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Introduction

In algebraic geometry and (complex analytic) singularity theory, various
"genera" are defined for algebraic varieties and singularities to classify them
and to study their structure. So it is natural to consider the same problem in
commutative ring theory. In [6], we introduced the notion of genera and
arithmetic genera of commutative rings. On the other hand, the classification
of (embedded) projective varieties by their sectional genera is a quite classical
subject in algebraic geometry studied by Enriques, Castelnuovo, Roth and others.
This old subject has been recently resurrected and extended to the classification
of polarized varieties by their sectional genera (Fujita, lonescu, Lanteri, Palleschi
and others). T. Fujita, among others, introduced the notions of A-genus and
sectional genus of a polarized variety, and studied the structure of polarized
varieties with low genera.

The aim of this paper is to introduce the notions of A-genera and sectional
genera of commutative rings and to study the structure of commutative rings
by these genera.

By the way, the non-negativity of the sectional genus and the A -genus of a
Cohen-Macaulay local ring traces back to Northcott (1960) and Abhyankar
(1967). Moreover, the structure of Cohen-Macaulay local rings with low Λ-genera
has been studied by J. Sally in detail. Sally's work generalizes the study of
rational surface singularities (due to Artin) and minimally elliptic surface singu-
larities (due to Laufer and Wahl).

§ 1. A -genera and sectional genera of polynomial functions

First, we recall some notations and terminologies from [6]. Let/: Z-+Z be
a polynomial function, i.e., there is a polynomial Pf^Q[f\ such that f(n) = Pf(n)
for all n»0. We assume, for simplicity, that/(n) = 0 for all n<0. Then there
exist (uniquely determined) integers d^O and ei (Orgϊ^d), e0^0, such that

(P/)(n):=Σ7-o/(0 =

for all n»0. Put d(f) = d, eJ(f) = el, e(f) = e0, g(f)=ed=(—l)dPΓf(—1) and
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Λω = (-l)'(*o-*ι + +(-^ We call d(f),
ei(f)> e(/)» #(/)> Pa(f) the dimension, the i-th Hubert coefficient, the multiplicity,
the genus, the arithmetic genus of /respectively. Also we put n(/) = min {n |/(m)
= Pf(m) for all m>n} (the postulation number of/), m(f) = n(f) + d(f) and

Ff(t)=Σn*of(n)tn (the Hi/frerf series of/). Note that Ff(t) = φf(t)l(\-tY,

d = d(/) for some <py e Z[ί] and we have m(/) = deg ((py). For the other notations

used in this paper, see [6].

PROPOSITION 1.1. Put d(f) = d, ei(f) = ei, m(/) = m and
Then :

(i) Ff(t) = e0/(i-ty-ej(i-ty-ι + + (-ιy-ied-ίi(
(1- 02(0 for some βeZ[f].

(2) eί(/) = φy)(l)/i! = Σ^^m^(ί) w/ιere φ<ί> = d'φ//Λ'. In particular,

1(f) = φ'f(l) and e/(/) = 0/or α / / i SMC/I ί/iαί

PROOF. Put PP/ = P and e(0=Z^o((^/)(w)-^(n))rn6 Z[r]. Then
we have

Since P(n)=Σf=o(-l)<β ί(' Ijf7/) we have (1-ί) Σ?=o P(n)ί- = (l-ί) Σf=o

f7 /)ί"=Σf=o(-l)W(l-Od- 1. This implies (1). Since

= (l-O l l/ΓXO=Σf=o(-lMl-0< + (l-Od+1β(0, the first equality of
(2) follows. The second equality is a result of the equality ϋ<5θ/)(ί)=

. J ί fc~ f which can be proved by the induction on i. Q. E. D.

For convenience, we put ei(f) = φ(

f

i\l)/il for all i>d. We say that / is

h-positive if all the coefficients of φf are positive (i.e., α f >0 for all i, 0^ΐ^ra(/)).

COROLLARY 1.2. /// is h-positive, then eί(f)>Qfor all 0^ί^m(/).

DEFINITION 1.3. We define the A-genus gΔ(f) and the sectional genus gs(f)
of /by

9A(f) = e(f) + (d(f) - 1)/(0) - /(I) and

Note that if d(/)£ 1, then gΔ(Δf) = gΔ(f) and g£Λf) = gJJ)9 where (J/X»ι) =

/(n)-/(n-l). If d(/)=l, then ^(/) = pfl(/)=Z^V (K/) -/W), and / is Λ-
positive if and only if/(0)</(l)< </(m — l)</(m) with m = m(/).

