Maintenance of oscillations under the effect of a strongly bounded forcing term

Jaroslav JAROŠ
(Received December 20, 1986)

1. Introduction

Consider the forced differential equation

$$
\begin{equation*}
L_{n} x+f(t, x)=h(t) \tag{1}
\end{equation*}
$$

and the corresponding unforced equation

$$
\begin{equation*}
L_{n} x+f(t, x)=0, \tag{2}
\end{equation*}
$$

where $n \geqq 2$ and L_{n} is the general disconjugate differential operator defined recursively by $L_{0} x(t)=a_{0}(t) x(t)$ and

$$
L_{k} x(t)=a_{k}(t)\left(L_{k-1} x(t)\right)^{\prime}, \quad k=1,2, \ldots, n .
$$

We shall assume without further mention that the functions $a_{i}(t), i=0,1, \ldots, n$, are positive and continuous on $\left[t_{0}, \infty\right)$ and the operator L_{n} is in the first canonical form in the sense that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} a_{i}^{-1}(t) d t=\infty, \quad i=1,2, \ldots, n-1 \tag{3}
\end{equation*}
$$

In what follows, the set of all real-valued functions $y(t)$ defined on $\left[t_{y}, \infty\right)$ and such that $L_{i} y(t), i=0,1, \ldots, n$, exist and are continuous on $\left[t_{y}, \infty\right)$ will be denoted by $D\left(L_{n}\right)$.

The purpose of this paper is to examine the oscillatory behaviour of solutions of Eq. (1) by comparing with that of the associated unforced Eq. (2). More precisely, we shall show that the oscillation of solutions of Eq. (1) follows from the oscillation of solutions of Eq. (2) provided that the forcing term $h(t)$ is the n-th "quasi-derivative" of the function $p(t)$ for which $L_{0} p(t)$ is strongly bounded in the sense that it assumes its maximum and minimum on every interval of the form [T, ∞), $T \geqq t_{0}$ (cf. [17]). This means that we can derive oscillation criteria for Eq. (1) from other similar ones which are known for Eq. (2).

Comparison results of this type in the case $a_{0}(t)=\cdots=a_{n}(t)=1$ were first given by Kartsatos [9-12] for the forcings $h(t)$ with the following properties: there exists a continuous function $p(t)$ such that $p^{(n)}(t)=h(t)$ on $\left[t_{0}, \infty\right)$ and either
(I) $\lim _{t \rightarrow \infty} p(t)=0$ and $p(t)$ is oscillatory in $\left[t_{0}, \infty\right)$; or
(II) there exist sequences $\left\{t_{n}^{\prime}\right\}_{n=1}^{\infty},\left\{t_{n}^{\prime \prime}\right\}_{n=1}^{\infty}$ and constants q_{1}, q_{2} such that $\lim _{n \rightarrow \infty} t_{n}^{\prime}=\lim _{n \rightarrow \infty} t_{n}^{\prime \prime}=\infty, p\left(t_{n}^{\prime}\right)=q_{1}, p\left(t_{n}^{\prime \prime}\right)=q_{2}$ and $q_{1} \leqq p(t) \leqq q_{2}$ for $t \geqq t_{0}$.

Obviously, the class of strongly bounded functions contains the above types of forcings but it is not restricted to them. For example, the functions $p(t)=(1+$ $1 / t) \sin t$ and $p(t)=\exp (\sin t / t)$ are strongly bounded but they satisfy neither (I) nor (II). In this spirit our main result unifies some earlier Kartsatos' results on the maintenance of oscillations under the effect of a "small" or "periodic-like" forcings and at the same time extends them to more general forcing functions.

For other related results concerning Eq. (1) and corresponding functional differential equations and inequalities we refer the reader to the papers of Chen and Yeh [2, 3], Foster [4], Grace and Lalli [5, 6], Jaroš [7, 8], Kawano, Kusano and Naito [13], Kusano et al. [14-16], McCann [17], Onose [18, 19] and True [21].

