Нікозніма Матн. J. 17 (1987), 415–431

Global existence of nonoscillatory solutions of perturbed general disconjugate equations

Takaŝi KUSANO and William F. TRENCH (Received January 9, 1987)

1. Introduction

Let L_n be the general disconjugate operator

(1)
$$L_n = \frac{1}{p_n} \frac{d}{dt} \frac{1}{p_{n-1}} \frac{d}{dt} \cdots \frac{d}{dt} \frac{1}{p_1} \frac{d}{dt} \frac{d}{p_0} \quad (n \ge 2),$$

with $p_i > 0$ and $p_i \in C[a, \infty), 0 \le i \le n$. Let (1) be in canonical form [10] at ∞ ; i.e.,

(2)
$$\int^{\infty} p_j(t)dt = \infty, \quad 1 \leq j \leq n-1.$$

With the operator (1) we associate the quasi-derivatives $L_0u, ..., L_{n-1}u$ defined by

(3)
$$L_0 u = \frac{u}{p_0}; \quad L_r u = \frac{1}{p_r} (L_{r-1} u)', \quad 1 \leq r \leq n-1.$$

We give conditions which imply that the equation

(4)
$$L_n u + f(t, L_0 u, ..., L_{n-1} u) = 0$$

has solutions which behave as $t \rightarrow \infty$ like solutions of the unperturbed equation

$$L_n x = 0.$$

Several authors [e.g. 2, 3, 5, 6, 9] have studied perturbed disconjugate equations of the simpler form

(6)
$$L_n u + f(t, L_0 u) = 0.$$

The more general equation (4), in which the perturbing terms depend also on $L_1u, \ldots, L_{n-1}u$ have been studied in [4], [11] and [12]. However, to the authors' knowledge, all the results previously obtained for nonlinear equations of the forms (4) or (6) are "local" near ∞ , in that the desired solutions are shown to exist only for t sufficiently large. Although one of our results given below is a local theorem of this kind which extends a result of Fink and Kusano [4], our main thrust here is in the direction of global results, in which the desired solution is shown to exist on a given interval. This continues a theme —global existence

of solutions of nonlinear equations with specified asymptotic properties— which has recently been developed by the authors in [7] and [8].

2. Formulation of the problem

Following Willett [13], we define the iterated integrals $I_0 = 1$,

$$I_{j}(t, s; q_{j}, ..., q_{1}) = \int_{s}^{t} q_{j}(\lambda) I_{j-1}(\lambda, s; q_{j-1}, ..., q_{1}) d\lambda, \quad s, t \ge a, \quad j \ge 1,$$

where $q_1, q_2,...$ are locally integrable on $[a, \infty)$. It is easily verified that the functions

(7)
$$x_i(t) = p_0(t)I_{i-1}(t, a; p_1, ..., p_{i-1}), \quad 1 \leq i \leq n,$$

form a fundamental system for (5) on $[a, \infty)$, and that the functions

(8)
$$y_i(t) = p_n(t)I_{n-i}(t, a; p_{n-1}, ..., p_i), \quad 1 \leq i \leq n,$$

are similarly related to the formal adjoint equation

$$L_n^* y = \frac{1}{p_0} \frac{d}{dt} \frac{1}{p_1} \cdots \frac{1}{p_{n-1}} \frac{d}{dt} \frac{y}{p_n} = 0.$$

From (3) and (7),

(9)
$$L_r x_i(t) = I_{i-r-1}(t, a; p_{r+1}, ..., p_{i-1}), \quad 0 \leq r \leq i-1,$$

and

$$L_r x_i = 0, \quad i \leq r \leq n.$$

Because of (2) and Lemma 2 of [11],

(10)
$$\lim_{t \to \infty} \frac{L_r x_j(t)}{L_r x_i(t)} = \infty, \quad r < i < j \le n,$$

and

(11)
$$\lim_{t\to\infty}\frac{y_i(t)}{y_j(t)} = \infty, \quad 1 \leq i < j < n,$$

and the ratios in (10) and (11) are increasing on $[a, \infty)$. For reasons which will become clear below, it is also convenient to define

(12)
$$d_{ir}(t) = \begin{cases} I_{i-r-1}(t, a; p_{r+1}, \dots, p_{i-1}), & 0 \leq r \leq i-1, \\ 1/I_{r-i-1}(t, a; p_{r}, \dots, p_{i}), & i \leq r \leq n-1, \end{cases} \quad 1 \leq i \leq n.$$

It is important to notice that

(13)
$$d_{ir} = L_r x_i, \quad 0 \leq r \leq i-1, \quad 1 \leq i \leq n$$

(cf. (9)), and that (again because of (2))

(14)
$$\lim_{t\to\infty}\frac{d_{mr}(t)}{d_{ir}(t)} = \infty, \quad 0 \leq r \leq n-1, \quad 1 \leq i < m \leq n.$$

Because of this, there is a b > a such that

(15)
$$d_{ir}(t) \leq d_{mr}(t), \quad 0 \leq r \leq n-1, \quad 1 \leq i < m \leq n, \quad t \geq b.$$

Equation (4) is related to (5) in the same way that the equation

(16)
$$u^{(n)} + f(t, u, ..., u^{(n-1)}) = 0$$

is related to

(17)
$$x^{(n)} = 0,$$

since (4) and (5) reduce to (16) and (17) if

$$(18) p_1 = \dots = p_n = 1.$$

In order to gain insight into the results given below, the reader may wish to interpret them in the case where (18) applies. We believe that our global existence theorems are new even in this case (Beesack [1] has obtained different global existence results for (16), by methods based on a generalization of Bihari's inequality). Note that

(19)
$$I_k(t, a; p_{i_1}, \dots, p_{i_k}) = \frac{(t-a)^k}{k!}$$

if (18) holds.

