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Introduction

In [11], Ooishi gave a necessary and sufficient condition for Z^m] to
be seminormal. In this paper, we will study Z[^/m] and give the criteria for
Z\^m\ to be normal, p-seminormal, seminormal and quasinormal. First, we
treat the normality of Z[((/w]. Next, we construct some elements which are
integral over Z. Then using these elements, we study the p-seminormality, the
seminormality and the quasinormality of Z\^jm\.

The writer heartily thanks Prof. H. Matsumura who gave him continuous
encouragement.

§ 1. Notation, terminology and preliminary results

Let A be a noetherian reduced ring. If the canonical homomorphism
Pic A-+Pic A[X~\ (or PicA-*PicA[X, X"1]) is an isomorphism, where X is a
variable, A is said to be seminormal (or quasinormal, resp.), and for an integer p
if the kernel of Pic A[X~\->Pic A has no p-torsion, A is said to be p-seminormal.
These are chracterized as follows. The seminormality (or the p-seminormality)
of A is equivalent to that if x e Q(A) satisfies x2, x3 e A (or x2, x3, px e A, resp.),
then x e A (cf. [5] or [12]). On the other hand in the case that dim A = 1 and A is
a domain, A is quasinormal if and only if the following conditions are satisfied:
(1) A is seminormal, and (2) if xeQ(A) satisfies x2 —x, x3 — x2eA, then xεA
(cf. [10]). These are our main tools in this paper. Now normality, semi-
normality and p-seminormality are local properties, that is, A is normal (or
seminormal, p-seminormal) if and only if so is Am for all maximal ideals m of A
(cf. [12]). If dimA = i and A is a domain, quasinormality is a local property
(cf. [2]). For an ideal α of A, we write F(α) = {pe Spec v4|αgp}. And we
denote the normalization of A in Q(A) by A.

We denote the set of natural numbers by N, the set of integers by Z, the set of
rational numbers by Q and the prime field of characteristic p by Fp.

Throughout this paper, m and n are integers with n^2. Moreover when
Xn — m is an irreducible polynomial over Z, we denote a root of Xn — w = 0 by



30 Hiroshi TANIMOTO

If we write n = pf1 pf% this means the factorization of n into prime factors

and Pi φ PJ for i φj. For integers p and q if p divides q in Z, we write p\q. More-
over for a non-negative integer e if pe|g and pe+ίXq, we write pe||g. The greatest
common divisor of p and q is denoted by (p, q).

Finally we note the following theorem which plays an important role. We

write m = (Yl?-}al)bn, where ah b e Z ( i = l,..., n-1) and Π"=iβ|is square-free.

For 7^0, put m7 = Π?=ι ^I7~cυ/w]/1 and put α7 = ̂ /my in Q(^m) where [ ] is
the Gauss' symbol. Obviously, if (j, n)=l, Z[αJ ]" = Z[^/m]".

THEOREM 1.1 (cf. [6]). Assume that n is a prime number. Then ifmf1 φ 1
(modn2), Z[^/m]"=Z[α1,...,«„_!], and if m;"1^! (modn2), (Z[^/w]"r
Z[α1?..., «„_!]) = « as an additive group.

§ 2. Normality

Before considering the normality of Z[^/m], we will prove the following
lemmas.

LEMMA 2.1. Let p be a prime divisor of n. Then Z(p)[^/m] is normal if
and only if mp φ m (mod p2).

PROOF. Put & = ψm and n = peq, where e, qeN and (p, q) = ί. We con-
sider Z[θ] as a homomorphic image of Z[X], where X is a variable. Then
Z[S]sZ[J!G/(Jr"-m). We write Jf-mΞΞF^ F )̂ (mod pZ[JΓ|), where
Fj pi), . . . , Fs( X) e Z[X] and each image of F^X) in Fp[X] is irreducible. Putting

Pι = (p9 F{X))ZIX] (i = l,...,s), we have 7((p,.JT»-m)) = {P1,...,P1} in
Spec Z[X~\. Then Z(p)[#] is normal if and only if Xn — m is a part of a regular
system of parameters of Z[X]Pi for all i. Now Xn - m = (X« - m)pe (mod
ande^l. Hence, we can write
where G(X)εZ[X~\ and α is an integer with α = 0 (modp). Moreover, since
mpe~l = m + kp for an integer fe, mpβ =(m + kp)p = mp (modp2). Hence, Xn-
m = mp — m (modP2) for all i. Thus, Xn — m is a part of a regular system of
parameters of Z[X~\P. for all i if and only if mp φ m (mod p2). Q. E. D.

