Integral closures of ideals of the principal class

Shiroh Itон
(Received December 19, 1986)

1. Introduction

Let A be a noetherian ring. For an ideal I of A. we denote by I^{*} the integal closure of I. In [1], we proved that if \mathfrak{q} is an ideal of A generated by an A-regular sequence, then $\mathfrak{q}^{n} \cap\left(\mathfrak{q}^{n+1}\right)^{*}=\mathfrak{q}^{n} \mathfrak{q}^{*}$ for every $n \geqq 1$. In this note, we shall prove the following

Theorem. Assume that A is locally quasi-unmixed, and let \mathfrak{q} be an ideal of the principal class of A. Then $\mathfrak{q}^{n} \cap\left(\mathfrak{q}^{n+1}\right)^{*}=\mathfrak{q}^{n} \mathfrak{q}^{*}$ for every $n \geqq 1$.

We shall prove the Theorem by using a method similar to the one that we used in the proof of [1], Theorem 1. The assumption that A is locally quasiunmixed is essential; in Section 4, we shall show this by an example.
C. Huneke communicated to the author that he and M. Hochster proved the Theorem in the case that A is a quasi-unmixed local ring containing a field and \mathfrak{q} is generated by a part of a system of generators for A.

2. Some preliminary results

In this section, we assume that A is locally quasi-unmixed and \mathfrak{q} is an ideal of the principal class with $h t q \geqq 2$. Let $R=\sum_{n \in Z} q^{n} t^{n}$ and $R^{\prime}=\sum_{n \in Z}\left(q^{n}\right)^{*} t^{n}$.

Let x_{1}, \ldots, x_{d} be elements of A which generate \mathfrak{q}, where $d=h t \mathfrak{q}$. First, we need the following result.

Lemma 1. $x_{1}^{n}, \ldots, x_{d}^{n}$ are $\left(\mathfrak{q}^{n}\right)^{*}$-independent for all $n \geqq 1$, i.e. every form $f\left(X_{1}, \ldots, X_{d}\right) \in A\left[X_{1}, \ldots, X_{d}\right]$ such that $f\left(x_{1}^{n}, \ldots, x_{d}^{n}\right)=0$ has all its coefficients in $\left(\mathfrak{q}^{n}\right)^{*}$.

Proof. See [3], (4.14.2).
Lemma 2. (i) $\left(\mathfrak{q}^{n+1}\right)^{*}: x_{i}=\left(\mathfrak{q}^{n}\right)^{*}$ for every $n \geqq 0$ and i.
(ii) For a fixed s with $2 \leqq s \leqq d$, let J be the ideal of R generated by t^{-1}, $x_{1} t, \ldots, x_{s} t$. Then $H_{J}^{2}\left(R^{\prime}\right)_{n}=0$ for $n \leqq 0$.

Proof. See [2], Proposition 3.13, and the proof of [1], Proposition 16.
Lemma 3. $\quad\left(\mathfrak{q}^{n+1}\right)^{*} \cap\left(x_{1}, x_{2}\right)^{n}=\mathfrak{q}^{*}\left(x_{1}, x_{2}\right)^{n}$ for every $n \geqq 0$.

Proof. Our proof is very similar to that of [1], Proposition 6. Let $x=x_{1}$, $y=x_{2}$ and $u=t^{-1}$. Let $N=(u, x t, y t) R$. By Lemma $2, H_{N}^{2}\left(R^{\prime}\right)_{0}=0$. We then use the Čech complex $0 \rightarrow R_{x t}^{\prime} \times R_{y t}^{\prime} \times R_{u}^{\prime} \rightarrow R_{x t y t}^{\prime} \times R_{x t u}^{\prime} \times R_{y t u}^{\prime} \rightarrow R_{x t y t u}^{\prime} \rightarrow 0$ to compute $H_{N}^{2}\left(R^{\prime}\right)_{0}=0$. Let $z \in\left(\mathfrak{q}^{n+1}\right)^{*} \cap \mathfrak{q}^{n}$ and write $z=a x^{n}+b y$ with $a \in A$ and $b \in(x, y)^{n-1}$. Using an argument similar to the proof of [1], Proposition 6, we have $z x^{m-n} y^{m-1}=a^{\prime} x^{m}+b^{\prime} y^{m}$ for some integer $m>n$ and $a^{\prime}, b^{\prime} \in\left(\mathfrak{q}^{m}\right)^{*}$. Since $\left(a^{\prime}-a y^{m-1}\right) x^{m}+\left(b^{\prime}+b x^{m-n}\right) y^{m}=0$, it follows from Lemma 1 that $b^{\prime}-b x^{m-n} \in$ $\left(\mathfrak{q}^{m}\right)^{*}$ and $a^{\prime}-a y^{m-1} \in\left(\mathfrak{q}^{m}\right)^{*}$, and hence, by Lemma $2, a \in \mathfrak{q}^{*}$, because $a y^{m-1} \in$ $\left(\mathfrak{q}^{m}\right)^{*}$. In the case $n=1$, since $b y \in\left(\mathfrak{q}^{2}\right)^{*}$, we have $b \in \mathfrak{q}^{*}$. So assume that $n>1$. Since $b x^{m-n} \in\left(\mathfrak{q}^{m}\right)^{*}$, it follows from Lemma 2 that $b \in\left(\mathfrak{q}^{n}\right)^{*}$, and hence $b \in\left(\mathfrak{q}^{n}\right)^{*} \cap$ $(x, y)^{n-1}$. Therefore, by the induction on $n, b \in \mathfrak{q}^{*}(x, y)^{n-1}$; hence $z=a x^{n}+b y \in$ $\mathfrak{q}^{*}(x, y)^{n}$. This completes the proof.

