Integral closures of ideals of the principal class

Shiroh Iтон

(Received December 19, 1986)

1. Introduction

Let A be a noetherian ring. For an ideal I of A. we denote by I^* the integal closure of I. In [1], we proved that if q is an ideal of A generated by an A-regular sequence, then $q^n \cap (q^{n+1})^* = q^n q^*$ for every $n \ge 1$. In this note, we shall prove the following

THEOREM. Assume that A is locally quasi-unmixed, and let q be an ideal of the principal class of A. Then $q^n \cap (q^{n+1})^* = q^n q^*$ for every $n \ge 1$.

We shall prove the Theorem by using a method similar to the one that we used in the proof of [1], Theorem 1. The assumption that A is locally quasiunmixed is essential; in Section 4, we shall show this by an example.

C. Huneke communicated to the author that he and M. Hochster proved the Theorem in the case that A is a quasi-unmixed local ring containing a field and q is generated by a part of a system of generators for A.

2. Some preliminary results

In this section, we assume that A is locally quasi-unmixed and q is an ideal of the principal class with $htq \ge 2$. Let $R = \sum_{n \in \mathbb{Z}} q^n t^n$ and $R' = \sum_{n \in \mathbb{Z}} (q^n)^* t^n$.

Let $x_1, ..., x_d$ be elements of A which generate q, where d = ht q. First, we need the following result.

LEMMA 1. $x_1^n, ..., x_d^n$ are $(q^n)^*$ -independent for all $n \ge 1$, i.e. every form $f(X_1, ..., X_d) \in A[X_1, ..., X_d]$ such that $f(x_1^n, ..., x_d^n) = 0$ has all its coefficients in $(q^n)^*$.

PROOF. See [3], (4.14.2).

LEMMA 2. (i) $(q^{n+1})^*$: $x_i = (q^n)^*$ for every $n \ge 0$ and i.

(ii) For a fixed s with $2 \le s \le d$, let J be the ideal of R generated by t^{-1} , $x_1t, ..., x_st$. Then $H_J^2(R')_n = 0$ for $n \le 0$.

PROOF. See [2], Proposition 3.13, and the proof of [1], Proposition 16.

LEMMA 3. $(q^{n+1})^* \cap (x_1, x_2)^n = q^*(x_1, x_2)^n$ for every $n \ge 0$.

Shiroh Itoh

PROOF. Our proof is very similar to that of [1], Proposition 6. Let $x = x_1$, $y = x_2$ and $u = t^{-1}$. Let N = (u, xt, yt)R. By Lemma 2, $H_N^2(R')_0 = 0$. We then use the Čech complex $0 \rightarrow R'_{xt} \times R'_{yt} \times R'_{u} \rightarrow R'_{xtyt} \times R'_{ytu} \rightarrow R'_{xtytu} \rightarrow 0$ to compute $H_N^2(R')_0 = 0$. Let $z \in (q^{n+1})^* \cap q^n$ and write $z = ax^n + by$ with $a \in A$ and $b \in (x, y)^{n-1}$. Using an argument similar to the proof of [1], Proposition 6, we have $zx^{m-n}y^{m-1} = a'x^m + b'y^m$ for some integer m > n and a', $b' \in (q^m)^*$. Since $(a' - ay^{m-1})x^m + (b' + bx^{m-n})y^m = 0$, it follows from Lemma 1 that $b' - bx^{m-n} \in (q^m)^*$ and $a' - ay^{m-1} \in (q^m)^*$, and hence, by Lemma 2, $a \in q^*$, because $ay^{m-1} \in (q^m)^*$. In the case n = 1, since $by \in (q^2)^*$, we have $b \in q^*$. So assume that n > 1. Since $bx^{m-n} \in (q^m)^*$, it follows from Lemma 2 that $b \in (q^n)^*$, and hence $b \in (q^n)^* \cap (x, y)^{n-1}$. Therefore, by the induction on n, $b \in q^*(x, y)^{n-1}$; hence $z = ax^n + by \in q^*(x, y)^n$.

3. **Proof of the Theorem**

In this section, we shall prove the Theorem. Let A be a locally quasiunmixed noetherian ring, and let $x_1, ..., x_d$ be elements of A such that $q = (x_1, ..., x_d)$ is an ideal of the principal class with ht q = d.

THEOREM. $(q^{n+1})^* \cap q^n = q^n q^*$ for every $n \ge 0$.

