisfies condition ($R: X_{0}$). Let $\left\{U_{i}(t)\right\}_{t>0}$ be an A_{i}-family for each $i=1,2, \cdots, N$ and A the closure of $A_{1}+$ $A_{2}+\cdots+A_{N}$. Suppose that the dissipative operator A satisfies condition $\left(R: X_{0}\right)$. Let $\{T(t)\}_{t \geq 0}$ be the semigroup on X_{0} generated by A. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[U_{N}\left(\frac{t}{n}\right) U_{N-1}\left(\frac{t}{n}\right) \cdots U_{1}\left(\frac{t}{n}\right)\right]^{n} x=T(t) x \tag{2.11}
\end{equation*}
$$

for $x \in X_{0}$ and uniformly for bounded $t \geq 0$.
Corollary. In the above theorem the product formulae (1.3) and (1.4) hold.
The proof of the theorem will be given in the next section. We here state a basic lemma which will be used in the proof.

Lemma. Let ϕ and ψ be convex Gâteaux differentiable functionals on X. Let X_{0} be a convex set of X. If $\phi(x)=\psi(x)$ for $x \in X_{0}$, then $\left\langle\phi^{\prime}(x), v\right\rangle=$ $\left\langle\psi^{\prime}(x), v\right\rangle$ for $x \in X_{0}$ and $v \in \overline{\mathrm{sp}}\left(X_{0}-X_{0}\right)$.

Proof. Let $x \in X_{0}$ and $y \in X_{0}$. Then

$$
\phi(x+a(y-x))=\psi(x+a(y-x)) \quad \text { for } \quad a \in(0,1)
$$

Therefore,

$$
\begin{aligned}
\left\langle\phi^{\prime}(x), y-x\right\rangle & =\lim _{a \downarrow 0} a^{-1}(\phi(x+a(y-x)-\phi(x)) \\
& =\lim _{a \downarrow 0} a^{-1}(\psi(x+a(y-x)-\psi(x)) \\
& =\left\langle\psi^{\prime}(x), y-x\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle\phi^{\prime}(x), y_{1}-y_{2}\right\rangle & =\left\langle\phi^{\prime}(x), y_{1}-x\right\rangle-\left\langle\phi^{\prime}(x), y_{2}-x\right\rangle \\
& =\left\langle\psi^{\prime}(x), y_{1}-x\right\rangle-\left\langle\psi^{\prime}(x), y_{2}-x\right\rangle \\
& =\left\langle\phi^{\prime}(x), y_{1}-y_{2}\right\rangle
\end{aligned}
$$

for $y_{1}, y_{2} \in X_{0}$. Since $\phi^{\prime}(x)$ and $\psi^{\prime}(x)$ are bounded linear on X, we obtain the required result.
Q.E.D.

3. Proof of Theorem

To establish (2.11), it is sufficient to show that

$$
\begin{equation*}
\lim _{t \downarrow 0}\left(I-\lambda t^{-1}\left(U_{N}(t) \cdots U_{1}(t)-I\right)\right)^{-1} x=\left(I-\lambda A^{-1} x\right) \tag{3.1}
\end{equation*}
$$

for $\lambda>0$ and $x \in X_{0}$. In fact, by the approximation theorem for nonlinear semigroups due to Brezis and Pazy [2], (3.1) implies (2.11). Furthermore, $\left(I-\lambda t^{-1}\left(U_{N}(t) \cdots U_{1}(t)-I\right)\right)^{-1}$ and $(I-\lambda A)^{-1}$ are contraction operators on X_{0} and $D(A)$ is dense in X_{0}, so that it is sufficient to prove (3.1) only for $x \in D(A)$ and and $\lambda>0$. To this end, fix any $x \in D(A)$ and $\lambda>0$ and set

$$
\begin{align*}
& y_{0}(t)=\left(I-\lambda t^{-1}\left(U_{N}(t) \cdots U_{1}(t)-I\right)\right)^{-1} x \tag{3.2}\\
& y_{j}(t)=U_{j}(t) \cdots U_{1}(t) y_{0}(t), \quad j=1,2, \cdots, N \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
z_{j}(s, t)=V_{j, t}(s) y_{j-1}(t), \quad j=1,2, \cdots, N \tag{3.4}
\end{equation*}
$$