The following propositions follow easily from Proposition 1.1 and Definition

1.3. We omit the proof.

PROPOSITION 1.4. Put m(f) = m and φf(t) = φ(t)= Σ^=0

 antn- Then we have
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= α2 + β3 +•••+ βm =

= α2 + 2α3 +••• + (m-l)αm = cp'(l) -

a3 + 2a4 + •••+ (m-2)am

In particular, if m(/)^l (resp. m(/)^2), ίnen gs(f) = gA(f) = 0 (resp.gs(f) =

COROLLARY 1.5. Assume that f is h-positive. Then:
(1) gs(f)^gA(f)^0,

)gl, and

Assume, moreover, fhaf/(0)=l, and puί d(/) = d, /(I) = iλ Then:
(2)

2, and
= 3 or a,(/) = 3, m(/) = 2

d)t + t2 + t3 or φf(t) = ί+(v-d)t + 3t2.

(3) m(/)^a^(/)+l. Tne equality holds if and only ifφf(t) = ί+(v-d)t +
t2-\ ----- hίm, m = m(/), and in ίnis case, we have e ί ( f ) = (v — d) + m(m + l)/2— 1,

^^^), and fls(/)

EXAMPLE 1.6. Let M=@n^0Mn be a graded module over a ring R and
assume that f(n) = H(M, n): = £R(Mn) is a polynomial function. Then we write

(̂M), F(M, 0, ^>M(0, n(M\ m(M), ^(M), pfl(M), ^^M), gs(M) instead of ^(/),

FXO, 9f(t\ n(f\ m(/), ^(/), pα(/), ^(/λ ^s(/) respectively. If /is Λ-positίve,
then we say that M is /ι-positive.

(1) Let ^4 be a homogeneous algebra over an artinian local ring and M =

®n^oMn a finitely generated graded 4-module. If aeAi is M-regular, then
gA(M) = gA(M/aM) and gs(M) = gs(M/aM). If M is Cohen-Macaulay, then M is

/ι-positive. This case is treated in §2.

(2) Let X be a projective variety and D an ample Cartier divisor on X.

Put A = ®n^0H°(X9 &χ(nD)). Then our gΔ(A) and 0S(,4) coincide with the
A -genus A(X9 D) and the sectional genus g(X, D) of the polarized variety (X, D)
introduced by T. Fujita [1].

(3) Let (R, m) be a noetherian local ring with dim (R) = d and / an m-primary

ideal of R. Then we put e^I) = e^G(ί)\ φι(t) = φG(I}(t\ n(I) = n(G(I)\ m(I) =

and ^J(/) = ̂ G(/)) = β1(/)-β(/)+^//), where
If I? is analytically unramified, then we put e£I) = e£G(I)), ή(I) = n(G(/)), m(/) =

= g(G(l))9 pa(I) = pa(G(I)\ §A(I) = gΔ(G(ί)) =
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£(lfP) and gs(I)=gs(G(I)) = eί(I)-e(I) + t(RΓl), where δ(/)=Θ^0^//ΊίTi and
J is the integral closure of J. Also we put G(#) = G(m), φR(t) = φm(t), g(R) —

l, etc. We call gΔ(ί)9 gjj)9 gΔ(l)9 gjj) the A-genus, the sectional
genus, the normal A-genus, the normal sectional genus of / respectively. This
case is treated in §3.

If x e / is an K-regular superficial element with respect to /, then we have

ei(I/xR) = ei(I) (0^ί<d) and gs(IlxR) = gs(I). If K = /φ5, ί8, ί27, ί29J, then
t - 12 + f 3 + 14. Hence G(#) is not /i-positive.

§ 2. The case of graded rings

Let /: Z->Z be a polynomial function. Then there is a homogeneous
algebra A over a field such that f ( n ) = H(A, n) for all n^O if and only if (/(O),
/(I),...) is an M-vector in the sense of [11], i.e.,/(0) = l and 0^/(n + l)g/(n)<M>
for all n ̂  1 (for the notation m<fl>, see [1 1]). In this case, if 1 ^f(n) ^ n for some
n, then/(m + l)^/(m) for all

PROPOSITION 2.1 (c/. [3]). Let A be a one-dimensional homogeneous algebra
over a field k which satisfies the following condition: H(A, n)<e(A) for all n^
n(A). Then:

(1) m(A)£e(A)-l,m(A)£gJtA) + l9

- and

(2) g(A) = Oog(A) = g£A)oe(A) = lom(A) = QoA * k\X\.
(3) g(A) = \<>e(A) = 2<*A s k\X9 Y]/(Λ) wiίfc deg (ft) = 2.