2. Preliminaries

In proving our results we employ a technique developed in [9-12] to change Eq. (1) into an equation of the form (2). In order to obtain more general results and for technical reasons, it is more convenient to work with the differential inequality

$$
\begin{equation*}
x\left(L_{n} x+f_{1}(t, x)-h_{1}(t)\right) \leqq 0 \tag{4}
\end{equation*}
$$

and the equation

$$
\begin{equation*}
L_{n} y+f_{2}(t, y)=h_{2}(t) \tag{5}
\end{equation*}
$$

where $n \geqq 2, L_{n}$ is as above and for the functions f_{i} and $h_{i}, i=1,2$, the following conditions are assumed to hold:
(a) $f_{i} \in C\left(\left[t_{0}, \infty\right) \times R, R\right)$ and $x f_{i}(t, x)>0, i=1,2$, for $x \neq 0$ and every fixed $t \geqq t_{0}$,
(b) $h_{i} \in C\left(\left[t_{0}, \infty\right), R\right)$ and there exist functions $p_{i} \in D\left(L_{n}\right), i=1,2$, such that $L_{n} p_{i}(t)=h_{i}(t)$ and $L_{0} p_{i}(t)$ are bounded on $\left[t_{0}, \infty\right)$.

The results for Eqs. (1) and (2) follow then as immediate corollaries of corresponding comparison theorems for the inequality (4) and Eq. (5).

As usual, we restrict our considerations only to those solutions $x(t)$ of (4) (or (5)) which exist on some ray $\left[t_{x}, \infty\right.$), $t_{x} \geqq t_{0}$, and satisfy

$$
\sup \{|x(s)|: s \geqq t\}>0
$$

for every $t \in\left[t_{x}, \infty\right)$. The oscillatory character of such solutions is considered in the usual sense, i.e. $x(t)$ is said to be oscillatory if it has arbitrarily large zeros in $\left[t_{x}, \infty\right)$ and it is said to be nonoscillatory otherwise.

We begin by analysing the asymptotic behaviour of the possible nonoscillatory solutions of (4). We consider only the possible positive solutions since the negative solutions have the analogous properties and the corresponding results for such solutions can be proved similarly.

So, let $x(t)$ be a positive solution of (4) defined on $\left[t_{0}, \infty\right)$. Put $u(t)=$ $x(t)-p_{1}(t)$. Then we can rewrite the inequality (4) as

$$
\begin{equation*}
L_{n} u(t)+f_{1}\left(t, u(t)+p_{1}(t)\right) \leqq 0, \quad t \geqq t_{0} \tag{6}
\end{equation*}
$$

In view of (b) and the positivity of $x(t)$, we obtain that $L_{n} u(t)<0$ for $t \geqq t_{0}$ which implies that $L_{k} u(t), k=0,1, \ldots, n-1$, have to be eventually of constant sign, say for $t \geqq t_{1} \geqq t_{0}$. In particular, $u(t)$ is either positive or negative for $t \geqq t_{1}$.

It is well-known that if

$$
y(t) L_{n} y(t)<0 \quad\left(\text { resp. } y(t) L_{n} y(t)>0\right)
$$

for all sufficiently large t, then according to a generalization of a familiar Kiguradze's Lemma (see [20, Lemma 2]) there exist an integer $l, 0 \leqq l \leqq n, n+l$ is odd (resp. $n+l$ is even), and a $t_{1} \geqq t_{0}$ such that

$$
\begin{array}{lll}
y(t) L_{i} y(t)>0 & \text { on } \quad\left[t_{1}, \infty\right) & \text { for } \quad i=0,1, \ldots, l, \\
(-1)^{i-l} y(t) L_{i} y(t)>0 & \text { on } \quad\left[t_{1}, \infty\right) & \text { for } \quad i=l, l+1, \ldots, n . \tag{8}
\end{array}
$$

Since in our case $x(t)$ is positive and $L_{0} p_{1}(t)$ is bounded, that is, $L_{0} u(t)$ cannot be unbounded from below, from (7) and (8) it follows that $L_{1} u(t)$ is always positive on $\left[t_{1}, \infty\right)$ regardless to the positivity or negativity of $u(t)$ or possibly $L_{1} u(t)<0$ for n odd and $L_{0} x(t)$ bounded on $\left[t_{1}, \infty\right)$. Consequently, we have the following modifications of Kiguradze's lemmas for the positive solutions of the forced inequality (4).