for $t>0$ and $s \in(0, t)$. Here, for each $j,\left\{V_{j, t}(s)\right\}_{0<s<t}$ denotes the family of contraction operators of $\overline{D\left(A_{j}\right)}=X_{0}$ into itself satisfying conditions (a), (b) and (c) with $U(t), V_{t}(s)$ and A, replaced respectively by $U_{j}(t), V_{j, t}(s)$ and A_{j}. We observe that (3.2) and (3.3) together imply

$$
y_{0}(t)-\lambda t^{-1}\left(y_{N}(t)-y_{0}(t)\right)=x
$$

or

$$
\begin{equation*}
t^{-1}\left(y_{N}(t)-y_{0}(t)\right)=\lambda^{-1}\left(y_{0}(t)-x\right) \tag{3.5}
\end{equation*}
$$

Proposition 3.1. For each $j=1,2, \cdots, N,\left\|y_{0}(t)\right\|,\left\|y_{j}(t)\right\|$ and $\sup _{0<s<t}$ $\left\|z_{j}(s, t)\right\|$ are bounded as $t \downarrow 0$.

Proof. We first note that

$$
\begin{equation*}
\left\|U_{k}(t) \cdots U_{1}(t) x-x\right\| \leq 2 t \sum_{j=1}^{k}\left\|A_{j} x\right\|, \quad k=1,2, \cdots, N \tag{3.6}
\end{equation*}
$$

In fact, since $U_{j}(t)$ are contraction operators on $X_{0}=\overline{D\left(A_{j}\right)}$, we have

$$
\begin{aligned}
& \left\|U_{k}(t) \cdots U_{1}(t) x-x\right\| \\
& \quad \leq \sum_{j=1}^{k}\left\|U_{k}(t) \cdots U_{j+1}(t) U_{j}(t) x-U_{k}(t) \cdots U_{j+1}(t) x\right\| \\
& \quad \leq \sum_{j=1}^{k}\left\|U_{j}(t) x-x\right\|
\end{aligned}
$$

and so (3.6) follows from (2.6) with $U(t)=U_{j}(t), A=A_{j}$ and $u=x$.
Since $\left(I-\lambda t^{-1}\left(U_{N}(t) \cdots U_{1}(t)-I\right)\right)^{-1}$ is a contraction operator on X_{0}, we have

$$
\begin{aligned}
\left\|y_{0}(t)-x\right\| & \leq\left\|x-\left(x-\lambda t^{-1}\left(U_{N}(t) \cdots U_{1}(t) x-x\right)\right)\right\| \\
& =\left\|\lambda t^{-1}\left(U_{N}(t) \cdots U_{1}(t) x-x\right)\right\| .
\end{aligned}
$$

Hence (3.6) implies

$$
\begin{equation*}
\left\|y_{0}(t)-x\right\| \leq 2 \lambda \sum_{j=1}^{N}\left\|A_{j} x\right\|, \tag{3.7}
\end{equation*}
$$

which shows that $\left\|y_{0}(t)\right\|$ is bounded for $t>0$.
Since each $U_{j}(t)$ as is a contraction operator on X_{0}, we have

$$
\left\|y_{j}(t)-U_{j}(t) \cdots U_{1}(t) x\right\| \leq\left\|y_{0}(t)-x\right\|
$$

and so

$$
\left\|y_{j}(t)-x\right\| \leq\left\|U_{j}(t) \cdots U_{1}(t) x-x\right\|+\left\|y_{0}(t)-x\right\|
$$

for $j=1,2, \cdots, N$. Thus, it follows from (3.6) and (3.7) that, for $j=1,2, \cdots, N$, $\left\|y_{j}(t)\right\|$ is bounded as $t \downarrow 0$.

Since $V_{j, t}(s)$ is also a contraction operator,

$$
\left\|z_{j}(s, t)-V_{j, t}(s) x\right\| \leq\left\|y_{j}(t)-x\right\|
$$

by (3.4) and

$$
\left\|z_{j}(s, t)-x\right\| \leq\left\|V_{j, t}(s) x-x\right\|+\left\|y_{j}(t)-x\right\| .
$$

But

$$
\left\|V_{j, t}(s) x-x\right\| \leq t\left\|A_{j} x\right\|
$$

for $0<s<t$ by (2.1) and we conclude that $\sup _{0<s<t}\left\|z_{j}(s, t)-x\right\|$ is bounded as $t \downarrow 0$.
Q.E.D.