Throughout this paper i and m are integers, with $1 \leq i \leq m \leq n$, and

$$(20) q = \sum_{j=i}^{m} b_j x_j$$

(see (7)) is a given solution of (5). We give various conditions which imply that (4) has a solution \hat{u} such that

(21)
$$L_r \hat{u} = L_r q + o(d_{ir}), \quad 0 \leq r \leq n-1$$

(where we use "o" in the standard manner to indicate behavior as $t \to \infty$). In the simpler case (18), (19) implies that

(22)
$$q(t) = \sum_{j=i}^{m} b_j \frac{(t-a)^{j-1}}{(j-1)!},$$

and (21) becomes

$$\hat{u}^{(r)}(t) = q^{(r)}(t) + o(t^{i-r-1}), \quad 0 \le r \le n-1;$$

thus the constants b_i, \ldots, b_m in (22) are all significant in describing the behavior of $\hat{u}^{(r)}$ $(0 \le r \le m-1)$ as $t \to \infty$. Because of (10), (13) and (14), a similar comment applies to the general case; i.e., b_i, \ldots, b_m are all significant in describing the behavior of $L_r \hat{u}$ $(0 \le r \le m-1)$ as $t \to \infty$.

3. A fundamental lemma

All our results in Section 4 can be obtained by direct application of the Schauder-Tychonoff fixed theorem. However, to avoid repetition, we will use this theorem just once to prove the following fundamental lemma. Since the hypotheses of this lemma are easy to check in specific situations, we believe that it should be widely useful as a substitute for the direct application of the Schauder-Tychonoff theorem to problems of this kind.

LEMMA 1. Let q be the given solution (20) of (5). Suppose that $t_0 \ge b$ (cf. (15)) and there is a constant M > 0 such that the function $f(t, u_0, ..., u_{n-1})$ is continuous and satisfies the inequality

(23)
$$|f(t, u_0, ..., u_{n-1})| \leq W(t)$$

on the set

(24)
$$S = \{(t, u_0, \dots, u_{n-1}) \mid |u_r - L_r q(t)| \leq M d_{ir}(t), 0 \leq r \leq n-1, t \geq t_0\},\$$

where W is continuous on $[b, \infty)$ and

(25)
$$\int_{t_0}^{\infty} y_i(t)W(t)dt \leq M,$$

with y_i as in (8). Let

(26)
$$\rho(t) = \int_{t}^{\infty} y_{i}(s)W(s)ds.$$

Then (4) has a solution \hat{u} on $[t_0, \infty)$ such that

(27)
$$L_r\hat{u} = L_rq + o(L_rx_i), \quad 0 \leq r \leq i-2,$$

and

(28)
$$|L_r \hat{u}(t) - L_r q(t)| \leq \rho(t) d_{ir}(t), \quad t \geq t_0, \quad i - 1 \leq r \leq n - 1.$$

The following lemma will be used to prove Lemma 1.

LEMMA 2. Suppose $Q \in C[t_0, \infty)$ and

(29)
$$\int_{t_0}^{\infty} y_i(s) |Q(s)| ds < \infty.$$

Then the integral

(30)
$$\hat{J}_{i}(t; Q) = \int_{t}^{\infty} p_{n}(s) I_{n-i}(t, s; p_{i}, ..., p_{n-1}) Q(s) ds$$

converges absolutely for $t \ge t_0$. Now define

(31)
$$\sigma(t) = \int_{t}^{\infty} y_i(s) |Q(s)| ds$$

and

$$J_i(t, t_0; Q) = p_0(t)\hat{J}_i(t; Q)$$
 if $i = 1;$

or

$$J_{i}(t, t_{0}; Q) = p_{0}(t)I_{1}(t, t_{0}; p_{1}\hat{J}_{i}(\cdot; Q)) \quad if \quad i = 2;$$

or

$$J_{i}(t, t_{0}; Q) = p_{0}(t)I_{i-1}(t, t_{0}; p_{1}, \dots, p_{i-2}, p_{i-1}\hat{J}_{i}(\cdot; Q)) \quad \text{if} \quad 3 \leq i \leq n.$$

Then

(32)
$$L_r J_i(t, t_0; Q) = \int_t^\infty p_n(s) I_{n-r-1}(t, s; p_{r+1}, \dots, p_{n-1}) Q(s) ds,$$

 $i-1 \le r \le n-1$

(where the integrals converge absolutely);

(33)
$$L_{i-2}J_i(t, t_0; Q) = I_1(t, t_0; p_{i-1}\tilde{J}_i(\cdot; Q)) \quad if \quad i \ge 2;$$

(34) $L_r J_i(t, t_0; Q) = I_{i-r-1}(t, t_0; p_{r+1}, ..., p_{i-2}, p_{i-1}\hat{J}_i(\cdot; Q)),$ $0 \le r \le i-3 \quad if \quad i \ge 3;$

and

(35)
$$L_n J(t, t_0; Q) = -Q(t).$$

Moreover,

$$(36) |L_r J_i(t, t_0; Q)| \leq \sigma(t_0) L_r x_i(t), \quad 0 \leq r \leq i-2,$$

(37)
$$L_r J_i(t, t_0; Q) = o(L_r x_i(t)), \quad 0 \le r \le i-2,$$

and

$$|L_r J_i(t, t_0; Q)| \leq \sigma(t) d_{ir}(t), \quad i-1 \leq r \leq n-1.$$

PROOF. The formal verification of (32)-(35) is straightforward from (3).

