On wild knots which are weakly tame

Osamu Kakimizu
(Received May 17, 1986)

1. Introduction

In this paper, we are concerned mainly with knots, by which we mean topologically embedded circles in the 3 -sphere S^{3}.

Let X be a subset of S^{3}. Then, X is $P L$ if it is a subpolyhedron of S^{3}, tame if $h(X)$ is PL for some homeomorphism $h: S^{3} \approx S^{3}$, and wild if it is not tame. Furthermore, X is locally tame at $x \in X$ if there are an open set $V \ni x$ in S^{3} and a homeomorphism $\phi: V \approx E^{3}$ such that $\phi(V \cap X)$ is a subpolyhedron of $E^{3}\left(E^{n}\right.$ denotes the Euclidean n-space), and when X is a knot, X is locally flat at $x \in X$ if $\phi(V \cap X)=E^{1}$ in addition. For a knot $J \subset S^{3}$, we note that these local properties are equivalent to each other, and consider the closed subset

$$
E(J)=\{x \in J \mid J \text { is not locally tame at } x\} \subset J .
$$

Then, Bing's theorem [2] says that J is tame if and only if $E(J)$ is empty.
We shall say that a knot $J \subset S^{3}$ is wealky tame if there is a PL knot $K \subset S^{3}$ such that the complement $S^{3}-K$ is homeomorphic to $S^{3}-J$, and weakly flat according to Duvall [7] if K is unknotted in addition; and we shall study several properties of such a knot J by taking notice of the set $E(J)$.

The main results are stated as follows.
Theorem I. Assume that a knot $J \subset S^{3}$ is weakly tame, and let U be an open set in J. Then, J is locally tame at every point $x \in U$ if so is at every point $x \in U-C^{*}$, where C^{*} is a Cantor set in U.

Corollary. If a knot $J \subset S^{3}$ is weakly tame, then $E(J)$ has no isolated points. If J is locally tame at every point $x \in J-C^{*}$ for a Cantor set $C^{*} \subset J$ in addition, then it turns out that $E(J)$ is empty and J is tame.

Theorem I means that $E(J)$ for a weakly tame knot J can not be 0 -dimensional. In contrast with this we can find a weakly tame knot J with 1-dimensional $E(J)$: most significant one is given by the following

Theorem II. For each PL knot $K \subset S^{3}$, there is a wild knot $J \subset S^{3}$ such that $S^{3}-J$ is homeomorphic to $S^{3}-K$ and J is everywhere wild, i.e., $E(J)=J$.

A proof of Theorem I using Cannon's characterization of tame arcs in S^{3}
will be given in $\S 2$. We can give also an elementary proof by comparing a system of neighborhoods of a Cantor set C^{*} with the standard one, as described in the original version of the paper.

Theorem II is proved in §3. Bing [3] developed the "hooked rug" method, by which Alford constructed a "nice" wild 2-sphere in S^{3} ([1]); it contains a wild knot J^{*} whose $E\left(J^{*}\right)$ is an arc (Rushing [14]). We show that this knot J^{*} is weakly flat (Theorem 3.1), and then prove Theorem II by taking J as a connected sum of K and infinitely many copies of this J^{*}.

The following notation and the terminologies are used in this paper:
$\approx:$ homeomorphic, id: the identity map, \varnothing : empty set, \cong isomorphic, \boldsymbol{E}^{n} : Euclidean $\quad n$-space, $\quad \boldsymbol{E}_{+}^{n}=\boldsymbol{E}^{n-1} \times[0, \infty), \quad B^{n}=[-1,1]^{n}, \quad r B^{n}=[-r, r]^{n}$ $(r>0), S^{n}=\partial B^{n+1}$: the n-sphere, d : a metric on $S^{n}, \operatorname{diam} X$: the diameter of X, $\mathrm{Cl} X$: the closure of $X, \operatorname{Fr} X$: the frontier of $X, \mathrm{~N}(X, r)=\left\{x \in S^{3} \mid d(x, X)<r\right\}$ ($X \subset S^{3}$).

For $X \subset S^{3}, X$ is locally polyhedral at $x \in X$ if $X \cap V$ is polyhedral for some closed neighborhood V of x in S^{3}. When X is a compact n-manifold ($1 \leqslant n \leqslant 3$), X is locally flat at $x \in X$ if it is locally tame at x by an open set $V \ni x$ and ϕ : $V \approx E^{3}$ with $\phi(V \cap X)=\boldsymbol{E}_{+}^{n}$ or \boldsymbol{E}^{n} according to $x \in \partial X$ or not in addition (these local properties are equivalent), and X is locally flat if so it at every point $x \in X$.

2. Proof of Theorem I

We first recall a characterization of tame arcs in S^{3}.
Definition. An arc A in S^{3} is said to have 1-ALG complement in S^{3} if for each $\varepsilon>0$ there is a $\delta>0$ such that each loop in $S^{3}-A$ which is null-homologous (Z-coefficients) in a δ-subset of $S^{3}-A$ bounds a singular ε-disk in $S^{3}-A$.

Theorem 2.1 (J. W. Cannon [5, Th. 3.16]). An arc A in S^{3} is tame if it has 1-ALG complement in S^{3}.

We prove Theorem I by this theorem together with the following
Proposition 2.2. Let J be a knot in Theorem I and p be an arbitrary point of U. Then, for each open neighborhood W of p in S^{3} there is an open neighborhood $V \subset W$ of p such that every loop in $V-J$ which is null-homologous in $V-J$ is null-homotopic in W-J.