LEMMA 2.2. Let K be an algebraic extension field of Q and θ be an element
of K satisfying θn = meZ, where neN. Assume that m is square-free. If
Z[d]p is not normal for some peSpecZ[9], then p^m and pBn.
In particular n

PROOF. By [8, (10.18)], nmZ[θ]~gZ[θ]. Hence, we have p3nm. We
write Z[θ]sZ[JΓ|/CX'll-m). If p a m , then p = (p, X)/(X»-m) for a prime
divisor p of m. Since m is square-free, Xn — m£(p,X)2Z[X~\(ptX}. Hence

is normal. This is a contradiction. Therefore, p ̂  m and p a n . Q. E. D.
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THEOREM 2.3. The following statements are equivalent:
(a) Z[^/w] is normal;
(b) Z[(/m] is normal for all teN such that t\na for cceN;
(c) m is square-free and mpφm (mod p2) for all prime divisors p of n.

PROOF. It is sufficient to prove the equivalence of (a) and (c). Put S = %/7n.
We may assume that m is square-free. Indeed, write Z[θ] ̂  Z[X~\l(Xn - m)
and assume that p2\m for a prime divisor p of m. Then we have Xn — me
(p, X)2Z[X](P>X), and Z[θ](pjd) is not normal. Hence by (2.2), Z[S] is normal
if and only if Z(p)[θ] is normal for all prime divisors p of n. Therefore
equivalence of (a) and (c) is proved by (2.1). Q. E. D.

REMARK 2.4. For an integer m and a prime number p, mpφm (mod p2} if
and only if mφr? (modp2) for all r = 0,..., p — 1.

By (1.1) and the proof of (2.3), we can give a generalization of (2.3) as follows,
whose proof is omitted. The notation is as in Section 1.

PROPOSITION 2.5. For an integer n9 assume that (i, ή) = ifor all i such that
α f ^±l . Then Z[<ζ/m]~=Z[α1?..., α n _ x ] if and only if m^φm^ (modp2) for
all prime divisors p of n with (p, m1) = l.

Next we shall show the following lemma concerning the normalization of
], which will be used to prove (5.1).

LEMMA 2.6. Let n = pf1 pf t be the factorization of n into prime

factors and m be a square-free integer. Put 9 = {j/m, ^ί = pf ί and 5/ = 9π/9ί =
^m. Then if Z[S|]~ = Z[Sf, 5α,..., δjj for all i, we have Z[θ]~ =

PROOF. Put Δ = {δij}. We assume that Z[θ, A}^ is not normal for a
maximal ideal p of Z[θ, J]. Since Z[θ]gZ[£, Λ]gZ[θ]~, we have p ^ m
and p a n by (2.2). Then p3p f for some i. Consider the following ring ex-
tensions :

Put / = n/^ί. Then since 3' = ̂  6 Z[S,]~, we have /mZ^^gZ^J^^] by
[8, (10.18)]. Therefore Z[θ, J]p is normal since p ̂  /m. This is a contradiction.

Q.E..D

§ 3. Some integral elements

In this section, we construct some integral elements over Z[^/m], where m
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is not necessarily square-free. One of these will be useful in the following

sections.

PROPOSITION 3.1. Let p be a prime number, e be a positive integer and
n = pe. Put 9 = ψm for an integer m. Moreover let e = a + b, where a, fteZ,
α^O and fc^l, and put a = pa and β = pb. For each positive integer k, we
define an element of β(θ):

<V* = p~k Σ?=<! (in-)'-1' W .