3. Proof of the Theorem

In this section, we shall prove the Theorem. Let A be a locally quasiunmixed noetherian ring, and let x_{1}, \ldots, x_{d} be elements of A such that $\mathfrak{q}=\left(x_{1}, \ldots, x_{d}\right)$ is an ideal of the principal class with $\mathrm{ht} \mathfrak{q}=d$.

Theorem. $\quad\left(\mathfrak{q}^{n+1}\right)^{*} \cap \mathfrak{q}^{n}=\mathfrak{q}^{n} \mathfrak{q}^{*}$ for every $n \geqq 0$.
Proof. We use induction on d. In the case $d=2$, the assertion follows from Lemma 3. So assume that $d \geqq 3$ and that the assertion has been established for ideals of the principal class of locally unmixed noetherian rings with height less than d. Then we may assume that A is local. Let $R=\sum_{n \in Z} \mathfrak{q}^{n} t^{n}$ and $R^{\prime}=$ $\sum_{n \in \mathcal{Z}}\left(\mathfrak{q}^{n}\right)^{*} t^{n}$. Let P_{1}, \ldots, P_{r} be the prime divisors of $t^{-1} R^{\prime}$, and let $V_{i}=\left(R_{P_{i}}^{\prime}\right)_{r e d}$ for each i. By [1], Lemma 4, each V_{i} is a $D V R$; and moreover, for $a \in A$ and $n \in N$, we have $a \in\left(\mathfrak{q}^{n}\right)^{*}$ if and only if $a \in \mathfrak{q}^{n} V_{i}$ for each i. Therefore we may assume that $x_{1} V_{i}=q V_{i}$ for each i (If necessary, replace A by $A(X)$). Let B be the A subalgebra of $A_{x_{1}}$ generated by x_{2} / x_{1}, and let $I=\left(x_{1}, x_{3}, \ldots, x_{d}\right) B$. Note here that I is an ideal of the principal class. It follows from our choice of x_{1} that the canonical homomorphism $A \rightarrow V_{i}$ factors through the canonical homomorphism $A \rightarrow B$ for each i, and hence $\left(I^{n+1}\right)^{*} \cap A=\left(q^{n+1}\right)^{*}$ for every n. Let $\left\{M_{j}\right\}$ (resp. $\left\{N_{i}\right\}$) be the set of monomials in x_{1}, \ldots, x_{d} (resp. $x_{1}, x_{3}, \ldots, x_{d}$) with degree n. Each $M_{j}\left(\right.$ resp. $\left.N_{i}\right)$ is an element of A. Let $z \in\left(\mathfrak{q}^{n+1}\right)^{*} \cap \mathfrak{q}^{n}$, and write $z=\sum a_{j} M_{j}$ with $a_{j} \in A$. Since $z \in\left(I^{n+1}\right)^{*} \cap I^{n}=I^{*} I^{n}$, we can write $z=\sum b_{i} N_{i}$ with $b_{i} \in I^{*}$. For each N_{i}, we put $T_{i}=\left\{M_{j} \mid M_{j}\left(x_{1}\right)+M_{j}\left(x_{2}\right)=N_{i}\left(x_{1}\right)\right.$ and $M_{j}\left(x_{k}\right)=N_{i}\left(x_{k}\right)$ for $k \geqq 3\}$, and we define $w_{i} \in A$ by $w_{i}=\sum_{M_{j} \in T_{i}} a_{j} x_{1}^{M_{j}\left(x_{1}\right)} x_{2}^{M_{j}(x)}$, (For a monomial $M=x_{1}^{e(1) \ldots x_{d}^{e(d)}}$ in $x_{1}, \ldots, x_{d}, M\left(x_{i}\right)$ denotes the integer $e(i)$ for every $\left.i.\right)$ We put $n(i)=N_{i}\left(x_{1}\right)$ for simplicity. Then $\sum_{i}\left(b_{i}-w_{i} / x_{1}^{n(i)}\right) N_{i}=0$. By Lemma 1, we have $b_{i}-w_{i} / x_{1}^{n(i)} \in I^{*}$, and hence $w_{i} \in\left(I^{n(i)+1}\right)^{*}$. Therefore $w_{i} \in\left(I^{n(i)+1}\right)^{*} \cap$
$A=\left(\mathfrak{q}^{n(i)+1}\right)^{*}$, and moreover, by Lemma 3, we have $w_{i} \in\left(\mathfrak{q}^{n(i)+1}\right)^{*} \cap\left(x_{1}, x_{2}\right)^{n(i)}=$ $\left(x_{1}, x_{2}\right)^{n(i)} \mathfrak{q}^{*}$. Thus we can write $w_{i}=\sum_{k} c_{k} x_{1}^{n(i)-k} x_{2}^{k}$ with $c_{k} \in \mathfrak{q}^{*}$. It then follows from Lemma 1 that $a_{j}-c_{k} \in\left(x_{1}, x_{2}\right)^{*}$ if $M_{j}\left(x_{2}\right)=k$; consequently $a_{j} \in \mathfrak{q}$ for every j. This proves the assertion for $d \geqq 2$.