Proof of Theorem I. Let A be an arc in U with Int $A \subset C^{*}$. For each $\varepsilon>0$, we define an open covering $\left\{V_{x} \mid x \in S^{3}\right\}$ of S^{3} as follows:

$$
V_{x}=\mathrm{N}\left(x, \min (\varepsilon / 2, d(x, A)), \quad \text { for } \quad x \in S^{3}-A\right.
$$

$V_{x}=V$ given by Proposition 2.2 for $p=x$ and $W=\mathrm{N}(x, \varepsilon / 2)$, for $x \in \operatorname{Int} A$; and $V_{x} \ni x$ is an open ε-subset with $\left(V_{x}, A \cap V_{x}\right) \approx\left(\boldsymbol{E}^{3}, \boldsymbol{E}_{+}^{1}\right)$, for $x \in \partial A$.

Then, there is a Lebesgue number $\delta>0$ for $\left\{V_{x}\right\}$, i.e., each δ-subset of S^{3} is contained in some V_{x}. Thus, A has 1-ALG complement in S^{3}, and A is tame by Theorem 2.1.

To prove Proposition 2.2, we prepare the following
Lemma 2.3. Suppose that a knot $J \subset S^{3}$ is weakly tame. Then, there is a sequence $\left\{P_{n}\right\}$ of locally flat solid tori in S^{3} such that
(1) Int $P_{n} \supset P_{n+1}, \cap P_{n}=J$ and $P_{n}-\operatorname{Int} P_{n+1} \approx \partial P_{n} \times[0,1]$, and
(2) J is a deformation retract of P_{n}.

Proof. Let K be a PL knot with $S^{3}-J \approx S^{3}-K$ by assumption.
Case 1: K is a trivial knot. Let $h: S^{3}-J \approx S^{1} \times E^{2}$ be a homeomorphism, and put

$$
Q_{n}=h^{-1}\left(S^{1} \times n B^{2}\right), \quad P_{n}=S^{3}-\text { Int } Q_{n} .
$$

Since Q_{n} is a locally flat solid torus in S^{3}, we note that P_{n} is a knot space. Since $J \subset$ Int P_{n} is compact and J has codimension 2 in $P_{n}, P_{n}-J$ is connected and $\pi_{1}\left(P_{n}-J\right) \rightarrow \pi_{1}\left(P_{n}\right)$ is an epimorphism (see p. 329 of [11]). Note that $P_{n}-J \approx$ $S^{1} \times S^{1} \times[0, \infty)$. Then, $\pi_{1}\left(P_{n}-J\right) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}$, and so $\pi_{1}\left(P_{n}\right)$ is abelian. Hence, $\pi_{1}\left(P_{n}\right) \cong H_{1}\left(P_{n}\right) \cong \boldsymbol{Z}$ and P_{n} is a solid torus.

Case 2: K is not trivial. Take $h: S^{3}-J \approx S^{3}-K$ and a tubular neighborhood $K \times \boldsymbol{E}^{2}$ of $K ; S^{3} \supset K \times \boldsymbol{E}^{2} \subset K \times\{0\}=K$.

$$
Q_{n}=h^{-1}\left(S^{3}-K \times \operatorname{Int}(1 / n) B^{2}\right), \quad P_{n}=S^{3}-\operatorname{Int} Q_{n} .
$$

Then, the knot space Q_{n} is not a solid torus. It follows that P_{n} is a solid torus (cf. Rolfsen [13, Th. (4.C.1)]).

Clearly, $\left\{P_{n}\right\}$ satisfies the other conditions in (1). Since $J \approx S^{1}$ is an ANR, there are an open set $R \supset J$ in S^{3} and a retraction $r: R \rightarrow J$. Then, there is an m such that $P_{n} \subset R$ for all $n \geqslant m$. Let $n \geqslant m$. Then, $r \mid P_{n}: P_{n} \rightarrow J$ is a retraction, and so

$$
Z \cong \pi_{1}\left(P_{n}\right) \xrightarrow{\left(r \mid P_{n}\right)_{*}} \pi_{1}(J) \cong Z
$$

is an isomorphism. Thus, $r \mid P_{n}$ is a deformation retraction. Let $n<m$. Then, by the last condition in (1), P_{n} is a deformation retract of P_{n}; and we see (2).

Proof of Proposition 2.2. By Bing [2, Th. 9], we may assume that J is
locally polyhedral at every point of $U-C^{*}$. Also we may assume that $W \cap J \subset U$. Take a subarc I of $W \cap J$ such that $p \in \operatorname{Int} I$, and both end points a_{0} and a_{1} of I are contained in $U-C^{*}$. Then, there are disjoint PL disks D_{0} and D_{1} in W such that $D_{i} \cap J=\left\{a_{i}\right\}$ and J intersects D_{i} transversely at $a_{i}(i=0,1)$. By Lemma 2.3, there is a locally flat solid torus $P \subset S^{3}$ such that $P \cap\left(\partial D_{0} \cup \partial D_{1}\right)=\varnothing, J \subset \operatorname{Int} P$ and J is a deformation retract of P. Let X and X^{\prime} be the components of $\operatorname{Int} P-$ ($D_{0} \cup D_{1}$) containing Int I and $J-I$, respectively.

Claim 1. $X \neq X^{\prime}$.
Suppose that $X=X^{\prime}$. Take a point $q \in J-I$. Then, there is an arc $H \subset X$ joining p and q. Let $H^{\prime} \ni a_{0}$ be the subarc of J which joins p and q. Then, the loop $H \cup H^{\prime}$ in Int P intersects D_{0} transversely at a_{0} and $\left(H \cup H^{\prime}\right) \cap D_{0}=\left\{a_{0}\right\}$. Thus, $H \cup H^{\prime}$ is homotopic to J in $\operatorname{Int} P$, because J is a deformation retract of P, $J \cap D_{0}=\left\{a_{0}\right\}$ and J intersect transversely at a_{0}. But, $\left(H \cup H^{\prime}\right) \cap D_{1}=\varnothing$; this is a contradiction. Claim 1 follows.