Then the minimal polynomial ofδhtk over Q is

Moreover assume that (m, p) = l and let s be a positive integer such that
ps\\mn~l — \. Then δbtk is integral over Z if and only ifk^min{b, 5 — 1}.

PROOF. Put δ = δbfk9 f=fbtk, h = m* and τ = θα. Then W = mn and τ* = m.
Now let ζ be a primitive j8-th root of unity. Then the conjugate elements of τ
over Q are τ, τ£,..., τζβ~1. Since δ(τ — h) = p~k(m — mn)9 the conjugate elements
of δ over Q are δ = l/(τ-h), l/(τζ-h),..., \l(τζ^-h\ where l = p~k(m-mn).
Since these elements are distinct, we have [β(<5): β] = jS = deg/. Thus if/(<5) = 0,
thenf(X) is the minimal polynomial of δ over Q. Therefore, we will show that
/(<5) = 0. Now for O^j^β-1,

Hence we have

Σ/Γo1 mh'-i-'τ* + (he-1 -pkδ)τJ

Thus denoting by M the n x n-matrix

= 0.

hβ'l-pkδ

Λ

A 2

V

we have det M = 0. Putting d = m — mn, we have
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1 \
0 h

d + pkhδ h2

0 '-pkδ he'-2

d + pkhδ hf~l-pkδ

= (-pkδY + (-iγ-lΣβi=

I -pkδ

d + pkhδ -p"δ

det M=det

V

Therefore, /((5) = 0. This completes the proof of the first assertion.

Now denote the coefficient of Xl off(X) for 0 ̂  i :g β — 1 by ct and denote the

canonical valuation of Z(p) by v. Then since (m, p) = l by our assumption,

we have

(s-fc)OS-l-i).

First, we assume that k^min {b, s — 1}. To prove that δ is integral over Z, it is
sufficient to show that v(cf)^0 for all i. If ί = 0, then v(c0)= -fc + (s-k)(0-l)

by (#). Since s-k^l and jS = p b ^fr + l^/c+l, we have ι;(c0)^0. If i^l, then

l;̂ ^ = ι;(jS)-l;(i) = ί,-ι?(ϊ) (cf. [9, Lemma 2]). Hence υ(ci) = (b-k)-υ(ί) +

(s - k)(β - 1 - 0 by (*). Put t (i) = t and q = β - p*. Then since υ(q) = t and q ̂  ί,

and since b^k and s-/c^l, we have v(c^ -t + (β-\-q)= -ί + ̂ -l^O.

Thus, δ is integral over Z. Next we assume that fc>min {6, s- 1}. If k>s- 1,

then P(CO) ̂  - fc < 0 by (*). If fc> b, then v(cβ _1) = b-/c<0by (jf). Therefore δ

is not integral over Z. Q. E. D.

COROLLARY 3.2. Let p be a prime number and suppose that mp~l = i

(modp2). Put δ = p~l Σf=0

l f n i ( ^ / f n ) p " l ~ i . Then using the notation in
Section 1, we have Z[ξ/m]~ = Z[α1,..., α p _j, δ~\.

Q. E. D.

PROOF. Since (m, p) = 1 by the assumption, we have
αp-i-l ^y (3-1). Hence we have the conclusion by (1.1).

REMARK. Let m be a square-free integer, n be an integer with n^2 and
n = j?fi pf* be the factorization of n into prime factors. Put qt = pfi. Let

# = {i | l^i^f, mPi-^l (modp?)}. For each ie^, letting pf'Hm*'- 1-!, put
k^minί^, s f-l} and Δi = {δjJ\l^j^ki}. Denote Wie^; by Δ. If ^ = 0,

we let /d = {!}. Now if n is square-free, we have k f= 1 for all i e &. Therefore

Z[ϊ]mY = Z[_ϊ]m,Δ] by (2.3), (2.6) and (3.2). From this, the following

question arises: Does Z[^/m]^ = Z[^m, J] hold for all n^2? For this

question, by (2.6) we may assume that n = pe for a prime number p and eeN.
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When n = 4, this question can be solved by an elementary calculation. A related

topic is also treated in [9].

The following proposition gives some properties of the integral element
<5M in (3.1).