To establish the absolute convergence of the integrals in (30) and (32) and to obtain the estimates (36) and (38), we employ an argument of Fink and Kusano [4]. From Lemma 2.2 of Willett [13],

(39)
$$I_{n-r-1}(t, s; p_{r+1}, ..., p_{n-1}) = (-1)^{n-r-1}I_{n-r-1}(s, t; p_{n-1}, ..., p_{r+1})$$

and

$$I_{n-i}(s, a; p_{n-1}, ..., p_i) = \sum_{\substack{\nu=0 \ \nu=0}}^{n-1} I_{n-i-\nu}(s, t; p_{n-1}, ..., p_{\nu+i}) I_{\nu}(t, a; p_{\nu+i-1}, ..., p_i).$$

If $s \ge t \ge a$, then all the iterated integrals here are nonnegative; therefore, if $i-1 \le r \le n-1$ we can single out the term v=r-i+1 on the right side and conclude that

$$I_{n-r-1}(s, t; p_{n-1}, ..., p_{r+1})I_{r-i+1}(t, a; p_r, ..., p_i)$$

$$\leq I_{n-i}(s, a; p_{n-1}, ..., p_i), \quad s \geq t \geq a.$$

This and (8), (12), and (39) imply that

(40)
$$p_n(s) |I_{n-r-1}(t, s; p_{r+1}, ..., p_{n-1})| \le y_i(s) d_{ir}(t),$$

 $s \ge t \ge a, \quad i-1 \le r \le n-1.$

This and (29) imply the absolute convergence of the integrals in (30) and (32). With (31) it also implies (38). With r=i-1, (40) implies that

$$|\hat{J}_i(t, t_0; Q)| \leq \sigma(t)$$

(see (30) and (31)); hence, (36) follows from (9), (33), and (34). Finally, (37) follows from (2), (33), (34), and L'Hospital's rule. This completes the proof of Lemma 2.

PROOF OF LEMMA 1. Let $\mathscr{L}_{n-1}[t_0, \infty)$ be the set of functions v such that $L_0v, \ldots, L_{n-1}v$ are continuous on $[t_0, \infty)$, with the topology of uniform convergence on finite intervals; i.e., if $\{v_k\}$ is a sequence of functions in $\mathscr{L}_{n-1}[t_0, \infty)$, we write $v_k \rightarrow v$ if

$$\lim_{k\to\infty} L_r v_k(t) = L_r v(t), \quad t \ge t_0, \quad 0 \le r \le n-1,$$

and all limits are uniform on $[t_0, t_1]$ for every $t_1 \ge t_0$. Let $V = V(t_0, q, m, i)$ be the colsed convex subset of $\mathscr{L}_{n-1}[t_0, \infty)$ consisting of functions v such that

(41)
$$|L_r v(t) - L_r q(t)| \leq M d_{ir}(t), \quad t \geq t_0, \quad 0 \leq r \leq n-1.$$

Our assumptions on f imply that the Nemitskii function Fv defined by

$$(Fv)(t) = f(t, L_0v(t), \dots, L_{n-1}v(t))$$

is continuous on $[t_0, \infty)$, and that

$$|(Fv)(t)| \leq W(t), \quad t \geq t_0,$$

if $v \in V$. Now define the transformation \mathcal{T} by

(43)
$$(\mathcal{T}v)(t) = q(t) + J_i(t, t_0; Fv).$$

We will show that \mathcal{T} satisfies the hypotheses of the Schauder-Tychonoff theorem on V.

From (26) and (42),

$$\int_{t}^{\infty} y_{i}(s) | (Fv)(s) | ds \leq \rho(t), \quad t \geq t_{0},$$

for every v in V; hence, Lemma 2 with Q = Fv implies that $\mathcal{T}v \in \mathcal{L}_{n-1}[t_0, \infty)$, and that

$$|L_r(\mathscr{T}v)(t) - L_rq(t)| \leq \begin{cases} \rho(t_0)L_rx_i(t), & 0 \leq r \leq i-2, \\ \rho(t)d_{ir}(t), & i-1 \leq r \leq n-1, \end{cases} \quad t \geq t_0.$$

Therefore, (25) and the definition of V (see (41) and recall that $d_{ir} = L_r x_i$, $0 \le r \le i-1$) imply that $\mathcal{T}v \in V$. Therefore, we conclude that

$$(44) \qquad \qquad \mathcal{T}(V) \subset V.$$

To see that \mathscr{T} is continuous on V, suppose that $\{v_k\}$ is a sequence in V such that $v_k \rightarrow v$. Then $|Fv_k - Fv| \leq 2W$ (see (42)), so (25) and Lebesgue's domainated convergence theorem imply that

$$\lim_{k\to\infty}\int_{t_0}^{\infty}y_i(s)|(Fv_k)(s)-(Fv)(s)|ds=0.$$

Therefore, if $\varepsilon > 0$, there is a k_0 such that

$$\left|\int_{t}^{\infty} y_{i}(s)[(Fv_{k})(s)-(Fv)(s)]ds\right|<\varepsilon, \quad t\geq t_{0}, \quad k\geq k_{0}.$$

Now Lemma 2 with $Q = Fv_k - Fv$ implies that

$$|L_r(\mathcal{T}v_k)(t) - L_r(\mathcal{T}v)(t)| \leq \varepsilon d_{ir}(t), \quad t \geq t_0, \quad 0 \leq r \leq n-1, \quad k \geq k_0.$$

This implies that $\mathcal{T}v_k \rightarrow \mathcal{T}v$; i.e., that \mathcal{T} is continuous on V.