Let $\{t(n)\}_{n=1}^{\infty}$ be a null sequence of positive numbers. For each $y \in X$, we set

$$
\phi_{j}(y)=\operatorname{LIM}_{n \rightarrow \infty}\left\|y_{j}(t(n))-y\right\|^{2}, \quad j=0,1, \cdots, N
$$

and

$$
\psi_{j}(y)=\operatorname{LIM}_{n \rightarrow \infty} t(n)^{-1} \int_{0}^{t(n)}\left\|z_{j}(s, t(n))-y\right\|^{2} d s \quad j=1, \cdots, N,
$$

where $\operatorname{LIM}_{n \rightarrow \infty} a_{n}$ denotes the Banach limit of a bounded sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$. As is easily seen, ϕ_{j} and ψ_{j} define convex continuous functionals on X.

Proposition 3.2. $\quad \phi_{0}(y)=\psi_{j}(y)=\phi_{j}(y)$ for $y \in X_{0}$ and $j=1,2, \cdots, N$.
Proof. Using (3.5) and (3.7), we have

$$
\left\|y_{N}(t)-y_{0}(t)\right\| \leq 2 t \sum_{j=1}^{N}\left\|A_{j} x\right\|
$$

and so

$$
\begin{aligned}
& \left|\left\|y_{N}(t)-y\right\|^{2}-\left\|y_{0}(t)-y\right\|^{2}\right| \\
& \quad \leq\left(\left\|y_{N}(t)-y\right\|+\left\|y_{0}(t)-y\right\|\right) \cdot\left\|y_{N}(t)-y_{0}(t)\right\| \\
& \quad \leq 2 t\left(\left\|y_{N}(t)-y\right\|+\left\|y_{0}(t)-y\right\|\right) \sum_{j=1}^{N}\left\|A_{j} x\right\|
\end{aligned}
$$

for $y \in X$. Since $\left\|y_{N}(t)\right\|$ and $\left\|y_{0}(t)\right\|$ are bounded as $t \downarrow 0$, this implies that $\phi_{N}(y)=$ $\phi_{0}(y)$ for $y \in X$. Let $y \in D(A)$ be fixed. By the inequality (2.2) with $U(t)=U_{j}(t)$, $V_{t}(s)=V_{j, t}(s), A=A_{j}, x=\phi_{j-1}(t)$ and $u=y$, we have

$$
\left\|y_{j}(t)-y\right\| \leq\left(t^{-1} \int_{0}^{t}\left\|z_{j}(s, t)-y\right\|^{2} \mathrm{~d} s\right)^{1 / 2}+t\| \| A_{j} y \|
$$

for $j=1,2, \cdots, N$, since $y_{j}(t)=U_{j}(t) y_{j-1}(t)$ and $z_{j}(s, t)=V_{j, t}(s) y_{j-1}(t)$. This implies

$$
\begin{equation*}
\phi_{j}(y) \leq \psi_{j}(y) \quad \text { for } \quad j=1,2, \cdots, N \tag{3.9}
\end{equation*}
$$

since $\sup _{0<s<t}\left\|z_{j}(s, t)\right\|$ is bounded as $t \downarrow 0$. On the other hand, applying (2.5) for $V_{t}(s)=V_{j, t}(s), A=A_{j}, x=\phi_{j-1}(t)$ and $u=y$, we have

$$
\left(t^{-1} \int_{0}^{t}\left\|z_{j}(s, t)-y\right\|^{2} d s\right)^{1 / 2} \leq\left\|y_{j-1}(t)-y\right\|+t\left\|A_{j} y\right\|
$$

Since $\left\|y_{j-1}(t)\right\|$ is bounded as $t \rightarrow 0$, the above estimate implies

$$
\begin{equation*}
\psi_{j}(y) \leq \phi_{j-1}(y) \quad \text { for } \quad j=1,2, \cdots, N \tag{3.10}
\end{equation*}
$$

Combining (3.8), (3.9) and (3.10), we obtain $\phi_{j}(y)=\psi_{j}(y)=\phi_{0}(y)$ for $y \in D(A)$ and $j=1,2, \cdots, N$. Since $\overline{D(A)}=X_{0}$ and ϕ_{j} and ψ_{j} are continuous on X, we get the required result.
Q.E.D.