PROPOSITION 3.3. In (3.1), let 0 = 0 andb = e, and put δ = δβfί. Assume that

ps\\mn~l — 1 for some integer s>l. Then δe Z[θ]~\Z[θ], and we have the
following :

(a) Ife^29 then δ2, δ3e Z[θ] and hence Z[θ] is not seminormal.
(b) If e=l and p is odd, or if e = l, p = 2 and s^3, then δ2-δ, δ3-δ2ε

and hence Z[θ] is not quasinormal.

(c) Ife=l, p = 2 and s = 2, then δ2-δ, (53eZ[θ].

PROOF. Since min {e, s-l}^l, we have δe Z[£]~\Z[θ] by (3.1).
Now since $n = m, we have

δ2 = P~2 ΣZΞoC^+l)^2^-1^ -h (n-

Putting m""1 — 1 =p5w (u e Z), we have

Since s^2, we have

(3.3.1) δ2 - pe~lδ = ps-2uΣl

Next by (3.3.1) and the above calculation,

δ3 - pe~lδ2 =p2s-3u2Σk=omn~1~kΣ

Since s^2, we have

(3.3.2) δ3 - p^δ2 - 2-lpe+s-

Thus since p<5eZ[3] and (u, /?) = !, (a), (b) and (c) easily follow from (3.3.1)
and (3.3.2). Q.E.D.

The following proposition can be easily shown. Therefore we omit the proof.

PROPOSITION 3.4. Let p be a prime number and neN, and put 8=!(/m
and x = 9n~1/p. Then if n^3 and p2\m, or if n = 2 and p3\m, we have xε

and x2, x3eZ[$]. In particular, Z[θ] is not seminormal.

§ 4. /j-seminormality and seminormality

First we will treat the p-seminormality of Z[ί[/m]. Since a ring A is p-
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seminormal if and only if A is g-seminormal for all prime divisors q of p, we have
only to study the case that p is a prime number. Our result on the p-seminormality
of Z[*(]m] is as follows.

THEOREM 4.1. For a prime number p, Z[^/w] is p-seminormal if and only

if one of the following conditions holds.

(a) p | | m ;
(b) (p, mn) = 1
(c) n ^ 3, (p, m) = 1 and p || n;
(d) n ̂  3, (p, m) = l, p|n and mpφm (modp2);

(e) n = 2 and (p, m) = 1
(f) n = 2, p 96 2 and p2 || m.

Before proving this, we show the following two lemmas.

LEMMA 4.2. For a prime number p, Z\J^m\ is p-seminormal if and only
if Z(p)[^/m] is seminormal.

In (6.5) this lemma will be generalized and proved.

LEMMA 4.3. Let pe\\n for a prime number p and some eeN9 and suppose

(p9 m)=l. Then Z(p)[χ/w] is seminormal if and only if Z(p)[
p^/m] is semi-

normal.

PROOF. Put B = jfm and τ = 3"'?' = tfm. Since Z(p)[3] is free over Z(p)[τ],

the "only if" part easily follows. Now we can write Z(p)[θ]^Z(p)[τ]pΓ|
l(Xr-τ), where r = n/pe and the image of X in Z(p)[θ] is θ. Then since

5» = m, we see that r and θ are invertible in Z(p)[θ] by our assumption. Hence

Z(p)[θ] is smooth over Z(p)[τ]. Therefore if Z(p)[τ] is seminormal, Z(p)[#] is
also seminormal by [13, Prop. 1.5] and [3, 5.8. Th.], because Z(p)[τ] is a Mont-
ring. Q. E. D.

PROOF of (4.1). Put 9 = ψm and A = Z(p)[θ]. By (4.2) it is sufficient to

consider the condition for A to be seminormal. By the proof of (2.2), if (p, mn) = 1
or p||m, A is normal. Hence by (3.4) and (4.3) we have only to consider the

following two cases.

