On wild knots which are weakly tame

Osamu KAKIMIZU

(Received May 17, 1986)

1. Introduction

In this paper, we are concerned mainly with knots, by which we mean topologically embedded circles in the 3-sphere S^3 .

Let X be a subset of S³. Then, X is PL if it is a subpolyhedron of S³, tame if h(X) is PL for some homeomorphism $h: S^3 \approx S^3$, and wild if it is not tame. Furthermore, X is locally tame at $x \in X$ if there are an open set $V \ni x$ in S³ and a homeomorphism $\phi: V \approx E^3$ such that $\phi(V \cap X)$ is a subpolyhedron of E^3 (E^n denotes the Euclidean *n*-space), and when X is a knot, X is locally flat at $x \in X$ if $\phi(V \cap X) = E^1$ in addition. For a knot $J \subset S^3$, we note that these local properties are equivalent to each other, and consider the closed subset

$$E(J) = \{x \in J \mid J \text{ is not locally tame at } x\} \subset J.$$

Then, Bing's theorem [2] says that J is tame if and only if E(J) is empty.

We shall say that a knot $J \subset S^3$ is weaky tame if there is a PL knot $K \subset S^3$ such that the complement $S^3 - K$ is homeomorphic to $S^3 - J$, and weakly flat according to Duvall [7] if K is unknotted in addition; and we shall study several properties of such a knot J by taking notice of the set E(J).

The main results are stated as follows.

THEOREM I. Assume that a knot $J \subset S^3$ is weakly tame, and let U be an open set in J. Then, J is locally tame at every point $x \in U$ if so is at every point $x \in U - C^*$, where C^* is a Cantor set in U.

COROLLARY. If a knot $J \subset S^3$ is weakly tame, then E(J) has no isolated points. If J is locally tame at every point $x \in J - C^*$ for a Cantor set $C^* \subset J$ in addition, then it turns out that E(J) is empty and J is tame.

Theorem I means that E(J) for a weakly tame knot J can not be 0-dimensional. In contrast with this we can find a weakly tame knot J with 1-dimensional E(J): most significant one is given by the following

THEOREM II. For each PL knot $K \subset S^3$, there is a wild knot $J \subset S^3$ such that $S^3 - J$ is homeomorphic to $S^3 - K$ and J is everywhere wild, i.e., E(J) = J.

A proof of Theorem I using Cannon's characterization of tame arcs in S^3

will be given in §2. We can give also an elementary proof by comparing a system of neighborhoods of a Cantor set C^* with the standard one, as described in the original version of the paper.

Theorem II is proved in §3. Bing [3] developed the "hooked rug" method, by which Alford constructed a "nice" wild 2-sphere in S^3 ([1]); it contains a wild knot J^* whose $E(J^*)$ is an arc (Rushing [14]). We show that this knot J^* is weakly flat (Theorem 3.1), and then prove Theorem II by taking J as a connected sum of K and infinitely many copies of this J^* .

The following notation and the terminologies are used in this paper:

 \approx : homeomorphic, id: the identity map, \emptyset : empty set, \cong : isomorphic, E^n : Euclidean *n*-space, $E_+^n = E^{n-1} \times [0, \infty)$, $B^n = [-1, 1]^n$, $rB^n = [-r, r]^n$ (r>0), $S^n = \partial B^{n+1}$: the *n*-sphere, *d*: a metric on S^n , diam X: the diameter of X, Cl X: the closure of X, Fr X: the frontier of X, N(X, r) = {x \in S^3 | d(x, X) < r} $(X \subset S^3)$.

For $X \subset S^3$, X is locally polyhedral at $x \in X$ if $X \cap V$ is polyhedral for some closed neighborhood V of x in S³. When X is a compact *n*-manifold $(1 \le n \le 3)$, X is locally flat at $x \in X$ if it is locally tame at x by an open set $V \ni x$ and ϕ : $V \approx E^3$ with $\phi(V \cap X) = E_+^n$ or E^n according to $x \in \partial X$ or not in addition (these local properties are equivalent), and X is locally flat if so it at every point $x \in X$.

2. Proof of Theorem I

We first recall a characterization of tame arcs in S^3 .

DEFINITION. An arc A in S³ is said to have 1-ALG complement in S³ if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each loop in S³-A which is null-homologous (Z-coefficients) in a δ -subset of S³-A bounds a singular ε -disk in S³-A.

THEOREM 2.1 (J. W. Cannon [5, Th. 3.16]). An arc A in S^3 is tame if it has 1-ALG complement in S^3 .