PROOF. We use induction on d. In the case d=2, the assertion follows from Lemma 3. So assume that $d \ge 3$ and that the assertion has been established for ideals of the principal class of locally unmixed noetherian rings with height less than d. Then we may assume that A is local. Let $R = \sum_{n \in \mathbb{Z}} q^n t^n$ and R' = $\sum_{n \in \mathbb{Z}} (q^n)^* t^n$. Let P_1, \ldots, P_r be the prime divisors of $t^{-1}R'$, and let $V_i = (R'_{P_i})_{red}$ for each *i*. By [1], Lemma 4, each V_i is a DVR; and moreover, for $a \in A$ and $n \in N$, we have $a \in (q^n)^*$ if and only if $a \in q^n V_i$ for each *i*. Therefore we may assume that $x_1V_i = qV_i$ for each *i* (If necessary, replace A by A(X)). Let B be the Asubalgebra of A_{x_1} generated by x_2/x_1 , and let $I = (x_1, x_3, ..., x_d)B$. Note here that I is an ideal of the principal class. It follows from our choice of x_1 that the canonical homomorphism $A \rightarrow V_i$ factors through the canonical homomorphism $A \rightarrow B$ for each i, and hence $(I^{n+1})^* \cap A = (q^{n+1})^*$ for every n. Let $\{M_i\}$ (resp. $\{N_i\}$ be the set of monomials in x_1, \ldots, x_d (resp. x_1, x_3, \ldots, x_d) with degree n. Each M_i (resp. N_i) is an element of A. Let $z \in (q^{n+1})^* \cap q^n$, and write $z = \sum a_i M_i$ with $a_i \in A$. Since $z \in (I^{n+1})^* \cap I^n = I^*I^n$, we can write $z = \sum b_i N_i$ with $b_i \in I^*$. For each N_i , we put $T_i = \{M_i | M_j(x_1) + M_j(x_2) = N_i(x_1) \text{ and } M_j(x_k) = N_i(x_k) \text{ for } M_j(x_k) = N_j(x_k) \}$ $k \ge 3$, and we define $w_i \in A$ by $w_i = \sum_{M_j \in T_i} a_j x_1^{M_j(x_1)} x_2^{M_j(x)}$, (For a monomial $M = x_1^{e(1)} \cdots x_d^{e(d)}$ in x_1, \dots, x_d , $M(x_i)$ denotes the integer e(i) for every *i*.) We put $n(i) = N_i(x_1)$ for simplicity. Then $\sum_i (b_i - w_i/x_1^{n(i)})N_i = 0$. By Lemma 1, we have $b_i - w_i/x_1^{n(i)} \in I^*$, and hence $w_i \in (I^{n(i)+1})^*$. Therefore $w_i \in (I^{n(i)+1})^* \cap$

 $A = (q^{n(i)+1})^*$, and moreover, by Lemma 3, we have $w_i \in (q^{n(i)+1})^* \cap (x_1, x_2)^{n(i)} = (x_1, x_2)^{n(i)}q^*$. Thus we can write $w_i = \sum_k c_k x_1^{n(i)-k} x_2^k$ with $c_k \in q^*$. It then follows from Lemma 1 that $a_j - c_k \in (x_1, x_2)^*$ if $M_j(x_2) = k$; consequently $a_j \in q$ for every *j*. This proves the assertion for $d \ge 2$.

Finally, we must prove the Theorem in the case ht q=1. So assume that q=xA with ht q=1. Let I be the nilradical of A. It is clear that every $(x^nA)^*$ contains I. Since x is A/I-regular, we have $I \cap x^nA = Ix^n$ for every n. Therefore by [1], Theorem 1, $(x^{n+1}A)^* \cap x^nA \subseteq ((xA)^*x^nA + I) \cap x^nA = (xA)^*x^nA + I \cap x^nA = (xA)^*x^nA$, and hence $(x^{n+1}A)^* \cap x^nA = (xA)^*x^nA$. This completes the proof of the Theorem.

4. An example

Let k be a field, and let X, Y, Z and W be four variables. Let B = k[[X, Y, Z, W]], and consider two prime ideals P_1 , P_2 of B defined as follows: $P_1 = WB$ and $P_2 = (X^3 - Y^4, Z^3 - W^4)B$. Let $A = B/P_1 \cap P_2$, and denote by x, y, z and w the images of X, Y, Z and W respectively. Note here that, since ht $P_1 = 1$ and ht $P_2 = 2$, A is not quasi-unmixed and dim A = 3. Let q = (x, y, z)A. q is a parameter ideal of A.

We shall now prove that

$$(q^2)^* \cap q \neq q^*q.$$

We first show that $q^* = (x, y, z, w^2)$. Since $(w^2)^3 = w^2 z^3 \in q^3$, we have $w^2 \in q^*$. Let t and u be two variables, and let $f: A \to k \llbracket t, u \rrbracket$ be the homomorphism defined by $f(x) = t^4$, $f(y) = t^3$, $f(z) = u^4$ and $f(w) = u^3$. Since $f(w) = u^3 \notin (f(q^*)k \llbracket t, u \rrbracket)^* (=(t^3, u^4)^* = (t^3, t^2u^2, tu^3, u^4))$, we have $w \notin q^*$. Therefore $q^* = (x, y, z, w^2)$ and $q^*q = (x^2, xy, xz, y^2, yz, z^2, xw^2, yw^2, zw^2)$. Since $f(q^*q)k \llbracket t, u \rrbracket = (t^6, t^3u^4, u^8) \not = f(xw) = t^4u^3$, we have $xw \notin q^*q$. But $xw \in (q^2)^*$, because $(xw)^{18} = (x^3w)^6w^{12} = (y^4w)^6w^{12} = y^{24}(w^5)^3w^3 = y^{24}(z^3w)^3w^3 = y^{24}z^9w(z^3w) \in (q^2)^{18}$. Consequently, $(q^2)^* \cap q \neq q^*q$.

References

- [1] S. Itoh, Integral closures of ideals generated by regular sequences, preprint.
- [2] L. J. Ratliff, Jr., Locally quasi-unmixed noetherian rings and ideals of the principal class, Pacific J. Math., 52 (1974), 185-205.
- [3] L. J. Ratliff, Jr., Independent elements and asymptotic sequences, J. Algebra, 78 (1982), 410-430.

Department of Mathematics, Faculty of Science, Hiroshima University