Case 1. n^3, (m, p) = l and n = p% where eεN. If mpφm (modp2), A is

normal by (2.1). On the other hand if mp = m (mod p2) and e ̂  2, A is not semi-

normal by (3.3). Thus we reduce ourselves to the case that n = p and mp~^ = \

(mod p2). We will prove that A is seminormal. First by (3.2) and (3.3), putting

δ = P~l Σf=o mP-^^S we have Ά = A + Aδ. Let x = α + 0<5el (α, βeA) satisfy
x2, x*eA. Since Max>4 = {(p, θ —m)} and since pδeA and (θ — m)δ = p~ί(m —

mp) e A, we may suppose that β = 1. Now p is odd, because n = p ̂  3. Hence by

x2, x3 e A and (3.3), we have (2α+1)<5, (3α2 + 3α +1)<5 e A. From this it follows
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easily that δeA, and hence xeA. Thus A is seminormal. This completes the

proof of Case 1.

Case 2. n = 2. If p = 2 and m = 4r for an odd integer r, then x = 1 + ̂ /r satisfies

xe,4\,4 and x2, x 3 eA Hence A is not seminormal. Therefore by (3.4) and

the above, we may assume that (m, p) = 1 or p2 \\ m, p Φ 2. We will prove that A is

seminormal in either case. Let xεΆ satisfy x2, x3eA. First suppose that

(m, p) = 1. Then if m — ab2 for a square-free integer a and some fe e Z, we have

,4 = 2^)1^/0]. Hence we may assume that m is square-free. Moreover by a
well-known result, we may also assume that m = 1 (mod 4) and p = 2. Then A =
A + Aδ for <5 = (w + $)/2. Hence we can write x = α + j&5 for some α, βeA. By

the same manner as in Case 1, we may suppose that β=l. Then since x2 e A, we

have δ e A by (3.3). Hence x e A. Therefore A is seminormal. Next we suppose

that p2\\m and pφ2. Put m = p2r (reZ). Then λ/m = pχ/r and (r, p) = l.

Since p^2, it follows that Z^^/r] is normal and xe Z(p^r]. Hence we can

write x = α + β^r for some α, β e Z(p). Then since x2, x3 6 A, it follows easily that

xeA. Thus ^4 is seminormal. Q. E. D.

] is seminormal if and only if Z[^/m] is /7-seminormal for all prime

numbers p. Therefore we obtain the following criterion for the seminormality of

THEOREM 4.4. Z[ζ/m] is seminormal if and only if one of the following

conditions holds.
(a) m is square-free, and for each prime divisor p of n,

(i) mp φ m (modp2), or

(ϋ) P\\n\
(b) m is not square-free, n = 2and m = ab2, where a and b are square-free

integers, b is odd and (a, b)=l.

REMARK. The result of the case n = 2 in (4.4) has been already obtained by
Ooishi(cf. [11]).

§ 5. Quasinormality

Let s and t be integers with (5, ί) = 1 and ί^2. We denote the order of s in
the unit group of Z/tZ by ord^s). For the sake of convenience we define
ordx (s)= 1. Then we have the following theorem.

THEOREM 5.1. Z\^m\ is quasinormal if and only if one of the following
conditions holds.

(a) m is square-free, and for each prime divisor p of n,
(i) mp φ m (mod p2), or

(ii) p = 2, 2 || n, m = 5 (mod 8) and ordπ/2 (2) is odd;
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(b) w is not square-free, n = 2 and m = ab2for relatively prime square-free

integers a and b satisfying that aφl (mod 8), b is odd and(—)=—l for all
ί a \ \P /

prime divisors p of b, where I — J stands for the Legendre's symbol.

First, we note the following lemma.

LEMMA 5.2. Let K be a finite algebraic extension field of F2. Then X2 +

X+l=0 has a root in K if and only if\_K: F2~\ is even.