We prove Theorem I by this theorem together with the following

PROPOSITION 2.2. Let J be a knot in Theorem I and p be an arbitrary point of U. Then, for each open neighborhood W of p in S^3 there is an open neighborhood $V \subset W$ of p such that every loop in V-J which is null-homologous in V-J is null-homotopic in W-J.

PROOF OF THEOREM I. Let A be an arc in U with Int $A \subset C^*$. For each $\varepsilon > 0$, we define an open covering $\{V_x | x \in S^3\}$ of S^3 as follows:

 $V_x = N(x, \min(\varepsilon/2, d(x, A))), \quad \text{for} \quad x \in S^3 - A;$

 $V_x = V$ given by Proposition 2.2 for p = x and $W = N(x, \varepsilon/2)$, for $x \in Int A$; and

 $V_x \ni x$ is an open ε -subset with $(V_x, A \cap V_x) \approx (E^3, E_+^1)$, for $x \in \partial A$.

Then, there is a Lebesgue number $\delta > 0$ for $\{V_x\}$, i.e., each δ -subset of S^3 is contained in some V_x . Thus, A has 1-ALG complement in S^3 , and A is tame by Theorem 2.1.

To prove Proposition 2.2, we prepare the following

LEMMA 2.3. Suppose that a knot $J \subset S^3$ is weakly tame. Then, there is a sequence $\{P_n\}$ of locally flat solid tori in S^3 such that

(1) Int $P_n \supset P_{n+1}$, $\bigcap P_n = J$ and $P_n - \operatorname{Int} P_{n+1} \approx \partial P_n \times [0, 1]$, and

(2) J is a deformation retract of P_n .

PROOF. Let K be a PL knot with $S^3 - J \approx S^3 - K$ by assumption.

Case 1: K is a trivial knot. Let $h: S^3 - J \approx S^1 \times E^2$ be a homeomorphism, and put

$$Q_n = h^{-1}(S^1 \times nB^2), \quad P_n = S^3 - \text{Int } Q_n.$$

Since Q_n is a locally flat solid torus in S^3 , we note that P_n is a knot space. Since $J \subset \text{Int } P_n$ is compact and J has codimension 2 in P_n , $P_n - J$ is connected and $\pi_1(P_n - J) \rightarrow \pi_1(P_n)$ is an epimorphism (see p. 329 of [11]). Note that $P_n - J \approx S^1 \times S^1 \times [0, \infty)$. Then, $\pi_1(P_n - J) \cong \mathbb{Z} \oplus \mathbb{Z}$, and so $\pi_1(P_n)$ is abelian. Hence, $\pi_1(P_n) \cong \mathbb{H}_1(P_n) \cong \mathbb{Z}$ and P_n is a solid torus.

Case 2: K is not trivial. Take $h: S^3 - J \approx S^3 - K$ and a tubular neighborhood $K \times E^2$ of K; $S^3 \supset K \times E^2 \subset K \times \{0\} = K$.

$$Q_n = h^{-1}(S^3 - K \times \text{Int}(1/n)B^2), \quad P_n = S^3 - \text{Int} Q_n.$$

Then, the knot space Q_n is not a solid torus. It follows that P_n is a solid torus (cf. Rolfsen [13, Th. (4.C.1)]).

Clearly, $\{P_n\}$ satisfies the other conditions in (1). Since $J \approx S^1$ is an ANR, there are an open set $R \supset J$ in S^3 and a retraction $r: R \rightarrow J$. Then, there is an m such that $P_n \subset R$ for all $n \ge m$. Let $n \ge m$. Then, $r|P_n: P_n \rightarrow J$ is a retraction, and so

$$Z \cong \pi_1(P_n) \xrightarrow{(r \mid P_n)_*} \pi_1(J) \cong Z$$

is an isomorphism. Thus, $r|P_n$ is a deformation retraction. Let n < m. Then, by the last condition in (1), P_n is a deformation retract of P_n ; and we see (2).

PROOF OF PROPOSITION 2.2. By Bing [2, Th. 9], we may assume that J is

locally polyhedral at every point of $U - C^*$. Also we may assume that $W \cap J \subset U$. Take a subarc I of $W \cap J$ such that $p \in \text{Int } I$, and both end points a_0 and a_1 of I are contained in $U - C^*$. Then, there are disjoint PL disks D_0 and D_1 in W such that $D_i \cap J = \{a_i\}$ and J intersects D_i transversely at a_i (i=0, 1). By Lemma 2.3, there is a locally flat solid torus $P \subset S^3$ such that $P \cap (\partial D_0 \cup \partial D_1) = \emptyset$, $J \subset \text{Int } P$ and J is a deformation retract of P. Let X and X' be the components of $\text{Int } P - (D_0 \cup D_1)$ containing Int I and J - I, respectively.