Lemma 1. Let n be even. If $x(t)$ is a positive solution of (4) for $t \geqq t_{1} \geqq t_{0}$, then there exist an odd integer $l, 1 \leqq l \leqq n-1$, and a $t_{2} \geqq t_{1}$ such that for $t \geqq t_{2}$ the function $u(t)=x(t)-p_{1}(t)$ satisfies

$$
\begin{equation*}
L_{i} u(t)>0 \quad \text { for } \quad i=1,2, \ldots, l \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{i+1} L_{i} u(t)>0 \quad \text { for } \quad i=l, l+1, \ldots, n \tag{10}
\end{equation*}
$$

Lemma 2. Let n be odd. If $x(t)$ is a positive solution of (4) for $t \geqq t_{1} \geqq t_{0}$, then either $L_{0} x(t)$ is unbounded on $\left[t_{1}, \infty\right)$ and there exist an even integer l, $2 \leqq l \leqq n-1$, and a $t_{2} \geqq t_{1}$ such that for all $t \geqq t_{2}$ the function $u(t)=x(t)-p_{1}(t)$ satisfies (9) for $i=1,2, \ldots, l$ and

$$
\begin{equation*}
(-1)^{i} L_{i} u(t)>0 \quad \text { for } \quad i=l, l+1, \ldots, n, \tag{11}
\end{equation*}
$$

or $L_{0} x(t)$ is bounded on $\left[t_{1}, \infty\right)$ and there exists a $t_{3} \geqq t_{1}$ such that (11) holds on $\left[t_{3}, \infty\right)$ for $i=1,2, \ldots, n$.

3. Comparison theorems

In this section we shall be concerned with the relationship between the nonoscillatory solutions of the inequality (4) and the equation (5). As an application of these results, the oscillation of the differential inequality (4) is compared to that of the equation (5). We again consider only the eventually positive solutions of (4) and (5) since the corresponding part of our results concerning eventually negative solutions can be formulated and proved in an analogous way.

Theorem 1. Let n be even. In addition to the conditions (a) and (b) suppose that
(c) $f_{1}(t, x) \geqq f_{2}(t, x)$ for $x>0$
and $f_{2}(t, x)$ is nondecreasing in x for every fixed $t \geqq t_{0}$,
(d) $L_{0} p_{1}(t)$ is strongly bounded from below in the sense that for every $T \geqq t_{0}$ there is a $T_{*} \geqq T$ such that

$$
L_{0} p_{1}\left(T_{*}\right)=\min _{t \in[T, \infty)} L_{0} p_{1}(t),
$$

(e) $\lim _{t \rightarrow \infty} L_{0} p_{2}(t)=0$.

If the inequality (4) has an eventually positive solution $x(t)$, then Eq. (5) has an eventually positive solution $y(t)$ such that $y(t) \leqq x(t)$ for all large t.

Proof. Assume that there exists a solution $x(t)$ of (4) which is defined and positive on $\left[t_{1}, \infty\right), t_{1} \geqq t_{0}$. From Lemma 1 it follows that there are an odd integer $l, 1 \leqq l \leqq n-1$, and a $t_{2} \geqq t_{1}$ such that the function $u(t)=x(t)-p_{1}(t)$ satisfies (9) and (10) for $t \geqq t_{2}$.

Now, integrating (4) n-times and using (9) and (10), we get

$$
\begin{aligned}
L_{0} u(t) \geqq & L_{0} u\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{1}{a_{1}\left(s_{1}\right)} \int_{t_{2}}^{s_{1}} \frac{1}{a_{2}\left(s_{2}\right)} \cdots \int_{t_{2}}^{s_{l-1}} \frac{1}{a_{l}\left(s_{l}\right)} \int_{s_{l}}^{\infty} \frac{1}{a_{l+1}\left(s_{l+1}\right)} \cdots \\
& \cdots \int_{s_{n-1}}^{\infty} \frac{f_{1}(s, x(s))}{a_{n}(s)} d s d s_{n-1} \cdots d s_{1} \\
\equiv & L_{0} u\left(t_{2}\right)+\Phi_{l}\left(t, t_{2} ; f_{1}(t, x(t))\right)
\end{aligned}
$$

for $t \geqq t_{2}$.
Choose $t_{*} \geqq t_{2}$ such that

$$
L_{0} p_{1}\left(t_{*}\right)=\min _{t \in\left[t_{2}, \infty\right)} L_{0} p_{1}(t) .
$$