From (44) and the definition of V, it is clear that the family of vector functions

(45)
$$\{(L_0v,...,L_{n-1}v) \mid v \in V\}$$

is equibounded on every $[t_0, T]$ with $T \ge t_0$; moreover, since (35) (with Q = Fv)

and (43) imply that

(46)
$$L_n(\mathscr{T}v) = -Fv,$$

(42) also implies that the family (45) is equicontinuous on $[t_0, T]$ for every $T \ge t_0$. Hence $\mathcal{T}(V)$ has compact closure, by the Arzela-Ascoli theorem.

Now the Schauder-Tychonoff theorem implies that there is a function \hat{u} in V such that $\mathscr{F}\hat{u} = \hat{u}$. Letting $v = \hat{u}$ in (46) shows that \hat{u} satisfies (4) on $[t_0, \infty)$ (recall (42)). Moreover, since $\hat{u} = \mathscr{F}\hat{u}$, (43) (with $v = \hat{u}$) and Lemma 2 (with $Q = F\hat{u}$) imply that \hat{u} satisfies (27) and (28). This completes the proof of Lemma 1.

4. Specific results

Our first two theorems require the following assumption.

ASSUMPTION A. The function $f: [a, \infty) \times \mathbb{R}^n \to \mathbb{R}$, is continuous and satisfies the inequality

(47)
$$|f(t, u_0, ..., u_{n-1})| \leq F(t, |u_0|, ..., |u_{n-1}|),$$

where $F(t, v_0, ..., v_{n-1})$ is continuous and nonnegative for $t \ge a, v_r \ge 0$ $(0 \le r \le n-1)$, and nondecreasing with respect to each v_r . Also,

$$\int^{\infty} y_i(t) W(t; \lambda) dt < \infty$$

for some $\lambda > 0$, where

(48)
$$W(t; \lambda) = F(t, \lambda L_0 x_m(t), ..., \lambda L_{m-1} x_m(t), \lambda d_{im}(t), ..., \lambda d_{i,n-1}(t)).$$

Note: If m = n, then (48) becomes

$$W(t; \lambda) = F(t, \lambda L_0 x_n(t), \dots, \lambda L_{n-1} x_n(t)).$$

It is convenient to define

(49)
$$\sigma(t_0; \lambda) = \int_{t_0}^{\infty} y_i(t) W(t; \lambda) dt.$$

The following theorem extends a result of Fink and Kusano [4], applicable to the case where m=i.

THEOREM 1. Suppose Assumption A holds and let q be as in (20), with $|b_m| < \lambda$ and (if i < m) b_i, \ldots, b_{m-1} arbitrary. Then (4) has a solution \hat{u} on $[t_0, \infty)$ such that

$$L_r\hat{u} - L_rq = \begin{cases} o(L_rx_i), & 0 \leq r \leq i-1, \\ o(d_{ir}), & i \leq r \leq n-1, \end{cases}$$

provided that t_0 is sufficiently large.

PROOF. Choose $\alpha > 1$ such that $\alpha |b_m| < \lambda$. Then choose $t_0 > b$ (cf. (15)) such that

$$|L_rq(t)| \leq \alpha |b_m| L_r x_m(t), \quad t \geq t_0, \quad 0 \leq r \leq m-1,$$

and

$$\sigma(t_0; \lambda) \leq \lambda - \alpha |b_m|.$$

Since

(50)
$$d_{ir}(t) \leq d_{mr}(t) = L_r x_m(t), \quad t \geq b, \quad 0 \leq r \leq m-1,$$

we can now infer the conclusion from Lemma 1, with $W(t) = W(t; \lambda)$ and $M = \lambda - \alpha |b_m|$.

Theorem 1 is "local near ∞ ", in that \hat{u} is guaranteed to exist only for t sufficiently large. The following theorems are global, in that the desired solution is guaranteed to exist on a given interval $[t_0, \infty)$.

THEOREM 2. In addition to Assumption A, suppose that

(51)
$$\lambda^{-1}\sigma(t_0;\lambda) \leq \gamma < 1$$

for some $t_0 \ge b$ and $\lambda > 0$. Let

(52)
$$p = x_m + \sum_{j=i}^{m-1} b_j x_j,$$

where (if i < m) $b_i, ..., b_{m-1}$ are arbitrary constants. Define

(53)
$$\mu = \sup_{t \ge t_0} \max_{0 \le r \le m-1} \frac{|L_r p(t)|}{L_r x_m(t)}.$$

Now suppose that c is any constant such that

(54)
$$0 < |c| \leq \frac{\lambda(1-\gamma)}{\mu}.$$

Then (4) has a solution \hat{u} which is defined on $[t_0, \infty)$ and has the asymptotic behavior

(55)
$$L_r\hat{u} - cL_rp = \begin{cases} o(L_rx_i), & 0 \leq r \leq i-1, \\ o(d_{ir}) & i \leq r \leq n-1. \end{cases}$$