Claim 1. $X \neq X'$.

Suppose that X = X'. Take a point $q \in J - I$. Then, there is an arc $H \subset X$ joining p and q. Let $H' \ni a_0$ be the subarc of J which joins p and q. Then, the loop $H \cup H'$ in Int P intersects D_0 transversely at a_0 and $(H \cup H') \cap D_0 = \{a_0\}$. Thus, $H \cup H'$ is homotopic to J in Int P, because J is a deformation retract of P, $J \cap D_0 = \{a_0\}$ and J intersect transversely at a_0 . But, $(H \cup H') \cap D_1 = \emptyset$; this is a contradiction. Claim 1 follows.

Thus, $Y = X \cap W$ is an open neighborhood of $\operatorname{Int} I$ in S^3 and $Y \cap X' = \emptyset$. Take subdisks E_0 and E_1 of D_0 and D_1 , respectively, such that $a_i \in \operatorname{Int} E_i$ and $E_i \subset$ Int P (i=0, 1). By Lemma 2.3, there is a locally flat solid torus $P' \subset \operatorname{Int} P$ such that $J \subset \operatorname{Int} P'$, J is a deformation retract of P', $P' - J \approx S^1 \times S^1 \times [0, \infty)$ and $P' \cap ((D_0 \cup D_1 \cup \operatorname{Fr} Y) - \operatorname{Int} (E_0 \cup E_1)) = \emptyset$. Let V be the component of $\operatorname{Int} P' - (D_0 \cup D_1)$ containing $\operatorname{Int} I$. Then, $V \subset Y$ by the same reason as in Claim 1.

Let $f: S^1 = \partial B^2 \to V$ be a loop which is null-homologous in V-J. Then, f is also null-homologous in Int P'-J; hence f extends to a map $f: B^2 \to \text{Int } P'-J$. We may assume that f is in general position with respect to $E_0 \cup E_1$; hence $f^{-1}(E_0 \cup E_1)$ is a finite union of disjoint circles in Int B^2 . Let B' be the closure of the component of $B^2 - f^{-1}(E_0 \cup E_1)$ which contains ∂B^2 .

Claim 2. For each component $L \subset f^{-1}(E_i)$ (i=0, 1), the loop $f|L: L \rightarrow E_i - \{a_i\}$ is null-homotopic.

If not, then some non-zero multiple of ∂E_i is homotopic to f|L in $S^3 - J$ and f|L is null-homotopic in $S^3 - J$. Therefore the linking number of J and ∂E_i is zero. This is a contradiction, and Claim 2 follows.

Thus, $f|B': B' \to (V \cup E_0 \cup E_1) - J$ extends to a map $f': B^2 \to (V \cup E_0 \cup E_1) - J$; hence $f: S^1 \to V$ bounds a singular disk in W-J.

Thus, the proof of Theorem I is completed.

3. Proof of Theorem II

THEOREM 3.1. There is a wild knot $J^* \subset S^3$ which satisfies the following conditions.

(a) J^* is weakly flat.

(b) $E(J^*)$ is a non-empty subarc A^* of J^* .

(c) There are an open subset $U \subset S^3$ and a homeomorphism $h: (U, U \cap J^*) \approx (E^3, E^1)$ such that $D^* - J^* \approx (\partial D^* - J^*) \times [0, \infty)$ where $D^* = S^3 - \text{Int } h^{-1}(B^3)$.

PROOF. Alford [1] constructed a wild 3-cell B^* in S^3 such that $S^3 - B^* \approx E^3$ and $A^* = \{x \in \partial B^* | \partial B^*$ is not locally tame at x} is a non-empty arc on ∂B^* . B^* and A^* are the limits of PL 3-cells $\{B_n \subset S^3\}$ and PL arcs $\{A_n \subset \partial B_n\}$ respectively: B_0 is a PL 3-cell and A_0 is a PL arc on ∂B_0 . B_n is obtained from B_{n-1} by adding "cubes-with-eyebolts" to ∂B_{n-1} along A_{n-1} and removing a thin slice from the loop of each cube-with-eyebolt. There is a homeomorphism $f_n: B_{n-1} \approx B_n$ such that $f_n|Cl(B_{n-1} - C_{n-1}) = id$ where C_{n-1} is a regular neighborhood of A_{n-1} in B_{n-1} , and $A_n = f_n(A_{n-1})$. $\{f_n f_{n-1} \cdots f_1: B_0 \to B_n\}$ is a Cauchy sequence converging to the embedding $f^*: B_0 \to S^3$ such that $B^* = f^*(B_0)$ and $A^* = f^*(A_0)$. By the construction (cf. Bing [3, §4] and Gillman [9, §3]), we have PL cubes-with-handles $\{M_n\}$ such that

(M1) Int $M_n \supset M_{n+1}$ and $\bigcap_n M_n = A^*$,

(M2) $M_n \cap B_{n-1} = C_{m-1}$ and $M_n \cap B_n = f_n(C_{n-1})$.