Thus, $Y=X \cap W$ is an open neighborhood of $\operatorname{Int} I$ in S^{3} and $Y \cap X^{\prime}=\varnothing$. Take subdisks E_{0} and E_{1} of D_{0} and D_{1}, respectively, such that $a_{i} \in \operatorname{Int} E_{i}$ and $E_{i} \subset$ Int $P(i=0,1)$. By Lemma 2.3, there is a locally flat solid torus $P^{\prime} \subset \operatorname{Int} P$ such that $J \subset \operatorname{Int} P^{\prime}, J$ is a deformation retract of $P^{\prime}, P^{\prime}-J \approx S^{1} \times S^{1} \times[0, \infty)$ and $P^{\prime} \cap\left(\left(D_{0} \cup D_{1} \cup \mathrm{Fr} Y\right)-\operatorname{Int}\left(E_{0} \cup E_{1}\right)\right)=\varnothing$. Let V be the component of Int $P^{\prime}-$ $\left(D_{0} \cup D_{1}\right)$ containing Int I. Then, $V \subset Y$ by the same reason as in Claim 1.

Let $f: S^{1}=\partial B^{2} \rightarrow V$ be a loop which is null-homologous in $V-J$. Then, f is also null-homologous in $\operatorname{Int} P^{\prime}-J$; hence f extends to a map $f: B^{2} \rightarrow \operatorname{Int} P^{\prime}-J$. We may assume that f is in general position with respect to $E_{0} \cup E_{1}$; hence $f^{-1}\left(E_{0} \cup\right.$ E_{1}) is a finite union of disjoint circles in $\operatorname{Int} B^{2}$. Let B^{\prime} be the closure of the component of $B^{2}-f^{-1}\left(E_{0} \cup E_{1}\right)$ which contains ∂B^{2}.

Claim 2. For each component $L \subset f^{-1}\left(E_{i}\right)(i=0,1)$, the loop $f \mid L: L \rightarrow$ $E_{i}-\left\{a_{i}\right\}$ is null-homotopic.

If not, then some non-zero multiple of ∂E_{i} is homotopic to $f \mid L$ in $S^{3}-J$ and $f \mid L$ is null-homotopic in $S^{3}-J$. Therefore the linking number of J and ∂E_{i} is zero. This is a contradiction, and Claim 2 follows.

Thus, $f \mid B^{\prime}: B^{\prime} \rightarrow\left(V \cup E_{0} \cup E_{1}\right)-J$ extends to a map $f^{\prime}: B^{2} \rightarrow\left(V \cup E_{0} \cup E_{1}\right)-J$; hence $f: S^{1} \rightarrow V$ bounds a singular disk in $W-J . \square$

Thus, the proof of Theorem I is completed.

3. Proof of Theorem II

Theorem 3.1. There is a wild knot $J^{*} \subset S^{3}$ which satisfies the following conditions.
(a) J^{*} is weakly flat.
(b) $E\left(J^{*}\right)$ is a non-empty subarc A^{*} of J^{*}.
(c) There are an open subset $U \subset S^{3}$ and a homeomorphism $h:\left(U, U \cap J^{*}\right)$ $\approx\left(\boldsymbol{E}^{3}, \boldsymbol{E}^{1}\right)$ such that $D^{*}-J^{*} \approx\left(\partial D^{*}-J^{*}\right) \times[0, \infty)$ where $D^{*}=S^{3}-\operatorname{Int} h^{-1}\left(B^{3}\right)$.

Proof. Alford [1] constructed a wild 3-cell B^{*} in S^{3} such that $S^{3}-B^{*} \approx E^{3}$ and $A^{*}=\left\{x \in \partial B^{*} \mid \partial B^{*}\right.$ is not locally tame at $\left.x\right\}$ is a non-empty arc on ∂B^{*}. B^{*} and A^{*} are the limits of PL 3-cells $\left\{B_{n} \subset S^{3}\right\}$ and PL arcs $\left\{A_{n} \subset \partial B_{n}\right\}$ respectively: B_{0} is a PL 3-cell and A_{0} is a PL arc on $\partial B_{0} . \quad B_{n}$ is obtained from B_{n-1} by adding "cubes-with-eyebolts" to ∂B_{n-1} along A_{n-1} and removing a thin slice from the loop of each cube-with-eyebolt. There is a homeomorphism $f_{n}: B_{n-1} \approx B_{n}$ such that $f_{n} \mid \mathrm{Cl}\left(B_{n-1}-C_{n-1}\right)=i d$ where C_{n-1} is a regular neighborhood of A_{n-1} in B_{n-1}, and $A_{n}=f_{n}\left(A_{n-1}\right) . \quad\left\{f_{n} f_{n-1} \cdots f_{1}: B_{0} \rightarrow B_{n}\right\}$ is a Cauchy sequence converging to the embedding $f^{*}: B_{0} \rightarrow S^{3}$ such that $B^{*}=f^{*}\left(B_{0}\right)$ and $A^{*}=f^{*}\left(A_{0}\right)$. By the construction (cf. Bing [3, §4] and Gillman [9, §3]), we have PL cubes-with-handles $\left\{M_{n}\right\}$ such that
(M1) Int $M_{n} \supset M_{n+1}$ and $\cap_{n} M_{n}=A^{*}$,
(M2) $\quad M_{n} \cap B_{n-1}=C_{m-1}$ and $M_{n} \cap B_{n}=f_{n}\left(C_{n-1}\right)$.
Now we take a PL circle J_{0} on ∂B with $J_{0} \supset A_{0}$, and put $J^{*}=f^{*}\left(J_{0}\right)$. Then, J^{*} is a wild knot in S^{3} with $E\left(J^{*}\right)=A^{*}$ by [14]; hence J^{*} satisfies (b).