Then we have

$$
\begin{align*}
L_{0} x(t) & \geqq c-L_{0} p_{1}(t)+L_{0} p_{1}\left(t_{*}\right)+\Phi_{l}\left(t, t_{*} ; f_{1}(t, x(t))\right) \tag{12}\\
& \geqq c+\Phi_{l}\left(t, t_{*} ; f_{1}(t, x(t))\right)
\end{align*}
$$

for $t \geqq t_{*}$, where $c=L_{0} x\left(t_{*}\right)>0$. Since $\lim _{t \rightarrow \infty} L_{0} p_{2}(t)=0$, there is a $t_{3} \geqq t_{*}$ such that

$$
\begin{equation*}
c \geqq \frac{c}{2}+L_{0} p_{2}(t)>0 \tag{13}
\end{equation*}
$$

for $t \geqq t_{3}$. From (12), (13) and (c) we obtain

$$
L_{0} x(t) \geqq \frac{c}{2}+L_{0} p_{2}(t)+\Phi_{l}\left(t, t_{3} ; f_{2}(t, x(t))\right)
$$

for $t \geqq t_{3}$. Using a result of Čanturija [1], we conclude that there exists a continuous solution $y(t)$ of the integral equation

$$
\begin{equation*}
L_{0} y(t)=\frac{c}{2}+L_{0} p_{2}(t)+\Phi_{l}\left(t, t_{3} ; f_{2}(t, y(t))\right) \tag{14}
\end{equation*}
$$

such that

$$
L_{0} x(t) \geqq L_{0} y(t) \geqq \frac{c}{2}+L_{0} p_{2}(t)>0
$$

for $t \geqq t_{3}$. Differentiating (14) n-times, we see that $y(t)$ is the solution of (5) with desired properties.

Theorem 2. Let n be odd. In addition to (a) and (b) suppose that the conditions (c) and (e) of Theorem 1 are satisfied. If the inequality (4) has an eventually positive solution $x(t)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(L_{0} x(t)-L_{0} p_{1}(t)\right)=\text { const }>-q_{*} \tag{15}
\end{equation*}
$$

where $q_{*}=\lim \inf _{t \rightarrow \infty} L_{0} p_{1}(t)$, then Eq. (5) has an eventually positive solution $y(t)$ such that $\lim _{t \rightarrow \infty} L_{0} y(t)=$ const >0.

Proof. Assume that there exists a solution $x(t)$ of (4) which is positive on $\left[t_{1}, \infty\right)$ and such that (15) holds. By Lemma 2, there is a $t_{2} \geqq t_{1}$ such that the inequalities (11) hold for $t \geqq t_{2}$ and $i=1,2, \ldots, n$.

Integrating (4) n-times and using (11), we obtain

$$
\begin{aligned}
L_{0} u(t) & \geqq c+\int_{t}^{\infty} \frac{1}{a_{1}\left(s_{1}\right)} \int_{s_{1}}^{\infty} \frac{1}{a_{2}\left(s_{2}\right)} \cdots \int_{s_{n-1}}^{\infty} \frac{\left.f_{1}(s, x(s))\right)}{a_{n}(s)} d s d s_{n-1} \cdots d s_{1} \\
& \equiv c+\Psi\left(t ; f_{1}(t, x(t))\right)
\end{aligned}
$$

where $c=\lim _{t \rightarrow \infty} L_{0} u(t)$ and $t \geqq t_{2}$.
Now, in view of (15), there is a $t_{3} \geqq t_{2}$ such that

$$
c+L_{0} p_{1}(t) \geqq \frac{c+q_{*}}{2}>0
$$

for $t \geqq t_{3}$ and taking (e) into account we further have

$$
\frac{c+q_{*}}{2} \geqq \frac{c+q_{*}}{4}+L_{0} p_{2}(t)>0
$$

for all sufficiently large t, say $t \geqq t_{4} \geqq t_{3}$.
Therefore

$$
L_{0} x(t) \geqq \frac{c+q_{*}}{4}+L_{0} p_{2}(t)+\Psi\left(t ; f_{2}(t, x(t))\right)
$$

for $t \geqq t_{4}$ and using the results of Čanturija [1] again, we conclude that there exists a continuous solution $y(t)$ of the integral equation

$$
\begin{equation*}
L_{0} y(t)=\frac{c+q_{*}}{4}+L_{0} p_{2}(t)+\Psi\left(t ; f_{2}(t, y(t))\right) \tag{16}
\end{equation*}
$$

with property

$$
L_{0} x(t) \geqq L_{0} y(t) \geqq \frac{c+q_{*}}{4}+L_{0} p_{2}(t)>0
$$

for $t \geqq t_{4}$. It is easy to see that $y(t)$ is also a solution of Eq. (5) and that $\lim _{t \rightarrow \infty}$ $L_{0} y(t)=$ const >0. This completes the proof.