Now we take a PL circle J_0 on ∂B with $J_0 \supset A_0$, and put $J^* = f^*(J_0)$. Then, J^* is a wild knot in S^3 with $E(J^*) = A^*$ by [14]; hence J^* satisfies (b).

Next, we prove (a). By applying the "stretching argument" to a regular neighborhood of B_n $(n \ge 1)$ as used in [9, §§4-5], we can construct PL 3-cells $\{N_n\}$ satisfying the following

(N1) Int $N_n \supset N_{n+1}$ and $\bigcap N_n = B^*$,

(N2) $M_n \cap N_i$ is a PL 3-cell and $M_n \cap N_i \cap \partial W_n$ is a PL disk for i > n, where $W_n = M_n \cap N_n$.

Let $p: S^3 \rightarrow S^3/A^*$ be the projection. Since B^* is locally tame at every $x \in B^* - A^*$ and B^* is cellular in S^3 by (N1), it follows from Meyer [12, Th. 2] that

$$S^3 \approx S^3/B^* \approx S^3/A^* \supset \partial B^*/A^* \approx S^2$$

and $\partial B^*/A^*$ is locally tame at every point of $\partial B^*/A^* - p(A^*)$.

Now we show that $\partial B^*/A^*$ is flat in S^3/A^* . Since B^*/A^* is a 3-cell, it is sufficient to show that $\operatorname{Cl}(S^3/A^* - B^*/A^*)$ is a 3-cell, and this is equivalent to that $S^3/A^* - B^*/A^*$ is $1 - \operatorname{LC}$ at $p(A^*)$ by Bing [4, Th. 2]. Here, for closed subset $A \subset X$ in S^3 , $S^3 - X$ is 1-LC at A if each open set $U \subset A$ in S^3 contains an open set $V \subset A$ such that each loop in V - X is null-homotopic in U - X. Thus, it is sufficient to show that $S^3 - B^*$ is 1-LC at A^* . By (M1) and (N1-2),

Osamu KAKIMIZU

Int
$$W_n \supset W_{n+1}$$
, $\bigcap_n W_n = A^*$ and $W_n - B^* = \bigcup_{i \ge n+1} (W_n - N_i)$.

Moreover, $C1(W_n - N_i) = Cl(W_n - (M_n \cap N_i))$ is a PL 3-cell for $i \ge n+1$ by (N2). Thus, $S^3 - B^*$ is 1-LC at A^* , and $\partial B^*/A^*$ is flat in S^3/A^* . From this, J^*/A^* is flat in S^3/A^* . Then, we see (a), because

$$S^3 - J^* \approx (S^3/A^*) - (J^*/A^*) \approx S^3 - S^1 \approx S^1 \times E^2.$$

Finally we verify (c). Take $\phi: (S^3/A^*, J^*/A^*) \approx (S^3, S^1)$, and choose an open set $U' \subset S^3 - \phi p(A^*)$ and $h': (U', U' \cap S^1) \approx (E^3, E^1)$. Furthermore, put $U = p^{-1}\phi^{-1}(U') \subset S^3 - A^*$ and $h = h'\phi p: (U, U \cap J^*) \approx (E^3, E^1)$. Then, we have $D^* - J^* \approx B^3 - B^1 \approx (\partial D^* - J^*) \times [0, \infty)$ for $D^* = S^3 - \text{Int } h^{-1}(B^3)$.

This completes the proof of Theorem $3.1\square$

LEMMA 3.2. Suppose that J^* and D^* are as in Theorem 3.1. Let $g: S^1 \to S^3$ be an embedding such that there is an open set $U' \subset S^3$ with $h': (U', U' \cap g(S^1)) \approx$ (E^3, E^1) . Take a locally flat 3-cell $D' = h'^{-1}(B^3)$ in S^3 and a subarc $C' = g^{-1}(D')$ of S^1 . Then, there is an embedding $f: S^1 \to S^3$ with the following (1)–(4):

- (1) $f | S^1 \text{Int } C' = g | S^1 \text{Int } C'$.
- (2) $f(\operatorname{Int} C') \subset \operatorname{Int} D'$.
- (3) $(D', D' \cap f(S^1)) \approx (D^*, D^* \cap J^*).$

(4) There is $\phi: S^3 - g(S^1) \approx S^3 - f(S^1)$ such that $\phi = id$ on $S^3 - (g(S^1) \cup Int D')$.