PROOF. If c satisfies (54), then we can write

$$|c| = \frac{\lambda}{\theta + \mu},$$

where

(57)
$$\frac{\theta}{\mu+\theta} \ge \gamma$$

We now apply Lemma 1 with q = cp, $W(t) = W(t; \lambda)$, and $M = \theta|c|$: if $|u_r - cL_r p(t)| \le \theta|c|d_{ir}(t), \quad t \ge t_0, \quad 0 \le r \le n-1,$

then (50) and (53) imply that

$$|u_r| \leq (\mu+\theta) |c| L_r x_m(t), \quad t \geq t_0, \quad 0 \leq r \leq m-1,$$

and

$$|u_r| \leq \theta |c| d_{ir}(t) < (\mu + \theta) |c| d_{ir}(t), \quad t \geq t_0, \quad m \leq r \leq n-1;$$

hence (56) implies that

$$|f(t, u_0, ..., u_{n-1})| \leq W(t; \lambda), \quad t \geq t_0.$$

This verifies (23) on the set S as in (24), with $M = \theta |c|$ and q = cp. Now (51), (56), and (57) imply (25) with $M = \theta |c|$, and Lemma 1 implies the conclusion.

COROLLARY 1. Suppose Assumption A holds, let p be as in (52), and let c be a given nonzero constant. Then (4) has a solution which is defined on $[t_0, \infty)$ and satisfies (55), provided that

(58) (i)
$$\limsup_{\lambda \to \infty} \lambda^{-1} \sigma(t_0; \lambda) = \hat{\gamma} < 1$$

or

(ii) |c| is sufficiently small and

(59)
$$\limsup_{\lambda \to 0+} \lambda^{-1} \sigma(t_0; \lambda) = \hat{\gamma} < 1.$$

PROOF. Suppose that $\hat{\gamma} < \gamma < 1$. If assumption (i) holds, choose λ sufficiently large so that (51) and (54) (with given c) both hold; then Theorem 2 implies the conclusion. If (59) holds, choose λ sufficiently small so that (51) holds. Then (54) holds for sufficiently small $|c| (\neq 0)$, and again the conclusion follows.

Corollary 1 has nontrivial applications to equations of the form

(60)
$$L_{n}u + \sum_{r=0}^{n-1} P_{n-r}(t)L_{r}u + g(t, L_{0}u, ..., L_{n-1}u) = 0,$$

as follows.

COROLLARY 2. Suppose that
$$P_1, ..., P_n \in C[a, \infty)$$
 and

$$\int_{0}^{\infty} y_{i}(t) |P_{n-r}(t)| L_{r} x_{m}(t) dt < \infty, \quad 0 \leq r \leq m-1,$$

$$\int_{0}^{\infty} y_{i}(t) |P_{n-r}(t)| d_{ir}(t) dt < \infty, \quad m \leq r \leq n-1.$$

Let $g: [a, \infty) \times \mathbb{R}^n \to \mathbb{R}$ be continuous and satisfy the inequality

$$|g(t, u_0, ..., u_{n-1})| \leq G(t, |u_0|, ..., |u_{n-1}|),$$

where $G(t, v_0, ..., v_{n-1})$ is continuous and nonnegative for $t \ge a, v_r \ge 0$ ($0 \le r \le n-1$), and nondecreasing with respect to each v_r , and

(61)
$$\int^{\infty} y_i(t) U(t; \lambda) dt < \infty$$

for all λ , with

(62)
$$U(t; \lambda) = G(t, \lambda L_0 x_m(t), ..., \lambda L_{m-1} x_m(t), \lambda d_{im}(t), ..., \lambda d_{i,n-1}(t)).$$

Suppose also that $t_0 \ge b$ and

(63)
$$\int_{t_0}^{\infty} y_i(t) \left[\sum_{r=0}^{m-1} |P_{n-r}(t)| L_r x_m(t) + \sum_{r=m}^{n-1} |P_{n-r}(t)| d_{ir}(t) \right] dt < 1,$$

and let p be as in (52). Then (60) has a solution \hat{u} which is defined on $[t_0, \infty)$ and satisfies (55) if either of the following hypotheses is satisfied:

(H₁):

(64)
$$\lim_{\lambda \to \infty} \lambda^{-1} G(t, \lambda v_0, \dots, \lambda v_{n-1}) = 0$$

for every $(t, v_0, ..., v_{n-1})$ in $[t_0, \infty) \times \mathbb{R}^n_+$. (H₂): |c| is sufficiently small and

(65)
$$\lim_{\lambda \to 0^+} \lambda^{-1} G(t, \lambda v_0, \dots, \lambda v_{n-1}) = 0$$

for every $(t, v_0, \ldots, v_{n-1})$ in $[t_0, \infty) \times \mathbb{R}^n_+$.

PROOF. Equation (60) is of the form (4), with

$$f(t, u_0, ..., u_{n-1}) = \sum_{r=0}^{n-1} P_{n-r}(t)u_r + g(t, u_0, ..., u_{n-1}),$$

which satisfies (47) with

$$F(t, v_0, ..., v_{n-1}) = \sum_{r=0}^{n-1} |P_{n-r}(t)| v_r + G(t, v_0, ..., v_{n-1}).$$

Therefore, from (48), (49), and (62),

$$\sigma(t_0, \lambda) = \lambda I(t_0) + \int_{t_0}^{\infty} y_i(t) U(t; \lambda) dt,$$

where $I(t_0)$ is the integral in (63). From (61), (62), (64) and Lebesgue's dominated convergence theorem,

Takaŝi KUSANO and William F. TRENCH

$$\lim_{\lambda\to\infty}\lambda^{-1}\int_{t_0}^{\infty}y_i(t)U(t;\,\lambda)dt=0$$

if (H_1) holds, and this together with (63) implies (58). Similarly, (65) implies (59) if (H_2) holds. Therefore, Corollary 1 implies the stated conclusion.