Next, we prove (a). By applying the "stretching argument" to a regular neighborhood of $B_{n}(n \geqslant 1)$ as used in [9, §§4-5], we can construct PL 3-cells $\left\{N_{n}\right\}$ satisfying the following
(N1) Int $N_{n} \supset N_{n+1}$ and $\cap N_{n}=B^{*}$,
(N2) $M_{n} \cap N_{i}$ is a PL 3-cell and $M_{n} \cap N_{i} \cap \partial W_{n}$ is a PL disk for $i>n$, where $W_{n}=M_{n} \cap N_{n}$.

Let $p: S^{\mathbf{3}} \rightarrow S^{\mathbf{3}} / A^{*}$ be the projection. Since B^{*} is locally tame at every $x \in$ $B^{*}-A^{*}$ and B^{*} is cellular in S^{3} by (N 1), it follows from Meyer [12, Th. 2] that

$$
S^{3} \approx S^{3} / B^{*} \approx S^{3} / A^{*} \supset \partial B^{*} / A^{*} \approx S^{2}
$$

and $\partial B^{*} / A^{*}$ is locally tame at every point of $\partial B^{*} / A^{*}-p\left(A^{*}\right)$.
Now we show that $\partial B^{*} / A^{*}$ is flat in S^{3} / A^{*}. Since B^{*} / A^{*} is a 3 -cell, it is sufficient to show that $\mathrm{Cl}\left(S^{3} / A^{*}-B^{*} / A^{*}\right)$ is a 3-cell, and this is equivalent to that $S^{3} / A^{*}-B^{*} / A^{*}$ is $1-\mathrm{LC}$ at $p\left(A^{*}\right)$ by Bing [4, Th. 2]. Here, for closed subset $A \subset X$ in $S^{3}, S^{3}-X$ is 1-LC at A if each open set $U \subset A$ in S^{3} contains an open set $V \subset A$ such that each loop in $V-X$ is null-homotopic in $U-X$. Thus, it is sufficient to show thāt $S^{3}-B^{*}$ is $1-\mathrm{LC}$ at A^{*}. By (M1) and (N1-2),

$$
\text { Int } W_{n} \supset W_{n+1}, \quad \cap_{n} W_{n}=A^{*} \quad \text { and } \quad W_{n}-B^{*}=\cup_{i>n+1}\left(W_{n}-N_{i}\right)
$$

Moreover, $\mathrm{C} 1\left(W_{n}-N_{i}\right)=\mathrm{Cl}\left(W_{n}-\left(M_{n} \cap N_{i}\right)\right)$ is a PL 3-cell for $i \geqslant n+1$ by (N2). Thus, $S^{3}-B^{*}$ is $1-\mathrm{LC}$ at A^{*}, and $\partial B^{*} / A^{*}$ is flat in S^{3} / A^{*}. From this, J^{*} / A^{*} is flat in S^{3} / A^{*}. Then, we see (a), because

$$
S^{3}-J^{*} \approx\left(S^{3} / A^{*}\right)-\left(J^{*} / A^{*}\right) \approx S^{3}-S^{1} \approx S^{1} \times E^{2}
$$

Finally we verify (c). Take $\phi:\left(S^{3} / A^{*}, J^{*} / A^{*}\right) \approx\left(S^{3}, S^{1}\right)$, and choose an open set $U^{\prime} \subset S^{3}-\phi p\left(A^{*}\right)$ and $h^{\prime}:\left(U^{\prime}, U^{\prime} \cap S^{1}\right) \approx\left(E^{3}, E^{1}\right)$. Furthermore, put $U=p^{-1} \phi^{-1}\left(U^{\prime}\right) \subset S^{3}-A^{*}$ and $h=h^{\prime} \phi p:\left(U, U \cap J^{*}\right) \approx\left(\boldsymbol{E}^{3}, \boldsymbol{E}^{1}\right)$. Then, we have

$$
D^{*}-J^{*} \approx B^{3}-B^{1} \approx\left(\partial D^{*}-J^{*}\right) \times[0, \infty) \quad \text { for } \quad D^{*}=S^{3}-\operatorname{Int} h^{-1}\left(B^{3}\right)
$$

This completes the proof of Theorem 3.1
Lemma 3.2. Suppose that J^{*} and D^{*} are as in Theorem 3.1. Let $g: S^{1} \rightarrow S^{3}$ be an embedding such that there is an open set $U^{\prime} \subset S^{3}$ with $h^{\prime}:\left(U^{\prime}, U^{\prime} \cap g\left(S^{1}\right)\right) \approx$ $\left(\boldsymbol{E}^{3}, \boldsymbol{E}^{1}\right)$. Take a locally flat 3-cell $D^{\prime}=h^{\prime-1}\left(B^{3}\right)$ in S^{3} and a subarc $C^{\prime}=g^{-1}\left(D^{\prime}\right)$ of S^{1}. Then, there is an embedding $f: S^{1} \rightarrow S^{3}$ with the following (1)-(4):
(1) $f\left|S^{1}-\operatorname{Int} C^{\prime}=g\right| S^{1}-\operatorname{Int} C^{\prime}$.
(2) $f\left(\operatorname{Int} C^{\prime}\right) \subset \operatorname{Int} D^{\prime}$.
(3) $\left(D^{\prime}, D^{\prime} \cap f\left(S^{1}\right)\right) \approx\left(D^{*}, D^{*} \cap J^{*}\right)$.
(4) There is $\phi: S^{3}-g\left(S^{1}\right) \approx S^{3}-f\left(S^{1}\right)$ such that $\phi=\mathrm{id}$ on $S^{3}-$ $\left(g\left(S^{1}\right) \cup \operatorname{Int} D^{\prime}\right)$.