Proposition 3.3. The functionals $\phi_{j}, j=0,1, \cdots, N$ and $\psi_{j}, j=1,2, \cdots, N$ are Gâteaux differentiable on X and

$$
\left\langle\phi_{j}^{\prime}(y), v\right\rangle=-2 \cdot \operatorname{LIM}_{n \rightarrow \infty}\left\langle F\left(y_{j}(t(n))-y\right), v\right\rangle, \quad j=0,1, \cdots, N
$$

and

$$
\begin{aligned}
& \left\langle\psi_{j}^{\prime}(y), v\right\rangle=-2 \cdot \operatorname{LIM}_{n \rightarrow \infty} t(n)^{-1} \int_{0}^{t(n)}\left\langle F\left(z_{j}(s, t(n))-y\right), v\right\rangle d s, \\
& j=1, \ldots, N, \text { for } y, v \in X .
\end{aligned}
$$

Proof. Since the norm of X is uniformly Gâteaux differentiable,

$$
\lim _{a \rightarrow 0} a^{-1}\left(\|u+a v\|^{2}-\|u\|^{2}\right)=2\langle F(u), v)
$$

for $v \in X$ and uniformly for bounded $u \in X$. Let $y, v \in X$ and let $\varepsilon>0$. Since $\left\|y_{j}(t)\right\|$ is bounded as $t \downarrow 0,\left\|y_{j}(t(n))\right\|$ is bounded with respect to n. Therefore, there exists a positive number δ such that

$$
\left|a^{-1}\left(\left\|y_{j}(t(n))-y-a v\right\|^{2}-\left\|y_{j}(t(n))-y\right\|^{2}\right)-2 \cdot\left\langle F\left(y_{j}(t(n))-y\right),-v\right\rangle\right|<\varepsilon
$$

for $|a|<\delta$ and $n=1,2, \cdots$. Taking the Banach limits of each term on the left hand side, we obtain

$$
\left|a^{-1}\left(\phi_{j}(y+a v)-\phi_{j}(y)\right)-2 \cdot \operatorname{LIM}_{n \rightarrow \infty}\left\langle F\left(y_{j}(t(n))-y\right),-v\right\rangle\right| \leq \varepsilon .
$$

Thus, ϕ_{j} is Gâteaux differentiable at y and $\left\langle\phi_{j}^{\prime}(y), v\right\rangle=-2 \cdot \operatorname{LIM}_{n \rightarrow \infty}\left\langle F\left(y_{j}(t(n))-\right.\right.$ $y), v\rangle, j=0,1, \cdots, N$.

Since $\sup _{0<s<t} \| z_{j}(s, t \|)$ is bounded as $t \downarrow 0, \sup _{0<s<t}\left\|z_{j}(t(n))\right\|$ is bounded with respect to n. Therefore, there exists a positive number δ such that

$$
\begin{aligned}
\mid a^{-1}\left(\left\|z_{j}(s, t(n))-y-a v\right\|^{2}-\left\|z_{j}(s, t(n))-y\right\|^{2}\right) & \\
& -2 \cdot\left\langle F\left(z_{j}(s, t(n))-y\right),-v\right\rangle \mid<\varepsilon
\end{aligned}
$$

for $|a|<\delta, 0<s<t(n)$ and $n=1,2, \cdots$. Hence,

$$
\begin{aligned}
& \mid a^{-1} t(n)^{-1} \int_{0}^{t(n)}\left(\left\|z_{j}(s, t(n))-y-a v\right\|^{2}-\left\|z_{j}(s, t(n))-y\right\|^{2}\right) d s \\
& \quad-2 \cdot t(n)^{-1} \int_{0}^{t(n)}\left\langle F\left(z_{j}(s, t(n))-y\right),-v\right\rangle d s \mid \leq \varepsilon
\end{aligned}
$$

for $n=1,2, \cdots$ and $|a|<\delta$; and consequently

$$
\begin{aligned}
& \mid a^{-1}\left(\psi_{j}(y+a v)-\psi_{j}(y)\right) \\
& \quad-2 \cdot \operatorname{LIM}_{n \rightarrow \infty} t(n)^{-1} \int_{0}^{t(n)}\left\langle F\left(z_{j}(s, t(n))-y\right),-v\right\rangle d s \mid \leq \varepsilon
\end{aligned}
$$

for $|a|<\delta$. Thus, ψ_{j} is also Gâteaux differentiable at y and $\left\langle\psi_{j}^{\prime}(y), v\right\rangle=-2$. $\operatorname{LIM}_{n \rightarrow \infty} t(n)^{-1} \int_{0}^{t(n)}\left\langle F\left(z_{j}(s, t(n))-y\right), v\right\rangle d s$.
Q.E.D.