PROOF. Suppose that J^* , U, h and D^* are as in Theorem 3.1. Then, there is an embedding $e: S^1 \rightarrow S^3$ such that $J^* = e(S^1)$. Take a subarc $C = e^{-1}(D) \subset S^1$ where $D = h^{-1}(B^3)$, and put

 $S^{1} \# S^{1} = (S^{1} - \operatorname{Int} C') \cup_{\overline{g}} (S^{1} - \operatorname{Int} C), \quad \overline{g} = e^{-1}h^{-1}h' : \partial C' \longrightarrow \partial C,$ and $S^{3} \# S^{3} = (S^{3} - \operatorname{Int} D') \cup_{\overline{x}} (S^{3} - \operatorname{Int} D), \quad \overline{h} = h^{-1}h' : \partial D' \longrightarrow \partial D.$

Then, there are $p: S^1 \approx S^1 \# S^1$ and $q: S^3 \approx S^3 \# S^3$ such that $p|S^1 - \text{Int } C' = \text{id}$ and $q|S^3 - \text{Int } D' = \text{id}$. We can define an embedding $q': S^1 \# S^1 \rightarrow S^3 \# S^3$ by

 $g' | S^1 - \text{Int } C' = g | S^1 - \text{Int } C'$ and $g' | S^1 - \text{Int } C = e | S^1 - \text{Int } C$.

Therefore, we get an embedding $f = q^{-1}g'p: S^1 \rightarrow S^3$. Clearly, f satisfies (1)-(3). From (c) of Theorem 3.1, we can easily verify (4).

LEMMA 3.3. Let J^* and D^* be the ones in Theorem 3.1. Let $f_0: S^1 \to S^3$ be a PL embedding, and V_n $(n \ge 1)$ be connected open sets in S^1 , which forms a basis of open sets. Then, there are $B \subset A \subset \{1, 2, ...\}$, $D_n \subset U_n \subset S^3$, $h_n: U_n \approx E^3$ and $C_n \subset V_n$ for $n \in A$, embeddings $f_n: S^1 \to S^3$ and $\phi_n: S^3 - f_n(S^1) \approx S^3 - f_n(S^1)$ for $n \ge 1$, which satisfy the following conditions (F1)-(F6):

(F1) If $n \notin A$, then $f_{n-1}(V_n)$ is everywhere wild, $f_n = f_{n-1}$ and $\phi_n = id$.

(F2) For each $n \in A$, U_n is open in S^3 , $h_n: (U_n, U_n \cap f_{n-1}(S^1)) \approx (E^3, E^1)$, $D_n = h_h^{-1}(B^3) \subset U_n$ is a locally flat 3-cell with diam $D_n < 1/2^n$, and $C_n = f_{n-1}^{-1}(D_n) \subset V_n$ is a subarc of S^1 with diam $C_n < 1/n$.

(F3) If n < m, then either $D_n \cap D_m = \emptyset = C_n \cap C_m$, or $D_m \subset \text{Int } D_n$ and $C_m \subset \text{Int } C_n$.

(F4) $f_n|S^1 - \text{Int } C_n = f_{n-1}|S^1 - \text{Int } C_n$, $f_n(\text{Int}C_n) \subset \text{Int } D_n$, $(D_n, D_n \cap f_n(S^1)) \approx (D^*, D^* \cap J^*)$ and $\phi_n|S^3 - (f_{n-1}(S^1) \cup \text{Int } D_n) = id$.

(F5) If $n \in B$, then $D_n \cap \overline{D}_n = \emptyset$ where $\overline{D}_n = \bigcup_{i < n} D_i$.

(F6) If $n \in A - B$, then $D_n \subset \text{Int } D_i$ for some i < n. If k is the smallest integer of such i in addition, then

 $D_n \subset \operatorname{Int} D_k - \phi_{n-1} \cdots \phi_k h_k^{-1}(K_n) \quad where \quad K_n = B^1 \times (B^2 - (1/n)B^2).$

PROOF. The requirements in the lemma with (F1)–(F6) are defined by induction on n as follows:

Case 1: $V_n - \overline{C}_n \neq \emptyset$ where $\overline{C}_n = \bigcup_{i < n} C_i$. Let $n \in B$ and $n \in A$. By (F4) in the inductive assumptions, we have

$$f_{n-1} \mid V_n - \overline{C}_n = f_0 \mid V_n - \overline{C}_n \text{ and } f_{n-1}(V_n - \overline{C}_n) \subset S^3 - \overline{D}_n.$$

Then, there are an open set $U_n \subset S^3 - \overline{D}_n$ with $U_n \cap f_{n-1}(S^1) \subset f_{n-1}(V_n - \overline{C}_n)$ and $h_n: (U_n, U_n \cap f_{n-1}(S^1)) \approx (E^3, E^1)$. Put $D_n = h_n^{-1}(B^3)$ and $C_n = f_{n-1}^{-1}(D_n)$. We may assume that diam $D_n < 1/2^n$ and diam $C_n < 1/n$. Then, (F2), (F3) and (F5) hold. By Lemma 3.2, we get an embedding $f_n: S^1 \to S^3$ with (F4).