Note: It is sufficient that (61) holds for λ sufficiently small if (H₂) holds. The prototype form for g in (60) is

$$g(t, u_0, ..., u_{n-1}) = \sum_{r=0}^{n-1} Q_{n-r}(t) |u_r|^{\gamma_r} \operatorname{sgn} u_r,$$

where $Q_0, \ldots, Q_{n-1} \in C[a, \infty)$ and

$$\int_{-\infty}^{\infty} y_i(t) |Q_{n-r}(t)| (L_r x_m(t))^{\gamma_r} dt < \infty, \quad 0 \leq r \leq m-1,$$

and

$$\int_{0}^{\infty} y_{i}(t) |Q_{n-r}(t)| (d_{ir}(t))^{\gamma r} dt < \infty, \quad m \leq r \leq n-1.$$

Then (H₁) holds if $0 < \gamma_r < 1$ ($0 \le r \le n-1$), while (H₂) holds if $\gamma_r > 1$ ($0 \le r \le n-1$).

THEOREM 3. Suppose that the function $f: [a, \infty) \times \mathbb{R}^n \to \mathbb{R}$ is continuous and satisfies the inequality

$$|f(t, u_0, ..., u_{n-1})| \leq F(t, u_0, |u_1|, ..., |u_{n-1}|),$$

where $F(t, v_0, ..., v_{n-1})$ is continuous and nonnegative for $t \ge a, -\infty < v_0 < \infty, 0 \le v_r < \infty$ $(1 \le r \le n-1)$, and nondecreasing with respect to each v_r , and

(66) $\lim_{v_0 \to -\infty} F(t, v_0, ..., v_{n-1}) = 0$

for each (t, v_1, \dots, v_{n-1}) such that $t \ge a, v_r \ge 0$ $(1 \le r \le n-1)$. Let

$$\rho(t, \lambda, \alpha)$$

= $F(t, \alpha + \lambda L_0 x_m(t), \lambda L_1 x_m(t), \dots, \lambda L_{m-1} x_m(t), \lambda d_{im}(t), \dots, \lambda d_{i,n-1}(t))$

if m > 1, or

$$\rho(t, \lambda, \alpha) = F(t, \alpha + \lambda, \lambda d_{11}(t), \dots, \lambda d_{1,n-1}(t))$$

if m = 1, and suppose that

(67)
$$\int^{\infty} y_i(t)\rho(t, \lambda, 0)dt < \infty$$

for some $\lambda > 0$. Let p and μ be as in (52) and (53), respectively, and suppose that $0 < c\mu < \lambda$. Let $t_0 \ge b$ be given. Then there is an $\alpha_0 \le 0$ such that if $\alpha \le \alpha_0$, then (4) has a solution \hat{u} which is defined on $[t_0, \infty)$ and exhibits the asymptotic

behavior

$$L_0\hat{u} - \alpha - cL_0p = o(L_0x_i),$$

$$L_r\hat{u} - cL_rp = \begin{cases} o(L_rx_i), & 1 \le r \le i-1, \\ o(d_{ir}), & i \le r \le n-1. \end{cases}$$

PROOF. Choose $\theta > 0$ so that $c(\mu + \theta) < \lambda$. Then choose α_0 so that

$$\int_{t_0}^{\infty} y_i(t)\rho(t,\,\lambda,\,\alpha_0)dt \leq c\theta, \quad \alpha \leq \alpha_0\,,$$

(this is possible because of (66), (67), and Lebesgue's dominated convergence theorem). Now apply Lemma 1 with $M = c\theta$, $q = \alpha x_1 + cp$, and $W(t) = \rho(t, \lambda, \alpha_0)$.

Theorem 3 applies, for example, to equations of the form

(68)
$$L_{n}u + e^{h(L_{0}u)}g(t, L_{1}u, ..., L_{n-1}u) = 0,$$

as follows.

COROLLARY 3. Suppose that the function $g: [a, \infty) \times \mathbb{R}^{n-1} \to \mathbb{R}$ is continuous and satisfies the inequality

$$|g(t, u_1, ..., u_{n-1})| \leq G(t, |u_1|, ..., |u_{n-1}|),$$

where $G(t, v_1, ..., v_{n-1})$ is continuous and nonnegative for $t \ge a, v_r \ge 0$ $(1 \le r \le n-1)$, and nondecreasing with respect to each v_r . Suppose also that h is continuous and nondecreasing on $(-\infty, \infty)$, and that

$$\lim_{u_0\to -\infty}h(u_0)=-\infty.$$

Finally, suppose that, for some $\lambda > 0$,

$$\int_{0}^{\infty} y_{i}(t) e^{h(\lambda L_{0} x_{m}(t))} G(t, \lambda L_{1} x_{m}(t), \dots, \lambda L_{m-1} x_{m}(t), \lambda d_{im}(t), \dots, \lambda d_{i,n-1}(t)) dt < \infty$$

if m > 1, or

$$\int^{\infty} y_1(t) G(t, \lambda d_{11}(t), \dots, \lambda d_{1,n-1}(t)) dt < \infty$$

if m=1. Then the conclusions of Theorem 3 apply to (68).