In view of the Lemma stated in the end of Section 2, Propositions 3.2 and
3.3 together imply the following Corollary.

Corollary. For $y \in X_{0}, v \in \overline{\operatorname{sp}}\left(X_{0}-X_{0}\right)$ and $j=1,2, \cdots, N$,

$$
\begin{aligned}
& \operatorname{LIM}_{n \rightarrow \infty}\left\langle F\left(y_{j}(t(n))-y\right), v\right\rangle \\
& \quad=\operatorname{LIM}_{n \rightarrow \infty} t(n)^{-1} \int_{0}^{t(n)}\left\langle F\left(z_{j}(s, t(n))-y\right), v\right\rangle d s \\
& \quad=\operatorname{LIM}_{n \rightarrow \infty}\left\langle F\left(y_{0}(t(n))-y\right), v\right\rangle .
\end{aligned}
$$

Proposition 3.4. $\quad y_{0}(t) \rightarrow(I-\lambda A)^{-1} x$ as $t \downarrow 0$. Therefore (3.1) is obtained for $\lambda>0$ and $x \in D(A)$.

Proof. Let $u \in D(A)$ and $v_{j} \in A_{j} u, j=1,2, \cdots, N$. The inequality (2.3) with $U(t)=U_{j}(t), V_{t}(s)=V_{j, t}(s), x=y_{j-1}(t)$ and $v=v_{j}$ implies

$$
\begin{equation*}
\left\|y_{j}(t)-u\right\|^{2}-\left\|y_{j-1}(t)-u\right\|^{2} \leq 2 \int_{0}^{t}\left\langle F\left(z_{j}(s, t)-y\right), v_{j}\right\rangle d s \tag{3.11}
\end{equation*}
$$

since $y_{j}(t)=U_{j}(t) y_{j-1}(t)$ and $z_{j}(s, t)=V_{j, t}(s) y_{j-1}(t)$. Summing the relations (3.11) over $j=1,2, \cdots, N$, we obtain

$$
\begin{equation*}
\left\|y_{N}(t)-u\right\|^{2}-\left\|y_{0}(t)-u\right\|^{2} \leq 2 \sum_{j=1}^{N} \int_{0}^{t}\left\langle F\left(z_{j}(s, t)-y\right), v_{j}\right\rangle d s \tag{3.12}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
& \left\|y_{N}(t)-u\right\|^{2}-\left\|y_{0}(t)-u\right\|^{2} \\
& \quad \geq 2\left\|y_{N}(t)-u\right\| \cdot\left\|y_{0}(t)-u\right\|-2\left\|y_{0}(t)-u\right\|^{2} \\
& \quad \geq 2\left\langle F\left(y_{0}(t)=u\right), y_{N}(t)-u\right\rangle-2\left\langle F\left(y_{0}(t)-u\right), y_{0}(t)-u\right\rangle \\
& \quad=2\left\langle F\left(y_{0}(t)-u\right), y_{N}(t)-y_{0}(t)\right\rangle .
\end{aligned}
$$

Thus, using (3.5), we have

$$
\begin{align*}
& \left\|y_{N}(t)-u\right\|^{2}-\left\|y_{0}(t)-u\right\|^{2} \tag{3.13}\\
& \quad \geq 2\left\langle F\left(y_{0}(t)-u\right), t \lambda^{-1}\left(y_{0}(t)-x\right)\right\rangle \\
& \quad=2 t \lambda^{-1}\left(\left\|y_{0}(t)-u\right\|^{2}-\left\langle F\left(y_{0}(t)-u\right), x-u\right\rangle\right) .
\end{align*}
$$