Case 2: $V_n \subset E(f_{n-1})$, where $E(f_{n-1}) = f_{n-1}^{-1}(E(f_{n-1}(S^1)))$. Set $n \in A$, $f_n = f_{n-1}$ and $\phi_n = id$.

Case 3: $V_n \subset \overline{C}_n$ and $V_n - E(f_{n-1}) \neq \emptyset$. Set $n \in A$ and $m \notin B$. Since \overline{C}_n is a finite union of pairwise disjoint arcs, (F3) implies that $V_n \subset \bigcup_{i < n} \text{Int } C_i$. Take a point $p \in V_n - E(f_{n-1})$ and put

$$j(p) = \max \{i \mid p \in \operatorname{Int} C_i\}, \quad k(p) = \min \{i \mid p \in \operatorname{Int} C_i\} \text{ and}$$
$$C(p) = \bigcup \{C_i \mid C_i \subset \operatorname{Int} C_{j(p)}\}.$$

Then, $V_n \cap (\text{Int } C_{i(p)} - C(p)) \ni p$ is open in S¹. (F4) shows that

$$f_{n-1} = f_{j(p)}$$
 on Int $C_{j(p)} - C(p)$ and
 $\phi_{n-1} = \phi_{j(p)}$ on Int $D_{j(p)} - D(p)$,

where $D(p) = \bigcup \{D_i | D_i \subset \text{Int } D_{j(p)}\}$. Moreover

$$N = (\text{Int } D_{i(p)} - D(p)) - \phi_{n-1} \cdots \phi_{k(p)} h_{k(p)}^{-1}(K_n)$$

Osamu KAKIMIZU

is a neighborhood of $f_{n-1}(p)$ in S^3 . Since $p \in E(f_{n-1})$, i.e., $f_{n-1}(S^1)$ is locally flat at $f_{n-1}(p)$, there is an open set $U_n \ni f_{n-1}(p)$ in Int N such that

$$U_n \cap f_{n-1}(S^1) \subset f_{n-1}(V_n \cap (\text{Int } C_{j(p)} - C(p))).$$

Then, we can define h_n , D_n and C_n with (F2), (F3) and (F6), and an embedding f_n with (F4) by Lemma 3.2.

PROOF OF THEOREM II. Let $g: S^1 \rightarrow S^3$ be a PL embedding with $g(S^1) = K$. By using Lemma 3.3 for $f_0 = g$, we define J as follows.

Since $d(f_n, f_{n-1}) < 1/2^n$ by (F2) and (F4), $\{f_n\}$ is a Cauchy sequence converging to a continuous map $f: S^1 \to S^3$. We show that f is an embedding, and put $J = f(S^1)$.

By induction, it is easy to check that, for all $i \ge n$,

$$f_i(\operatorname{Int} C_n) \subset \operatorname{Int} D_n$$
 and $f_i(S^1 - \operatorname{Int} C_n) \subset S^3 - \operatorname{Int} D_n$.

From this, we have

(i) $f(\operatorname{Int} C_n) \subset \operatorname{Int} D_n \ (n \ge 1)$ and

(ii) $f(S^1 - \operatorname{Int} C_n) \subset S^3 - \operatorname{Int} D_n \ (n \ge 1).$

To see (i), we take $x \in \text{Int } C_n$. Suppose that $x \in \text{Int } C_k \subset C_k \subset \text{Int } C_n$ for some k > n. Then, $f_i(x) \in \text{Int } D_k$ for each $i \ge k$, and so $f(x) = \lim f_i(x) \in D_k \subset \text{Int } D_n$. Suppose that $x \in \text{Int } C_i$ (i > n). Then, $f_i(x) = f_n(x)$ $(i \ge n)$, and so $f(x) = f_n(x) \in \text{Int } D_n$. Thus, (i) holds. (ii) is also easy to varify.

Now let $x, y \in S^1$ be distinct points.

Case 1. If $x \in \text{Int } C_n$ and $y \in S^1 - \text{Int } C_n$, then $f(x) \in \text{Int } D_n$ and $f(y) \in S^3 - \text{Int } D_n$ by (i) and (ii), and so $f(x) \neq f(y)$.