5. Application to semilinear elliptic equations

Here we consider the semilinear elliptic equation of order 2n,

(69)
$$\Delta^n v + \phi(|x|, v, \Delta v, ..., \Delta^{n-1} v) = 0, \quad x \in \Omega_\rho,$$

where $x \in \mathbb{R}^2$, Δ is the two-dimensional Laplacian, Δ^i is the *i*-th iteration of Δ , $n \ge 1$, and

$$\Omega_{\rho} = \{ x \in \mathbb{R}^2 \, | \, |x| > \rho \}, \quad \rho > 0.$$

We will use the results of Section 4 to derive conditions which imply that (69) has radially symmetric solutions on Ω_{ρ} which have certain prescribed types of asymptotic behavior as $|x| \rightarrow \infty$.

It is easy to see that v(x) = u(|x|) is a radially symmetric solution of (69) on Ω_{ρ} if and only if u(t) is a solution of the ordinary differential equation

(70)
$$L_{2n}u + \phi(t, L_0u, L_2u, ..., L_{2n-2}u) = 0, \quad t > \rho,$$

where

$$L_{2k} = \left(t^{-1}\frac{d}{dt}t\frac{d}{dt}\right)^k, \quad k = 0, 1, \dots, n;$$

thus

$$L_{2n} = \frac{1}{p_{2n}} \frac{d}{dt} \frac{1}{p_{2n-1}} \cdots \frac{1}{p_1} \frac{d}{dt} \frac{\cdot}{p_0}$$

with

$$p_0(t) = 1,$$

$$p_1(t) = p_3(t) = \dots = p_{2n-1}(t) = t^{-1},$$

$$p_2(t) = p_4(t) = \dots = p_{2n}(t) = t.$$

Straightforward computation based on (3), (7), (8) (with n replaced by 2n) and (13) yields

$$\begin{aligned} y_{2j}(t) &= \frac{t^{2n-2j+1}[1+o(1)]}{[2^{n-j}(n-j)!]^2}, \quad 1 \leq j \leq n, \\ y_{2j-1}(t) &= \frac{t^{2n-2j+1}\log t \cdot [1+o(1)]}{[2^{n-j}(n-j)!]^2}, \quad 1 \leq j \leq n, \\ d_{2j,2k}(t) &= \frac{t^{2(j-k-1)}\log t \cdot [1+o(1)]}{[2^{j-k-1}(j-k-1)!]^2}, \quad 0 \leq k \leq j-1, \\ d_{2j,2k}(t) &= \frac{2(k-j+1)[2^{k-j}(k-j)!]^2}{t^{2(k-j+1)}} [1+o(1)], \quad j \leq k \leq n-1, \\ d_{2j-1,2k}(t) &= \frac{t^{2(j-k+1)}[1+o(1)]}{[2^{j-k-1}(j-k-1)!]^2}, \quad 0 \leq k \leq j-1, \\ d_{2j-1,2k}(t) &= \frac{2(k-j+1)[2^{k-j}(k-j)!]^2}{t^{2(k-j+1)}\log t} [1+o(1)], \quad j \leq k \leq n-1. \end{aligned}$$

Now let j be an integer, $1 \le j \le n$, and let c be a given nonzero constant. We

will give sufficient conditions for (69) to have a radially symmetric solution \hat{v} on Ω_{ρ} such that either

(71)
$$\lim_{|x|\to\infty}\frac{\vartheta(x)}{|x|^{2j-2}\log|x|}=c$$

or

.

(72)
$$\lim_{|x|\to\infty}\frac{\hat{v}(x)}{|x|^{2j-2}}=c.$$

Assumption B. The function $\phi: (0, \infty) \times \mathbb{R}^n \to \mathbb{R}$ is continuous and satisfies the inequality

$$|\phi(t, u_0, \dots, u_{n-1})| \leq \Phi(t, |u_0|, \dots, |u_{n-1}|),$$

where $\Phi(t, \xi_0, ..., \xi_{n-1})$ is continuous and nonnegative for $t > 0, \xi_r \ge 0$ ($0 \le r \le n-1$), and nondecreasing with respect to each ξ_r .

THEOREM 4. Suppose that Assumption B holds and there is a constant $\lambda > 0$ such that

(73)
$$\int_{0}^{\infty} t^{2n-2j+1} \Phi(t, \lambda t^{2(j-1)} \log t, \lambda t^{2(j-2)} \log t, ..., \lambda \log t, \lambda t^{-2}, \lambda t^{-4}, ..., \lambda t^{-2(n-j)}) dt < \infty.$$

Then, if |c|(>0) is sufficiently small, there is a ρ sufficiently large such that (69) has a solution \hat{v} on Ω_{ρ} which satisfies (71).

The proof of this theorem is obtained by applying Theorem 1 (with m=i=2j) to (70). We leave the details to the reader. Similar reasoning (with m=i=2j-1) yields the next theorem.

THEOREM 5. Suppose that Assumption B holds and there is a constant $\lambda > 0$ such that

(74)
$$\int_{0}^{\infty} t^{2n-2j+1} (\log t) \Phi(t, \lambda t^{2(j-1)}, \lambda t^{2(j-2)}, ..., \lambda, \lambda (t^{2} \log t)^{-1}, \lambda (t^{4} \log t)^{-1}, ..., \lambda (t^{2(n-j)} \log t)^{-1}) dt < \infty.$$

Then, if |c| (>0) is sufficiently small, there is a ρ sufficiently large such that (69) has a solution \hat{v} on Ω_{ρ} which satisfies (72).