Proof. Suppose that J^{*}, U, h and D^{*} are as in Theorem 3.1. Then, there is an embedding $e: S^{1} \rightarrow S^{3}$ such that $J^{*}=e\left(S^{1}\right)$. Take a subarc $C=e^{-1}(D) \subset S^{1}$ where $D=h^{-1}\left(B^{3}\right)$, and put

$$
\begin{aligned}
& S^{1} \# S^{1}=\left(S^{1}-\operatorname{Int} C^{\prime}\right) \cup_{\bar{g}}\left(S^{1}-\operatorname{Int} C\right), \quad \bar{g}=e^{-1} h^{-1} h^{\prime}: \partial C^{\prime} \longrightarrow \partial C, \\
& \text { and } \quad S^{3} \# S^{3}=\left(S^{3}-\operatorname{Int} D^{\prime}\right) \cup_{\bar{h}}\left(S^{3}-\operatorname{Int} D\right), \quad \bar{h}=h^{-1} h^{\prime}: \partial D^{\prime} \longrightarrow \partial D .
\end{aligned}
$$

Then, there are $p: S^{1} \approx S^{1} \# S^{1}$ and $q: S^{3} \approx S^{3} \# S^{3}$ such that $p \mid S^{1}-$ Int $C^{\prime}=$ id and $q \mid S^{3}-$ Int $D^{\prime}=$ id. We can define an embedding $g^{\prime}: S^{1} \# S^{1} \rightarrow S^{3} \# S^{3}$ by

$$
g^{\prime}\left|S^{1}-\operatorname{Int} C^{\prime}=g\right| S^{1}-\operatorname{Int} C^{\prime} \quad \text { and } \quad g^{\prime}\left|S^{1}-\operatorname{Int} C=e\right| S^{1}-\operatorname{Int} C .
$$

Therefore, we get an embedding $f=q^{-1} g^{\prime} p: S^{1} \rightarrow S^{3}$. Clearly, f satisfies (1)-(3). From (c) of Theorem 3.1, we can easily verify (4).

Lemma 3.3. Let J^{*} and D^{*} be the ones in Theorem 3.1. Let $f_{0}: S^{1} \rightarrow S^{3}$ be a PL embedding, and $V_{n}(n \geqslant 1)$ be connected open sets in S^{1}, which forms a basis of open sets. Then, there are $B \subset A \subset\{1,2, \ldots\}, D_{n} \subset U_{n} \subset S^{3}, h_{n}: U_{n} \approx E^{3}$ and $C_{n} \subset V_{n}$ for $n \in A$, embeddings $f_{n}: S^{1} \rightarrow S^{3}$ and $\phi_{n}: S^{3}-f_{n}\left(S^{1}\right) \approx S^{3}-f_{n}\left(S^{1}\right)$ for
$n \geqslant 1$, which satisfy the following conditions (F1)-(F6):
(F1) If $n \notin A$, then $f_{n-1}\left(V_{n}\right)$ is everywhere wild, $f_{n}=f_{n-1}$ and $\phi_{n}=i d$.
(F2) For each $n \in A, U_{n}$ is open in $S^{3}, h_{n}:\left(U_{n}, U_{n} \cap f_{n-1}\left(S^{1}\right)\right) \approx\left(\boldsymbol{E}^{3}, \boldsymbol{E}^{1}\right)$, $D_{n}=h_{h}^{-1}\left(B^{3}\right) \subset U_{n}$ is a locally flat 3 -cell with diam $D_{n}<1 / 2^{n}$, and $C_{n}=f_{n-1}^{-1}\left(D_{n}\right) \subset V_{n}$ is a subarc of S^{1} with $\operatorname{diam} C_{n}<1 / n$.
(F3) If $n<m$, then either $D_{n} \cap D_{m}=\emptyset=C_{n} \cap C_{m}$, or $D_{m} \subset$ Int D_{n} and $C_{m} \subset$ Int C_{n}.
(F4) $f_{n}\left|S^{1}-\operatorname{Int} C_{n}=f_{n-1}\right| S^{1}-\operatorname{Int} C_{n}, \quad f_{n}\left(\operatorname{Int} C_{n}\right) \subset \operatorname{Int} D_{n}, \quad\left(D_{n}, D_{n} \cap f_{n}\left(S^{1}\right)\right) \approx$ ($\left.D^{*}, D^{*} \cap J^{*}\right)$ and $\phi_{n} \mid S^{3}-\left(f_{n-1}\left(S^{1}\right) \cup\right.$ Int $\left.D_{n}\right)=i d$.
(F5) If $n \in B$, then $D_{n} \cap \bar{D}_{n}=\varnothing$ where $\bar{D}_{n}=\cup_{i<n} D_{i}$.
(F6) If $n \in A-B$, then $D_{n} \subset \operatorname{Int} D_{i}$ for some $i<n$. If k is the smallest integer of such i in addition, then
$D_{n} \subset$ Int $D_{k}-\phi_{n-1} \cdots \phi_{k} h_{k}^{-1}\left(K_{n}\right)$ where $K_{n}=B^{1} \times\left(B^{2}-(1 / n) B^{2}\right)$.
Proof. The requirements in the lemma with (F1)-(F6) are defined by induction on n as follows:

Case 1: $\quad V_{n}-\bar{C}_{n} \neq \emptyset$ where $\bar{C}_{n}=\cup_{i<n} C_{i}$. Let $n \in B$ and $n \in A . \quad$ By (F4) in the inductive assumptions, we have

$$
f_{n-1}\left|V_{n}-\bar{C}_{n}=f_{0}\right| V_{n}-\bar{C}_{n} \text { and } f_{n-1}\left(V_{n}-\bar{C}_{n}\right) \subset S^{3}-\bar{D}_{n} .
$$

Then, there are an open set $U_{n} \subset S^{3}-\bar{D}_{n}$ with $U_{n} \cap f_{n-1}\left(S^{1}\right) \subset f_{n-1}\left(V_{n}-\bar{C}_{n}\right)$ and $h_{n}:\left(U_{n}, U_{n} \cap f_{n-1}\left(S^{1}\right)\right) \approx\left(\boldsymbol{E}^{3}, \boldsymbol{E}^{1}\right)$. Put $D_{n}=h_{n}^{-1}\left(B^{3}\right)$ and $C_{n}=f_{n-1}^{-1}\left(D_{n}\right)$. We may assume that $\operatorname{diam} D_{n}<1 / 2^{n}$ and $\operatorname{diam} C_{n}<1 / n$. Then, (F2), (F3) and (F5) hold. By Lemma 3.2, we get an embedding $f_{n}: S^{1} \rightarrow S^{3}$ with (F4).

Case 2: $V_{n} \subset E\left(f_{n-1}\right)$, where $E\left(f_{n-1}\right)=f_{n-1}^{-1}\left(E\left(f_{n-1}\left(S^{1}\right)\right)\right)$. Set $n \notin A, f_{n}=f_{n-1}$ and $\phi_{n}=i d$.

Case 3: $V_{n} \subset \bar{C}_{n}$ and $V_{n}-E\left(f_{n-1}\right) \neq \varnothing$. Set $n \in A$ and $m \notin B$. Since \bar{C}_{n} is a finite union of pairwise disjoint arcs, (F3) implies that $V_{n} \subset \cup_{i<n}$ Int C_{i}. Take a point $p \in V_{n}-E\left(f_{n-1}\right)$ and put

$$
\begin{aligned}
& j(p)=\max \left\{i \mid p \in \operatorname{Int} C_{i}\right\}, \quad k(p)=\min \left\{i \mid p \in \operatorname{Int} C_{i}\right\} . \quad \text { and } \\
& C(p)=\cup\left\{C_{i} \mid C_{i} \subset \operatorname{Int} C_{j(p)}\right\} .
\end{aligned}
$$

Then, $V_{n} \cap\left(\operatorname{Int} C_{j(p)}-C(p)\right) \ni p$ is open in S^{1}. (F4) shows that

$$
\begin{aligned}
& f_{n-1}=f_{j(p)} \quad \text { on } \quad \text { Int } C_{j(p)}-C(p) \quad \text { and } \\
& \phi_{n-1}=\phi_{j(p)} \quad \text { on } \quad \text { Int } D_{j(p)}-D(p),
\end{aligned}
$$

where $D(p)=\cup\left\{D_{i} \mid D_{i} \subset \operatorname{Int} D_{j(p)}\right\}$. Moreover

$$
N=\left(\operatorname{Int} D_{j(p)}-D(p)\right)-\phi_{n-1} \cdots \phi_{k(p)} h_{k(p)}^{-1}\left(K_{n}\right)
$$

is a neighborhood of $f_{n-1}(p)$ in S^{3}. Since $p \notin E\left(f_{n-1}\right)$, i.e., $f_{n-1}\left(S^{1}\right)$ is locally flat at $f_{n-1}(p)$, there is an open set $U_{n} \ni f_{n-1}(p)$ in Int N such that

$$
U_{n} \cap f_{n-1}\left(S^{1}\right) \subset f_{n-1}\left(V_{n} \cap\left(\operatorname{Int} C_{j(p)}-C(p)\right)\right)
$$

Then, we can define h_{n}, D_{n} and C_{n} with (F2), (F3) and (F6), and an embedding f_{n} with (F4) by Lemma 3.2.

Proof of Theorem II. Let $g: S^{1} \rightarrow S^{3}$ be a PL embedding with $g\left(S^{1}\right)=K$. By using Lemma 3.3 for $f_{0}=g$, we define J as follows.

Since $d\left(f_{n}, f_{n-1}\right)<1 / 2^{n}$ by (F 2) and (F 4), $\left\{f_{n}\right\}$ is a Cauchy sequence converging to a continuous map $f: S^{1} \rightarrow S^{3}$. We show that f is an embedding, and put $J=f\left(S^{1}\right)$.

By induction, it is easy to check that, for all $i \geqslant n$,

$$
f_{i}\left(\operatorname{Int} C_{n}\right) \subset \operatorname{Int} D_{n} \quad \text { and } f_{i}\left(S^{1}-\operatorname{Int} C_{n}\right) \subset S^{3}-\operatorname{Int} D_{n}
$$

From this, we have
(i) $f\left(\right.$ Int $\left.C_{n}\right) \subset \operatorname{Int} D_{n}(n \geqslant 1)$ and
(ii) $f\left(S^{1}-\operatorname{Int} C_{n}\right) \subset S^{3}-\operatorname{Int} D_{n}(n \geqslant 1)$.

To see (i), we take $x \in \operatorname{Int} C_{n} . \quad$ Suppose that $x \in \operatorname{Int} C_{k} \subset C_{k} \subset \operatorname{Int} C_{n}$ for some $k>n$. Then, $f_{i}(x) \in \operatorname{Int} D_{k}$ for each $i \geqslant k$, and so $f(x)=\lim f_{i}(x) \in D_{k} \subset \operatorname{Int} D_{n}$. Suppose that $x \notin \operatorname{Int} C_{i}(i>n)$. Then, $f_{i}(x)=f_{n}(x)(i \geqslant n)$, and so $f(x)=f_{n}(x) \in \operatorname{Int} D_{n}$. Thus, (i) holds. (ii) is also easy to varify.