Case 2. If $x, y \in S^1 - \bigcup_{n \in A}$ Int C_n , then $f(x) = g(x) \neq g(y) = f(y)$.

Case 3. If x, $y \in \text{Int } C_n$ and x, $y \in S^3 - \text{Int } C_i$ for every i > n, then we have $f(x) = f_n(x) \neq f_n(y) = f(y)$. Thus, f is an embedding.

We shall see that J is everywhere wild by proving the following claims A1-3:

Claim A.1. $E(f_n) \subset E(f_i)$ and $E(f_n) \cap C_i = \emptyset$ (n < i).

This claim is shown by induction.

Claim A.2. For each $n \notin A$, $f(V_n) = f_n(V_n)$ is everywhere wild.

In fact, let $n \notin A$. Then, $f_n(V_n) = f_{n-1}(V_n)$ is everywhere wild by (F1). Thus, $V_n \subset E(f_n)$ and so $V_n \subset S^1 - C_i$ (i > n) by claim A.1. Then, $f_i | V_n = f_n | V_n$ (i > n), and hence we have Claim A.2.

Claim A.3. $\bigcup_{n \notin A} V_n$ is dense in S^1 .

If $n \in A$, then $V_n \supset C_n \supset \text{Int } C_n$ Int $E(f_n) \neq \emptyset$ by (F4). Hence, Int $C_n \cap \text{Int } E(f_n) \supset V_i$ for some i > n. Thus, we have the claim.

Since E(f) is a closed subset of S^1 , Claims A.2 and A.3 show that $E(f) = S^1$, i.e., J is everywhere wild.

Finally, we shall prove that $S^3 - J \approx S^3 - K$ by showing the following Claims B1-6: For each *n*, we define closed sets A(n, i) $(i \in B)$ of $S^3 - K = S^3 - g(S^1)$ by

$$A(n, i) = \begin{cases} h_i^{-1}(B^1 \times ((1/n)B^2 - \{0\})) = h_i^{-1}(B^1 \times (1/n)B^2) - K \quad (i < n) \\ h_i^{-1}(B^1 \times (B^2 - \{0\})) = D_i - K \quad (i \ge n). \end{cases}$$

Claim B.1. The collection $\{A(n, i)\}_{i \in B}$ is locally finite in $S^3 - K$.

Suppose that this claim is false. Then, there are a point $y \in S^3 - K$ and a sequence $\{y_k\}$ in $S^3 - K$ converging to y such that $y_k \in A(n, i(k))$ for a sequence $i(1) < i(2) < \cdots$ in B. Since $A(n, i(k)) \subset D_{i(k)}$, lim diam $D_{i(k)} = 0$ and $D_{i(k)} \cap K = f_{i(k)-1}$. $(C_{i(k)}) \neq \emptyset$, we see that $y \in K$. This is a contradiction; and the claim follows.

By virtue of this claim, we can define open sets X_n of $S^3 - K$ by

$$X_n = (S^3 - K) - \bigcup_{i \in B} A(n, i) \quad (n \ge 1).$$

Claim B.2. $X_1 \neq X_2 \subset \cdots$ and $\bigcup_n X_n = S^3 - K$.

This follows easily from the definition of $\{X_n\}$.

Claim B.3. $\phi_{n-1}\cdots\phi_1(X_n) \subset S^3 - (f_{n-1}(S^1) \cup \tilde{D}_n)$, where $\tilde{D}_n = \bigcup_{i>n} D_i$.

We prove this by induction on *n*. This holds for n = 1 since $X_1 = S^3 - (K \cup \bigcup_{i \in B} D_i) = S^3 - (g(S^1) \cup \tilde{D}_1)$ by (F5).

If $n-1 \in B$, then $X_n = X_{n-1}$ and

$$\begin{split} \phi_{n-1} \cdots \phi_1(X_n) &\subset \phi_{n-1}(S^3 - (f_{n-2}(S^1) \cup \tilde{D}_{n-1})) \quad \text{(by induction hypothesis)} \\ &= \phi_{n-1}(S^3 - (f_{n-1}(S^1) \cup \tilde{D}_{n-1})) \subset S^3 - (f_{n-1}(S^1) \cup \tilde{D}_n) \quad \text{(by (F4))}. \end{split}$$

If $n-1 \in B$, then $X_n = X_{n-1} \cup h_{n-1}^{-1}(K_n)$ and

$$\phi_{n-1}\cdots\phi_1h_{n-1}^{-1}(K_n)=\phi_{n-1}h_{n-1}^{-1}(K_n), \quad \phi_{n-1}h_{n-1}^{-1}(K_n)\cap f_{n-1}(S^1)=\emptyset.$$

Thus, it suffices to show that

$$\phi_{n-1}h_{u-1}^{-1}(K_n) \cap D_i = \emptyset$$
 for each $i \ge n$.