Finally, we must prove the Theorem in the case $\mathrm{ht} \mathrm{q}=1$. So assume that $\mathfrak{q}=x A$ with ht $\mathfrak{q}=1$. Let I be the nilradical of A. It is clear that every $\left(x^{n} A\right)^{*}$ contains I. Since x is A / I-regular, we have $I \cap x^{n} A=I x^{n}$ for every n. Therefore by [1], Theorem $1,\left(x^{n+1} A\right)^{*} \cap x^{n} A \subseteq\left((x A)^{*} x^{n} A+I\right) \cap x^{n} A=(x A)^{*} x^{n} A+I \cap x^{n} A=$ $(x A)^{*} x^{n} A$, and hence $\left(x^{n+1} A\right)^{*} \cap x^{n} A=(x A)^{*} x^{n} A$. This completes the proof of the Theorem.

4. An example

Let k be a field, and let X, Y, Z and W be four variables. Let $B=k \llbracket X, Y, Z$, $W \rrbracket$, and consider two prime ideals P_{1}, P_{2} of B defined as follows: $P_{1}=W B$ and $P_{2}=\left(X^{3}-Y^{4}, Z^{3}-W^{4}\right) B$. Let $A=B / P_{1} \cap P_{2}$, and denote by x, y, z and w the images of X, Y, Z and W respectively. Note here that, since ht $P_{1}=1$ and ht P_{2} $=2, A$ is not quasi-unmixed and $\operatorname{dim} A=3$. Let $\mathfrak{q}=(x, y, z) A . \quad \mathfrak{q}$ is a parameter ideal of A.

We shall now prove that

$$
\left(\mathfrak{q}^{2}\right)^{*} \cap \mathfrak{q} \neq \mathfrak{q}^{*} \mathfrak{q} .
$$

We first show that $\mathfrak{q}^{*}=\left(x, y, z, w^{2}\right)$. Since $\left(w^{2}\right)^{3}=w^{2} z^{3} \in \mathfrak{q}^{3}$, we have $w^{2} \in \mathfrak{q}^{*}$. Let t and u be two variables, and let $f: A \rightarrow k \llbracket t, u \rrbracket$ be the homomorphism defined by $f(x)=t^{4}, f(y)=t^{3}, f(z)=u^{4}$ and $f(w)=u^{3}$. Since $f(w)=$ $u^{3} \notin\left(f\left(\mathfrak{q}^{*}\right) k \llbracket t, u \rrbracket\right)^{*}\left(=\left(t^{3}, u^{4}\right)^{*}=\left(t^{3}, t^{2} u^{2}, t u^{3}, u^{4}\right)\right)$, we have $w \notin \mathfrak{q}^{*}$. Therefore $\mathfrak{q}^{*}=\left(x, y, z, w^{2}\right)$ and $\mathfrak{q}^{*} \mathfrak{q}=\left(x^{2}, x y, x z, y^{2}, y z, z^{2}, x w^{2}, y w^{2}, z w^{2}\right)$. Since $f\left(\mathfrak{q}^{*} \mathfrak{q}\right) k \llbracket t, u \rrbracket$ $=\left(t^{6}, t^{3} u^{4}, u^{8}\right) \nexists f(x w)=t^{4} u^{3}$, we have $x w \notin \mathfrak{q}^{*} \mathfrak{q}$. But $x w \in\left(\mathfrak{q}^{2}\right)^{*}$, because $(x w)^{18}=\left(x^{3} w\right)^{6} w^{12}=\left(y^{4} w\right)^{6} w^{12}=y^{24}\left(w^{5}\right)^{3} w^{3}=y^{24}\left(z^{3} w\right)^{3} w^{3}=y^{24} z^{9} w\left(z^{3} w\right) \in\left(q^{2}\right)^{18}$. Consequently, $\left(\mathfrak{q}^{2}\right)^{*} \cap \mathfrak{q} \neq \mathfrak{q}^{*} \mathfrak{q}$.

References

[1] S. Itoh, Integral closures of ideals generated by regular sequences, preprint.
[2] L. J. Ratliff, Jr., Locally quasi-unmixed noetherian rings and ideals of the principal class, Pacific J. Math., 52 (1974), 185-205.
[3] L. J. Ratliff, Jr., Independent elements and asymptotic sequences, J. Algebra, 78 (1982), 410-430.

> Department of Mathematics, Faculty of Science, Hiroshima University