Now let $x, y \in S^{1}$ be distinct points.
Case 1. If $x \in \operatorname{Int} C_{n}$ and $y \in S^{1}-\operatorname{Int} C_{n}$, then $f(x) \in \operatorname{Int} D_{n}$ and $f(y) \in S^{3}-$ Int D_{n} by (i) and (ii), and so $f(x) \neq f(y)$.

Case 2. If $x, y \in S^{1}-\cup_{n \in A}$ Int C_{n}, then $f(x)=g(x) \neq g(y)=f(y)$.
Case 3. If $x, y \in \operatorname{Int} C_{n}$ and $x, y \in S^{3}-\operatorname{Int} C_{i}$ for every $i>n$, then we have $f(x)=f_{n}(x) \neq f_{n}(y)=f(y)$. Thus, f is an embedding.

We shall see that J is everywhere wild by proving the following claims A1-3:

$$
\text { Claim A.1. } E\left(f_{n}\right) \subset E\left(f_{i}\right) \text { and } E\left(f_{n}\right) \cap C_{i}=\emptyset(n<i) \text {. }
$$

This claim is shown by induction.
Claim A.2. For each $n \notin A, f\left(V_{n}\right)=f_{n}\left(V_{n}\right)$ is everywhere wild.
In fact, let $n \notin A$. Then, $f_{n}\left(V_{n}\right)=f_{n-1}\left(V_{n}\right)$ is everywhere wild by (F1). Thus, $V_{n} \subset E\left(f_{n}\right)$ and so $V_{n} \subset S^{1}-C_{i}(i>n)$ by claim A.1. Then, $f_{i}\left|V_{n}=f_{n}\right| V_{n}(i>n)$, and hence we have Claim A.2.

Claim A.3. $\cup_{n \xi A} V_{n}$ is dense in S^{1}.

If $n \in A$, then $V_{n} \supset C_{n} \supset \operatorname{Int} C_{n}$ Int $E\left(f_{n}\right) \neq \emptyset$ by (F4). Hence, Int $C_{n} \cap \operatorname{Int} E\left(f_{n}\right)$ $\supset V_{i}$ for some $i>n$. Thus, we have the claim.

Since $E(f)$ is a closed subset of S^{1}, Claims A. 2 and A. 3 show that $E(f)=S^{1}$, i.e., J is everywhere wild.

Finally, we shall prove that $S^{3}-J \approx S^{3}-K$ by showing the following Claims B1-6: For each n, we define closed sets $A(n, i)(i \in B)$ of $S^{3}-K=S^{3}-g\left(S^{1}\right)$ by

$$
A(n, i)=\left\{\begin{array}{l}
h_{i}^{-1}\left(B^{1} \times\left((1 / n) B^{2}-\{0\}\right)\right)=h_{i}^{-1}\left(B^{1} \times(1 / n) B^{2}\right)-K \quad(i<n) \\
h_{i}^{-1}\left(B^{1} \times\left(B^{2}-\{0\}\right)\right)=D_{i}-K \quad(i \geqslant n) .
\end{array}\right.
$$

Claim B.1. The collection $\{A(n, i)\}_{i \in B}$ is locally finite in $S^{3}-K$.
Suppose that this claim is false. Then, there are a point $y \in S^{3}-K$ and a sequence $\left\{y_{k}\right\}$ in $S^{3}-K$ converging to y such that $y_{k} \in A(n, i(k))$ for a sequence $i(1)<$ $i(2)<\cdots$ in B. Since $A(n, i(k)) \subset D_{i(k)}, \lim \operatorname{diam} D_{i(k)}=0$ and $D_{i(k)} \cap K=f_{i(k)-1}$. $\left(C_{i(k)}\right) \neq \varnothing$, we see that $y \in K$. This is a contradiction; and the claim follows.

By virtue of this claim, we can define open sets X_{n} of $S^{3}-K$ by

$$
X_{n}=\left(S^{3}-K\right)-\cup_{i \in B} A(n, i) \quad(n \geqslant 1) .
$$

Claim B.2. $\quad X_{1} \neq X_{2} \subset \cdots$ and $\cup_{n} X_{n}=S^{3}-K$.
This follows easily from the definition of $\left\{X_{n}\right\}$.
Claim B.3. $\quad \phi_{n-1} \cdots \phi_{1}\left(X_{n}\right) \subset S^{3}-\left(f_{n-1}\left(S^{1}\right) \cup \tilde{D}_{n}\right)$, where $\tilde{D}_{n}=\cup_{i>n} D_{i}$.
We prove this by induction on n. This holds for $n=1$ since $X_{1}=S^{3}-\left(K \cup \cup_{i \in B} D_{i}\right)$ $=S^{3}-\left(g\left(S^{1}\right) \cup \tilde{D}_{1}\right)$ by (F5).