Combining (3.12) and (3.13), we obtain

$$
\left\|y_{0}(t)-u\right\|^{2} \leq\left\langle F\left(y_{0}(t)-u\right), x-u\right\rangle+\lambda \sum_{j=1}^{N} t^{-1} \int_{0}^{t}\left\langle F\left(z_{j}(s, t)-y\right), v_{j}\right\rangle d s
$$

and it follows that

$$
\operatorname{LIM}_{n \rightarrow \infty}\left\|y_{0}(t(n))-u\right\|^{2} \leq \operatorname{LIM}_{n \rightarrow \infty}\left\langle F\left(y_{0}(t(n)-u), x-u\right\rangle\right.
$$

$$
+\lambda \sum_{j=1}^{N} \operatorname{LIM}_{n \rightarrow \infty} t(n)^{-1} \int_{0}^{t(n)}\left\langle F\left(z_{j}(s, y(n))-y\right), v_{j}\right\rangle d s
$$

Note that $x-u \in X_{0}-X_{0}$ and $v_{j} \in \operatorname{sp}\left(X_{0}-X_{0}\right)$ for $j=1,2, \cdots, N$, since each A_{j} satisfies condition ($R: X_{0}$). So, in view of the Corollary before Proposition 3.4, we have

$$
\begin{aligned}
& \operatorname{LIM}_{n \rightarrow \infty}\left\|y_{0}(t(n))-u\right\|^{2} \\
& \quad \leq \operatorname{LIM}_{n \rightarrow \infty}\left\langle F\left(y_{0}(t(n))-u\right), x-u+\lambda \sum_{j=1}^{N} v_{j}\right\rangle \\
& \quad \leq \sup _{n}\left\|y_{0}(t(n))-u\right\| \cdot\left\|x-u+\lambda \sum_{j=1}^{N} v_{j}\right\| .
\end{aligned}
$$

Since A is the closure of $A_{1}+A_{2}+\cdots+A_{N}$, it turns out that

$$
\begin{align*}
& \operatorname{LIM}_{n \rightarrow \infty}\left\|y_{0}(t(n))-u\right\|^{2} \tag{3.14}\\
& \quad \leq \sup _{n}\left\|y_{0}(t(n))-u\right\| \cdot\|x-u+\lambda v\|
\end{align*}
$$

for $u \in D(A)$ and $v \in A u$. Putting $u=(I-\lambda A)^{-1} x$ and $v=\lambda^{-1}\left((I-\lambda A)^{-1} x-x\right)$ in (3.14), we have

$$
\operatorname{LIM}_{n \rightarrow \infty}\left\|y_{0}(t(n))-(I-\lambda A)^{-1} x\right\|^{2}=0
$$

This shows that there exists a subsequence $\{t(n(k))\}$ of $\{t(n)\}$ such that

$$
\lim _{k \rightarrow \infty} y_{0}(t(n(k)))=(I-\lambda A)^{-1} x
$$

Thus, it is concluded that $y_{0}(t)$ converges to $(I-\lambda A)^{-1} x$ as $t \downarrow 0$, as required.
Q.E.D.

References

[1] J. Baillon, Générateurs et semi-groups dans les de Banach uniformément lisses, J. Funct. Anal., 29 (1978), 199-213.
[2] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operatos in Banach spaces, J. Funct. Anal., 9 (1972), 63-74.
[3] H. Brezis and A. Pazy, Semigroups of nonlinear contractions on convex sets, J. Funct. Anal., 6 (1970), 237-281.
[4] R. Bruck and S. Reich, Accretive operators, Banach limits and dual ergodic theorems, Bull. Acad. Polon. Sci., 29 (1981), 585-589.
[5] M. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-293.
[6] T. Kato and K. Masuda, Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals, J. Math. Soc. Japan, 30 (1978), 169-178.
[7] Y. Kobayashi, Product formula for nonlinear semigroups in Hilbert spaces, Proc. Japan Acad., 58 (1982), 425-428.
[8] J. Mermin, Accretive operators and nonlinear semigroups in spaces with uniforml convex dual, Thesis, University of California, Berkeley, 1968.
[9] I. Miyadera, Some recent topics on nonlinear semigroups, Proc. of 5-th International Conference on Trends in Teheory and Practice of Nonlinear Differential Equations, 375-381, Marcel Dekker, 1984.
[10] I. Miyadera, Some remarks on semi-groups of nonlinear operators, Tôhoku Math. J., 23 (1971), 245-258.
[11] S. Reich, Convergence and approximation of nonlinear semigrops, J. Math. Anal. Applications., 76 (1980), 77-83.
[12] S. Reich, Product formula, nonlinear semigroups and accretive operators, J. Funct. Anal., 36 (1980), 147-168.

Department of Mathematics,
Faculity of Engineering, Niigata University