The last two theorems are local near ∞ , in that they guarantee the existence of \hat{v} only for large |x|. In the following theorems, it is to be understood that ρ is a *given* positive number, so the results are global. Theorems 6 and 7 are obtained by applying Corollary 2 (and Remark 1) to (70).

THEOREM 6. In addition to Assumption B, suppose that

Takaŝi KUSANO and William F. TRENCH

 $\lim_{\lambda \to \infty} \lambda^{-1} \Phi(t, \lambda \xi_0, \dots, \lambda \xi_{n-1}) = 0$

for every $(t, \xi_0, ..., \xi_{n-1})$ such that t > 0 and $\xi_r \ge 0$ $(0 \le r \le n-1)$. Let $c \ne 0$ be an arbitrarily given constant. Suppose that (73) [(74)] holds for some $\lambda > 0$. Then (69) has a solution \hat{v} on Ω_o which satisfies (71) [(72)].

THEOREM 7. In addition to Assumption B, suppose that

 $\lim_{\lambda \to 0^+} \lambda^{-1} \Phi(t, \lambda \xi_0, \dots, \lambda \xi_{n-1}) = 0$

for every $(t, \xi_0, ..., \xi_{n-1})$ such that t>0 and $\xi_r \ge 0$ $(0 \le r \le n-1)$. Suppose that (73) [(74)] holds for some $\lambda > 0$. Then (69) has a solution \hat{v} on Ω_{ρ} which satisfies (71) [(72)], provided that |c| (>0) is sufficiently small.

We close by applying Corollary 3 to the equation

(75)
$$\Delta^n v + \psi(|x|)e^{h(v)} = 0, \quad x \in \Omega_{\rho}.$$

We remind the reader that ρ is a given positive number.

THEOREM 8. Suppose that $\psi \in C(0, \infty)$, h is nondecreasing on $(-\infty, \infty)$, and $\lim_{v \to -\infty} h(v) = -\infty$.

(i) *If*

$$\int^{\infty} t^{2n-1}(\log t) |\psi(t)| dt < \infty,$$

then there is a constant β_0 such that if $\beta < \beta_0$, then (75) has a solution \hat{v} on Ω_{ρ} such that $\lim_{|x|\to\infty} \hat{v}(x) = \beta$.

(ii) If $2 \leq j \leq n$ and

$$\int_{0}^{\infty} t^{2n-2j+1}(\log t) |\psi(t)| [\exp h(\lambda t^{2j-2})] dt < \infty$$

for some $\lambda > 0$, then (75) has a solution \hat{v} on Ω_{ρ} which satisfies (72), provided that c is a sufficiently small positive constant.

(iii) If $1 \leq j \leq n$ and

$$\int_{0}^{\infty} t^{2n-2j+1} |\psi(t)| \left[\exp h(\lambda t^{2j-2} \log t) \right] dt < \infty$$

for some $\lambda > 0$, then (75) has a solution \hat{v} on Ω_{ρ} which satisfies (71), provided that c is a sufficiently small positive constant.

References

 P. R. Beesack, Asymptotic behaviour of solutions of some general nonlinear differential equations and integral inequalities, Proc. Royal Soc. Edinburgh, 98 Pt 1/2 (1984), 49–67.

- [2] T. A. Čanturija, On monotone and oscillatory solutions of higher order ordinary differential equations, Ann. Polon. Math., 37 (1980), 93-111. (Russian)
- [3] A. M. Fink and T. Kusano, Nonoscillation theorems for differential equations with general diviating arguments, Lecture Notes in Mathematics 1032, pp. 224–239, Springer, 1983.
- [4] A. M. Fink and T. Kusano, Nonoscillation theorems for a class of perturbed disconjugate differential equations, Japan. J. Math., 9 (1983), 277–291.
- [5] A. Granata, Singular Cauchy problems and asymptotic behavior for a class of nth order differential equations, Funkcial. Ekvac., 20 (1977), 193–212.
- [6] Y. Kitamura and T. Kusano, Nonlinear oscillation of higher-order functional differential equations with a general deviating argument, J. Math. Anal. Appl., 77 (1980), 100-119.
- [7] T. Kusano and W. F. Trench, Global existence theorems for solutions of nonlinear differential equations with prescribed asymptotic behaviour, J. London Math. Soc., (2) 31 (1985), 478-486.
- [8] T. Kusano and W. F. Trench, Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations, Ann. Mat. Pura Appl., (4) 152 (1985), 381-392.
- [9] M. Svec, Behavior of nonoscillatory solutions of some nonlinear differential equations, Acta Math. Univ. Comenian., 39 (1980), 115–130.
- [10] W. F. Trench, Canonical forms and principal systems for general disconjugate equations, Trans. Amer. Math. Soc., 189 (1974), 319–327.
- [11] W. F. Trench, Asymptotic theory of perturbed general disconjugate equations, Hiroshima Math. J., 12 (1982), 43-58.
- [12] W. F. Trench, Asymptotic theory of perturbed general disconjugate equations II, Hiroshima Math. J., 14 (1984), 169–187.
- [13] D. Willett, Asymptotic behaviour of disconjugate n-th order differential equations, Canad. J. Math., 23 (1971), 293-314.

Department of Mathematics, Faculty of Science, Hiroshima University and Department of Mathematics, Trinity University