This is trivial in case of $D_i \cap D_{n-1} = \emptyset$. If $D_i \subset \text{Int } D_{n-1}$, then (F6) shows that

$$\begin{split} D_i &\subset \operatorname{Int} D_{n-1} - \phi_{i-1} \cdots \phi_{n-1} h_{n-1}^{-1}(K_i) \\ &\subset \operatorname{Int} D_{n-1} - \phi_{i-1} \cdots \phi_{n-1} h_{n-1}^{-1}(K_n) = \operatorname{Int} D_{n-1} - \phi_{n-1} h_{n-1}^{-1}(K_n) \,. \end{split}$$

Therefore, we see Claim B.3.

By (F4), we see that $S^3 - (f_{n-1}(S^1) \cup \tilde{D}_n) = S^3 - (f(S^1) \cup \tilde{D}_n)$. Therefore, by Claim B.3, an embedding $\psi_n \colon X_n \to S^3 - J = S^3 - f(S^1)$ can be defined by

 $\psi_n = \phi_{n-1} \cdots \phi_1 | X_n$ for each n.

Claim B.4. $\psi_{n+1}|X_n = \psi_n$.

Since $\phi_n | \phi_{n-1} \cdots \phi_1(X_n) = id$ by Claim B.3 and (F4), we see Claim B.4.

Claim B.5. For each $y \in S^3 - J$, $\{n | y \in D_n\}$ is a finite set.

Suppose that there is a sequence $n(1) < n(2) < \cdots$ such that $y \in D_{n(k)}$. Then, $D_{n(1)} \supset D_{n(2)} \supset \cdots$, lim diam $D_{n(k)} = 0$, $C_{n(1)} \supset C_{n(2)} \supset \cdots$, lim diam $C_{n(k)} = 0$, by (F3). Thus, $\{y\} = \bigcap_k D_{n(k)} = f(\bigcap_k C_{n(k)}) \subset J$; and the claim follows.

Claim B.6. $S^3 - J = \bigcup_n \psi_n(X_n)$.

For $y \in S^3 - J$, put $k = \min \{n | y \in D_n\}$, $j = \max \{n | y \in D_n\}$ and $z = \phi_k^{-1} \cdots \phi_j^{-1}(y) \in D_k - K$. Then, $z \in X_n$ for some n > j. Thus,

$$\psi_n(z) = \phi_{n-1} \cdots \phi_1(z) = \phi_i \cdots \phi_k(z) = y,$$

and the claim holds.

Now, by Claims B.2, B.4 and B.6, we have a hoeomorphism $\psi: S^3 - K \approx S^3 - J$ given by $\psi|X_n = \psi_n$.

This completes the proof of Theorem II.□

References

- W. R. Alford, Some "nice" wild 2-sphere in E³, in: M. K. Fort Jr. ed., Topology of 3-manifolds and Related Topics, 29–33, Prentice-Hall, Englewood Cliffs, 1962.
- [2] R. H. Bing, Locally tame sets are tame, Ann. of Math. 59 (1954), 145–158.
- [3] —, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-15.
- [4] —, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294–305.
- [5] J. W. Cannon, ULC properties in neighbourhoods of embedded surfaces and curves in E³, Can. J. Math. 25 (1973), 31-73.
- [6] R. J. Daverman, On weakly flat 1-spheres, Proc. Amer. Math. Soc. 38 (1973), 207–210.
- [7] P. F. Duvall, Jr., Weakly flat spheres, Michigan Math. J. 16 (1967), 117-124.
- [8] C. H. Edwards, J., A characterization of tame curves in the 3-sphere, Abstract 573-32, Notices Amer. Math. Soc. 7 (1960), 875.
- [9] D.S. Gillman, Note concerning a wild sphere of Bing, Duke Math. J. 31 (1964), 247-254.
- [10] J. G. Hollingsworth and T. B. Rushing, Homotopy characterizations of weakly flat codimension 2 spheres, Amer. J. Math. 98 (1976), 385–394.

- [11] D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327–337.
- [12] D. V. Meyer, E³ modulo a 3-cell, Pacific J. Math. 13 (1963), 193–196.
- [13] D. Rolfsen, Knots and Links, Mathematics Lecture Series 7, Publish or Perish Inc., 1976.
- [14] T. B. Rushing, Everywhere wild cells and spheres, Rocky Mountain J. Math. 2 (1972), 249–258.

Department of Mathematics, Faculty of Science, Hiroshima University