PROOF of (5.1). We put S = </m and A =
Case 1. m is square-free. For q e N with q\n, A is free over Z[^/w] . Hence if
A is quasinormal, Z[^/m] is also quasinormal. Moreover for a prime number
p, if p is odd and Z[<ζ/w] is not normal, or if p = 2 and m = l (mod 8), then
Z[^/m] is not quasinormal by (3.3). Therefore by the implications normal=>
quasinormal=>seminormal and by (2.3) and (4.4), we may assume that, for an odd
natural number r, n = 2r, Z[<ζ/w] is normal and m = 5 (mod 8). Then putting

δ = (m + Jm)l29 we have A =A + Aδ by (2.6), (3.2) and (3.3). Hence for each
xεΆ we can write x = a + βδ for some α, βeA. Then by 2δeA and (3.3), we
have x2 - x, x3 - x2 e A if and only if (β2 - β)δ, β(α2 + α + 1)<5 e A. Now for z e A,
it can be easily seen that zδeAif and only if z e (2, 9r — 1). Moreover since A £

Z[X]/(X"-m) and (2, Xr-l)BXn-m9 we have Z[S]/(2, SΓ-l)^F2[jr|/
(XΓ — 1). Therefore v4 is not quasinormal if and only if there exist / and g in

F2\X\ such that g2-g, g(f2+f+l)e(Xr-l)F2[X] and flfί (Xr-l)F2[X].
We write Xr-l=F1(X) FJίX) in ^[X], where each FfX) is irreducible.
Then since F^X),..., FM(X) are relatively prime, putting Ki = F2[X]/(Fi(X)\ we

have F2[X]/(Xr — !) = K! x ••• xXM . Hence by (5.2), A is not quasinormal if
and only if [Xf: T^] is even for some i. Now for the minimal splitting field K of
X'-l=Q over F2, we have [X: /T

2] = ordr(2) by [1, chap. V, §11 Exercices 1)],
and K = Kt for some i. Therefore [£> F2] is even for some i if and only if
ordr (2) is even. Thus the proof for Case 1 is completed.

Case 2. m is not square-free. Since quasinormality implies seminormality, by
(4.4) we may assume that n = 2 and m = ab2, where a and b are square-free integers,

b is odd and (a, b) = 1. Then θ = b^Ja. First note that if a = 1 (mod 8), A is not
quasinormal by (3.3). Therefore we may assume that a φ 1 (mod 8). Now let x

be an element of A satisfying x2 — x, x3 — x2eA. Then xe Z[^/α], because

Au.Zf^/a] and Z\^a\ is quasinormal by Case 1. Hence we can write x = α +

β^/a (α, β e Z). Therefore A is not quasinormal if and only if there exist α and β

in Z such that fc^jS and 0(2α - 1), jS(3α2 + β2a - 2α) e bZ. Thus A is quasinormal
if and only if X2a = 1 (mod ft0) does not have any roots in Z for all fe0 such that

b0 > 1 and b0\ b. This is equivalent to that ( — J = — 1 for all prime divisors p of fc.

Q.E.D.
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§ 6. Some remarks

As stated in Section 1, we know the implications normal =>quasinormal=>

seminormal =>p-seminormal. But the converse of each implication does not neces-

sarily hold as shown by well-known examples. But by (2.3), (4.1), (4.4) and (5.1),

we can easily construct such examples in the case of dimension 1, though they

do not contain a field.

EXAMPLE 6.1. Let Aί = Zf^/5] and A2 = £Ϊ>/ΪTL and let A3 = ZC^/pp] for
distinct prime numbers p and q. Then Aί is quasinormal but not normal, A2 is

seminormal but not quasinormal and A3 is /?-seminormal but not seminormal.

Moreover A3 is p-seminormal but not ^-seminormal.

Next let n = p ί ί ' ~ p f t be the factorization of n into prime factors and put

g. = p*i for each i. Then by (2.3) (or (4.4)) we see that Z[^/m] is normal (or

seminormal, resp.) if and only if Z[qJ/m~\ is normal (or seminormal, resp.) for

all ί. If m is square-free, this result can be generalized as follows. Let P be a
property concerning noetherian rings satisfying the following four axioms.

(1) A ring R has P if and only if R^ has P for all p e Max (R);

(2) Regularity implies P,

(3) Let (A, m)-»(β, n) be a flat local homomorphism. Then if B has P,

A also has P;
(4) In (3), if A has P and the canonical homomorphism A-+B is regular, B

also has P.

REMARK, (a) If B is smooth over A, then A-^B is regular (cf. [13, Prop.