From Theorems 1 and 2 and the analogous results for eventually negative solutions, we obtain the following comparison theorem concerning oscillation.

Theorem 3. Consider the differential inequality (4) and the equation (5) subject to the conditions (a), (b), (e) and:
(c') $\left|f_{1}(t, x)\right| \geqq\left|f_{2}(t, x)\right|$ for $x \neq 0$
and $f_{2}(t, x)$ is nondecreasing in x for every fixed t,
($\left.\mathrm{d}^{\prime}\right) \quad L_{0} p_{1}(t)$ is strongly bounded on $\left[t_{0}, \infty\right)$ in the sense that for every $T \geqq t_{0}$ there are $T^{*}, T_{*} \geqq T$ such that

$$
L_{0} p_{1}\left(T_{*}\right)=\min _{t \in[T, \infty)} L_{0} p_{1}(t), \quad L_{0} p_{1}\left(T^{*}\right)=\max _{t \in[T, \infty)} L_{0} p_{1}(t)
$$

Suppose, moreover, that for n even, every solution $y(t)$ of (5) is oscillatory and for n odd, every solution is either oscillatory or satisfies $\lim _{t \rightarrow \infty} L_{0} y(t)=0$. Then, if n is even, every solution $x(t)$ of (4) is oscillatory, while if n is odd, every solution is either oscillatory or such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(L_{0} x(t)-L_{0} p_{1}(t)\right)=-q_{*} \text { or }-q^{*} \tag{17}
\end{equation*}
$$

where $q_{*}=\lim _{t \rightarrow \infty}\left(\min _{\tau \in[t, \infty)} L_{0} p_{1}(\tau)\right)$ and $q^{*}=\lim _{t \rightarrow \infty}\left(\max _{\tau \in[t, \infty)} L_{0} p_{1}(\tau)\right)$.
Proof. Let n be even. Assume to the contrary that there exists a nonoscillatory solution $x(t)$ of (4). Without loss of generality, we may assume that this solution is positive on $\left[t_{1}, \infty\right), t_{1} \geqq t_{0}$. From Theorem 1 it follows that there
exists an eventually positive solution of (5), a contradiction.
Let n be odd. We can exclude the existence of a nonoscillatory solution $x(t)$ of (4) such that $L_{0} x(t)$ is unbounded since this leads to the existence of a nonoscillatory solution $y(t)$ of (5) such that $\lim _{t \rightarrow \infty} L_{0} y(t) \neq 0$ (the proof is similar to that of Theorem 1 and we omit it). So, the only interesting case is the case of a possible nonoscillatory solution $x(t)$ of (4) for which $L_{0} x(t)$ is bounded. Let this solution $x(t)$ be positive on $\left[t_{1}, \infty\right), t_{1} \geqq t_{0}$. From Lemma 2 it follows, in particular, that $L_{1} u(t)=L_{1}\left(x(t)-p_{1}(t)\right)<0$ on $\left[t_{2}, \infty\right)$ for some $t_{2} \geqq t_{1}$. Consequently, $\lim _{t \rightarrow \infty} L_{0} u(t)=c$, where c is a constant.

Denote $q_{1}(t)=\min _{\tau \in(t, \infty)} L_{0} p_{1}(\tau)$ and put $z(t)=L_{0} u(t)+q_{1}(t)$. Then we have

$$
\lim _{t \rightarrow \infty} z(t)=\lim _{t \rightarrow \infty}\left(L_{0} u(t)+q_{1}(t)\right)=c+q_{*}=d .
$$

If $d<0$, then $L_{0} u(t)+q_{1}(t)<0$ for sufficiently large t, say $t \geqq T \geqq t_{2} . \quad$ By (e^{\prime}), there exists a $T_{*} \geqq T$ such that

$$
\begin{aligned}
L_{0} u\left(T_{*}\right)+q_{1}\left(T_{*}\right) & =L_{0} u\left(T_{*}\right)+L_{0} p_{1}\left(T_{*}\right) \\
& =L_{0} x\left(T_{*}\right)-L_{0} p_{1}\left(T_{*}\right)+L_{0} p_{1}\left(T_{*}\right) \\
& =L_{0} x\left(T_{*}\right)>0
\end{aligned}
$$

a contradiction.
If $d>0$, then we use Theorem 2 to conclude that there exists a positive solution $y(t)$ of (5) such that $\lim _{t \rightarrow \infty} L_{0} y(t)=$ const >0, which is again a contradiction.