If $n-1 \notin B$, then $X_{n}=X_{n-1}$ and

$$
\begin{aligned}
& \phi_{n-1} \cdots \phi_{1}\left(X_{n}\right) \subset \phi_{n-1}\left(S^{3}-\left(f_{n-2}\left(S^{1}\right) \cup \tilde{D}_{n-1}\right)\right) \quad \text { (by induction hypothesis) } \\
& \quad=\phi_{n-1}\left(S^{3}-\left(f_{n-1}\left(S^{1}\right) \cup \tilde{D}_{n-1}\right)\right) \subset S^{3}-\left(f_{n-1}\left(S^{1}\right) \cup \tilde{D}_{n}\right) \quad \text { (by (F4)). }
\end{aligned}
$$

If $n-1 \in B$, then $X_{n}=X_{n-1} \cup h_{n-1}^{-1}\left(K_{n}\right)$ and

$$
\phi_{n-1} \cdots \phi_{1} h_{n-1}^{-1}\left(K_{n}\right)=\phi_{n-1} h_{n-1}^{-1}\left(K_{n}\right), \quad \phi_{n-1} h_{n-1}^{-1}\left(K_{n}\right) \cap f_{n-1}\left(S^{1}\right)=\emptyset .
$$

Thus, it suffices to show that

$$
\phi_{n-1} h_{u-1}^{-1}\left(K_{n}\right) \cap D_{i}=\emptyset \quad \text { for each } \quad i \geqslant n
$$

This is trivial in case of $D_{i} \cap D_{n-1}=\varnothing$. If $D_{i} \subset \operatorname{Int} D_{n-1}$, then (F6) shows that

$$
\begin{aligned}
D_{i} & \subset \text { Int } D_{n-1}-\phi_{i-1} \cdots \phi_{n-1} h_{n-1}^{-1}\left(K_{i}\right) \\
& \subset \text { Int } D_{n-1}-\phi_{i-1} \cdots \phi_{n-1} h_{n-1}^{-1}\left(K_{n}\right)=\operatorname{Int} D_{n-1}-\phi_{n-1} h_{n-1}^{-1}\left(K_{n}\right)
\end{aligned}
$$

Therefore, we see Claim B.3.
By (F4), we see that $S^{3}-\left(f_{n-1}\left(S^{1}\right) \cup \widetilde{D}_{n}\right)=S^{3}-\left(f\left(S^{1}\right) \cup \widetilde{D}_{n}\right)$. Therefore, by Claim B.3, an embedding $\psi_{n}: X_{n} \rightarrow S^{3}-J=S^{3}-f\left(S^{1}\right)$ can be defined by

$$
\psi_{n}=\phi_{n-1} \cdots \phi_{1} \mid X_{n} \quad \text { for each } n
$$

Claim B.4. $\psi_{n+1} \mid X_{n}=\psi_{n}$.
Since $\phi_{n} \mid \phi_{n-1} \cdots \phi_{1}\left(X_{n}\right)=$ id by Claim B. 3 and (F4), we see Claim B.4.
Claim B.5. For each $y \in S^{3}-J,\left\{n \mid y \in D_{n}\right\}$ is a finite set.
Suppose that there is a sequence $n(1)<n(2)<\cdots$ such that $y \in D_{n(k)}$. Then, $D_{n(1)} \supset D_{n(2)} \supset \cdots, \lim \operatorname{diam} D_{n(k)}=0, C_{n(1)} \supset C_{n(2)} \supset \cdots, \lim \operatorname{diam} C_{n(k)}=0$, by (F3). Thus, $\{y\}=\cap_{k} D_{n(k)}=f\left(\cap_{k} C_{n(k)}\right) \subset J$; and the claim follows.

Claim B.6. $\quad S^{3}-J=\cup_{n} \psi_{n}\left(X_{n}\right)$.
For $y \in S^{3}-J$, put $k=\min \left\{n \mid y \in D_{n}\right\}, j=\max \left\{n \mid y \in D_{n}\right\}$ and $z=\phi_{k}^{-1} \cdots \phi_{j}^{-1}(y) \in$ $D_{k}-K$. Then, $z \in X_{n}$ for some $n>j$. Thus,

$$
\psi_{n}(z)=\phi_{n-1} \cdots \phi_{1}(z)=\phi_{j} \cdots \phi_{k}(z)=y,
$$

and the claim holds.
Now, by Claims B.2, B. 4 and B.6, we have a hoeomorphism $\psi: S^{3}-K \approx$ $S^{3}-J$ given by $\psi \mid X_{n}=\psi_{n}$.

This completes the proof of Theorem II.

References

[1] W. R. Alford, Some "nice" wild 2-sphere in E^{3}, in: M. K. Fort Jr. ed., Topology of 3-manifolds and Related Topics, 29-33, Prentice-Hall, Englewood Cliffs, 1962.
[2] R. H. Bing, Locally tame sets are tame, Ann. of Math. 59 (1954), 145-158. - , A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-15.
[4] -, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305.
[5] J. W. Cannon, ULC properties in neighbourhoods of embedded surfaces and curves in \boldsymbol{E}^{3}, Can. J. Math. 25 (1973), 31-73.
[6] R. J. Daverman, On weakly flat 1-spheres, Proc. Amer. Math. Soc. 38 (1973), 207-210.
[7] P. F. Duvall, Jr., Weakly flat spheres, Michigan Math. J. 16 (1967), 117-124.
[8] C. H. Edwards, J., A characterization of tame curves in the 3-sphere, Abstract 573-32, Notices Amer. Math. Soc. 7 (1960), 875.
[9] D. S. Gillman, Note concerning a wild sphere of Bing, Duke Math. J. 31 (1964), 247-254.
[10] J. G. Hollingsworth and T. B. Rushing, Homotopy characterizations of weakly flat codimension 2 spheres, Amer. J. Math. 98 (1976), 385-394.
[11] D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.
[12] D. V. Meyer, E^{3} modulo a 3-cell, Pacific J. Math. 13 (1963), 193-196.
[13] D. Rolfsen, Knots and Links, Mathematics Lecture Series 7, Publish or Perish Inc., 1976.
[14] T. B. Rushing, Everywhere wild cells and spheres, Rocky Mountain J. Math. 2 (1972), 249-258.

Department of Mathematics, Faculty of Science, Hiroshima University