1.5]).
(b) If P = normality or seminormal Mori, P satisfies the above four axioms

(cf. [4, IV (6.5.4)] or [3, 5.8. Th.]).

Then we have the following proposition, which is proved easily by (2.2) and

(4.3).

PROPOSITION 6.2. Let n = pli -p*t be the factorization of n into prime

factors and P be a property satisfying the above four axioms, and assume that

m is square-free. Put g^pf*. Then Z[^/m] has P if and only if Z[qj]m] has
Pfor all i.

For quasinormality, (6.2) does not hold as follows.

EXAMPLE 6.3. By (5.1), Z[̂ /T3] is not quasinormal, but ZC^/ΪJ] is quasi-
normal and Z[^/13] is normal. Indeed, quasinormality does not satisfy the

axiom (4). For example, Z(2)[x/13] is quasinormal by [2, 4.7. Cor.] and
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Z(2)U/ί3] is etale over ^(2)[VΪ3]» but ^(2>[\/Γ3] is not quasinormal. Now in
[2, 4.13. Example], Greco also shows such an example due to Ferrand which
contains the real number field. But as above, we can construct many such
examples by (5.1), though they do not contain a field.

Finally, for p-seminormality, we can prove the following proposition. Since
p-seminormality satisfies the axioms (1), (2) and (3) (cf. [12]), (6.2) holds for
p = p-seminormality.

PROPOSITION 6.4. Let A and B be noetherian reduced rings. Assume that
A is a Mori ring satisfying (S2) and the canonical homomorphism A-+B is

normal. Then for a prime number p, if A is p-seminormal, B is also p-semi-

normal.

For the proof, we first show the following lemma which is a generalization of

(4.2).

LEMMA 6.5. Let R be a noetherian reduced ring satisfying (S2) and let p be

a prime number. Then R is p-seminormal if and only ifR^ is seminormalfor all
height 1 prime ideals p containing p.

PROOF. By the proof of [12, Th. 6.1], R is p-seminormal if and only if Kp is
p-seminormal for all peSpecΛ with depth 1̂  = 1. Now seminormality implies

p-seminormality, and if the image of p in R is not zero, #[l/p] is always p-semi-

normal. Moreover since R satisfies (S2), depth R^ = 1 implies ht p = 1. Therefore

it is sufficient to show that if # is a noetherian reduced p-seminormal local ring of
dimension 1 with p not invertible, R is seminormal. Assume that R is not semi-

normal. Then there exists xeQ(R)^R such that x2, x3eR. We will show

that R is not p-seminormal.

Case 1. p is a non-zero divisor in R. Then Q(R) = R[l/p~\. Hence we can
assume that px e R. Thus R is not p-seminormal.

Case 2. p is a zero divisor in R. Put Rί=R/j]>R and R2 = R/Q: pR. Since R
is reduced, we have the following ring extensions :

J\ - > J\ι X J\2 - * RI ^ R-2

Then R = RίxR2 Now since xeR, we can write x=(xί9 x2)» where X eβ;,
i = l, 2. By Case 1, pex2eR2 for some non-negative integer e. Let e be the
minimal non-negative integer satisfying this. If pexeR, then e^.1 by our

assumption. Then since pe-1x2 ί R2 by the minimality of e, we have p*"1* ̂  R.

Since (p6"1*)2, (pe~lx)3eR9 we see that R is not p-seminormal. On the other

hand, if pex£R, then pe+ίxeR. Indeed, since pe+1x = (0, pe+1x2) and since

pex2 6 R2 = R/Q: pR and pRί =0, we have pe+ix e pR. Since (pex)2, (pex)3 e R9

it follows that R is not p-seminormal. Q. E. D.
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PROOF of (6.4). Since A-*B is normal, B is also a Mori ring satisfying (52).
Therefore by (6.5), it is sufficient to show that Bp is seminormal for all height 1
prime ideals φ containing p. Put p = ty Π A. Since B is flat over A, we have

htp^l . Then Ap is seminormal by (6.5). Since A^-+By is normal, it follows

that B% is seminormal by [3, 5.8. Th.]. Q. E. D.
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