Thus, we conclude that $d=0$, which implies

$$
\lim _{t \rightarrow \infty}\left(L_{0} x(t)-L_{0} p_{1}(t)\right)=\lim _{t \rightarrow \infty}\left(z(t)-q_{1}(t)\right)=-q_{*} .
$$

A parallel argument holds if we assume that (4) has a negative solution $x(t)$ with $L_{0} x(t)$ bounded on $\left[t_{1}, \infty\right)$. In this case we prove that

$$
\lim _{t \rightarrow \infty}\left(L_{0} x(t)-L_{0} p_{1}(t)\right)=-q^{*} .
$$

This completes the proof.
When specialized to Eqs. (1) and (2), the above theorem yields the following result according to which the oscillatory character of Eq. (2) is maintained by adding a "strongly bounded" forcing term.

Corollary. Consider Eqs. (1) and (2) subject to the following conditions: (f) $f:\left[t_{0}, \infty\right) \times R \rightarrow R$ is continuous, $x f(t, x)>0$ for every $x \neq 0$ and $f(t, x)$ is nondecreasing in x for every fixed t,
(g) there is a function $p \in D\left(L_{n}\right)$ such that $L_{n} p(t)=h(t)$ and $L_{0} p(t)$ is strongly bounded on $\left[t_{0}, \infty\right)$.

Suppose, moreover, that for n even, every solution $x(t)$ of (2) is oscillatory and
for n odd, every solution is either oscillatory or satisfies $\lim _{t \rightarrow \infty} L_{0} x(t)=0$. Then, if n is even, every solution $x(t)$ of (1) is oscillatory, while if n is odd, every solution is either oscillatory or such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(L_{0} x(t)-L_{0} p(t)\right)=-p_{*} \text { or }-p^{*} \tag{18}
\end{equation*}
$$

where $p_{*}=\lim _{t \rightarrow \infty}\left(\min _{\tau \in[t, \infty)} L_{0} p(\tau)\right)$ and $p^{*}=\lim _{t \rightarrow \infty}\left(\max _{\tau \in[t, \infty)} L_{0} p(\tau)\right)$,
Remark 1. We remark here that Theorem 3 and Corollary actually hold for bounded solutions if the assumptions concern only the bounded solutions of Eq. (5) (or (2)).

Remark 2. The above results can easily be extended to the functional differential equations

$$
\begin{equation*}
L_{n} x(t)+f\left(t, x\left(g_{1}(t)\right), \ldots, x\left(g_{m}(t)\right)\right)=h(t) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n} x(t)+f\left(t, x\left(g_{1}(t)\right), \ldots, x\left(g_{m}(t)\right)\right)=0 \tag{20}
\end{equation*}
$$

or, more generaly, to the functional differential inequality

$$
\begin{equation*}
x(t)\left\{L_{n} x(t)+f_{1}\left(t, x\left(g_{1}(t)\right), \ldots, x\left(g_{m}(t)\right)\right)-h_{1}(t)\right\} \leqq 0 \tag{21}
\end{equation*}
$$

and the equation

$$
\begin{equation*}
L_{n} y(t)+f_{2}\left(t, y\left(g_{1}(t)\right), \ldots, y\left(g_{m}(t)\right)\right)=h_{2}(t), \tag{22}
\end{equation*}
$$

where L_{n}, h, h_{1} and h_{2} are as before and:
(i) $g_{i}:\left[t_{0}, \infty\right) \rightarrow R, 1 \leqq i \leqq m$, are continuous and $\lim _{t \rightarrow \infty} g_{i}(t)=\infty, 1 \leqq i \leqq m$;
(ii) $f:\left[t_{0}, \infty\right) \times R^{m} \rightarrow R$ is continuous, $x_{1} f\left(t, x_{1}, \ldots, x_{m}\right)>0$ if $x_{1} x_{i}>0,1 \leqq i \leqq m$, and $f\left(t, x_{1}, \ldots, x_{m}\right)$ is nondecreasing in each x_{i} for every fixed $t \geqq t_{0}$;
(iii) $f_{1}, f_{2}:\left[t_{0}, \infty\right) \times R^{m} \rightarrow R$ are continuous, $x_{1} f_{j}\left(t, x_{1}, \ldots, x_{m}\right)>0, j=1,2$, if $x_{1} x_{i}>0,1 \leqq i \leqq m,\left|f_{1}\left(t, x_{1}, \ldots, x_{m}\right)\right| \geqq\left|f_{2}\left(t, x_{1}, \ldots, x_{m}\right)\right|$ if $x_{1} x_{i}>0,1 \leqq i \leqq m$, and $f_{2}\left(t, x_{1}, \ldots, x_{m}\right)$ is nondecreasing in each x_{i} for every fixed $t \geqq t_{0}$.

The details of this extension are left to the reader.

References

[1] T. A. Čanturija, Some comparison theorems for ordinary differential equations of higher order, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 749-756. (Russian.)
[2] L. S. Chen and C.C. Yeh, A comparison theorem for general n-th order functional differential nonlinear equations with deviating arguments, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 62 (1977), 168-172.
[3] L.S. Chen and C. C. Yeh, Oscillation criteria for arbitrary order nonlinear inequalities with deviating arguments, Boll. Un. Mat. Ital. C 1 (1982), 279-284.
[4] K. Foster, Criteria for oscillation and growth of nonoscillatory solutions of forced differential equations of even order, J. Differential Equations 20 (1976), 115-132.
[5] S. R. Grace and B. S. Lalli, On oscillation of solutions of higher order differential retarded inequalities, Houston J. Math. 10 (1984), 173-179.
[6] S. R. Grace and B. S. Lalii, Corrigendum to "On oscillation of solutions of higher order differential retarded inequalities", Houston J. Math. 10 (1984), 453-455.
[7] J. Jaroš, Oscillation criteria for functional differential inequalities with strongly bounded forcing term, Hiroshima Math. J. 16 (1986), 639-649.
[8] J. Jaroš, On oscillation of certain class of solutions of retarded differential inequalities, Acta Math. Univ. Comenian., to appear.
[9] A. G. Kartsatos, On the maintenance of oscillations of n-th order equations under the effect of a small forcing term, J. Differential Equations 10 (1971), 355-363.
[10] A. G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377-383.
[11] A. G. Kartsatos, On n th-order differential inequalities, J. Math. Anal. Appl. 52 (1975), 1-9.
[12] A. G. Kartsatos, The oscillation of a forced equation implies the oscillation of the unforced equation - small forcings, J. Math. Anal. Appl. 76 (1980), 98-106.
[13] N. Kawano, T. Kusano and M. Naito, Nonoscillatory solutions of forced differential equations of the second order, J. Math. Anal. Appl. 90 (1982), 323-342.
[14] T. Kusano, Oscillation theory of higher-order ordinary and functional differential equations with forcing terms, Proc. Fifth Czechoslovak Conference on Differential Equations and Their Applications, Brastislava, August 24-28, 1981, Teubner, Leipzig, 1982, 218-221.
[15] T. Kusano and M. Naito, Oscillation criteria for a class of perturbed Schrödinger equations, Canad. Math. Bull. 25 (1982), 71-77.
[16] T. Kusano and H. Onose, Oscillations of functional differential equations with retarded argument, J. Differential Equations 15 (1974), 269-277.
[17] R. C. McCann, On the oscillation of solutions of forced even order nonlinear differential equations, Hiroshima Math. J. 10 (1980), 263-269.
[18] H. Onose, A comparison theorem and the forced oscillation, Bull. Austral. Math. Soc. 13 (1975), 13-19.
[19] H. Onose, A comparison method for forced oscillations, Monatsh. Math. 83 (1977), 37-41.
[20] Ch. G. Philos, Oscillatory and asymptotic behaviour of all solutions of differential equations with deviating arguments, Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 195-210.
[21] E. D. True, A comparison theorem for certain functional differential equations, Proc. Amer. Math. Soc. 47 (1975), 127-132.

Department of Mathematical Analysis, Faculty of Mathematics and Physics, Komensky University
Bratislava, Czechoslovakia