(4) ^̂ ) = Oo^(X) = Oom(X)^l.
(5) 5fs(A) = logΔ(A) = 1 and A is h-positiveoφA(t) = 1 + (r — l)ί + ί2,

(6)

(7)

PROOF. Put /(n) = H(A, π), < )̂ = e9 emb (X) = υ9 m(A) = m,
gΔ andgs(A) = gs.

(1) Assume that m^.e. Then /(e — 1) < e by the condition, and we get e — 1
*£f(e— l)^f(n) = e for all n»0, which is a contradiction. Therefore m<e.

Clearly gΔ = e —/(I) ̂  0 and gs = Σ?=ι (e ~"/(w)) ̂  w — 1 . For all n » 0, we have en
(n~2> and en-g = l + Σf»?/(0 +

= ̂ -β(e-l)/2 (note that if i<β, then

Hence gM-gA=g-2e+O+teO and flf^'' i'e" ^^
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(2), (3) and (4) are easily shown and we omit the proof.

(6) Assume that m^3. Then f(2)<e and έ?n-0 = l+/(l)+/(2)+Σ?=3
f(i)<l + v + e + (n-3)e for all n»0. Therefore gs-gΔ = g-2e + v-l>Q.
Conversely, if w^2, then gs=^^=\(e—f(n)) = e — v = gΔ.

(5) gs=l^l=gs^g^l (by (1) and (4))=>gs = gΔ = \^φf(t)= 1 +(ι>- l)t +
t2 (by (6))=>0j = l and /is /ι-positive=>mfi0J + 1 =2 (by Corollary 1.5, (3)) gs =

(7) Assume t ha tt;^ 3. Then for all n » 0, we have en-g^l + 3 + Σί=2/(0

+ Σϊ^-ιf(i)^en-e(e- 1)12+1 as in (1). Hence 9s<(e'2^\ Conversely,

assume that v = 2. Then for all n<e, we have f ( n ) ^ n 4- 1 , i.e., f ( n ) = n + \.

Therefore φj(t)=ί + t+" + te'1 and we have 9S = (C^ l\ A = k [ X , Γ|/(A) with

deg(h) = e. Q.E.D.

REMARK. The condition in Proposition 2.1 is satisfied if either A is /?-positive

or A^G(R) for a one-dimensional Cohen-Macaulay local ring R.

Let A be a homogeneous algebra over a field /c. We say that A is numerically
Cohen-Macaulay if F(Λ, t) = F(B, t) for some Cohen-Macaulay homogeneous

/c-algebra β, or equivalently ΦA(0 = = Σϋ l =o f l Λ ί Λ > m = m(/l) and (α0, aί9..., am) is
an M-vector, cf. [11]. We say that A is numerically a complete intersection

of type (i?!,..., fer), 64^2 if ^(ί) = Πi=ι(l + ί+ ίί"~1) Note that A is a
hypersurface of degree e^2oφA(t)=l + t+- + te~l<ϊ>A is numerically Cohen-

Macaulay and emb(y4) = dim(^4)+l.
If A is numerically Cohen-Macaulay, then A is /i-positive and we can apply

Corollary 1.5. If A is Cohen-Macaulay, then

= 0if i+7>π}, P = Λ + ,cf. [5].

PROPOSITION 2.2. (1) Let A be a numerically Cohen-Macaulay homo-

geneous algebra over a field with dim(A) = d^.\. Then gs(A)^(e^ l~ \

and the equality holds if and only if A is a hypersurface.

(2) If A is a Cohen-Macaulay homogeneous domain over a field with gs(A)

= 1, then A is Gorenstein.

PROOF. (1) We may assume that A is Cohen-Macaulay. Taking an A-
regular sequence x^..., x d _ t in Al and applying Proposition 2.1 to Λ/(x l v . .,

xd-ι)A, we get the assertion.
(2) We have φA(t)= 1 -f (emb(^)-dim (A))t + t2 by Corollary 1.5, (2).

Hence A is Gorenstein by [10]. Q. E. D.

EXAMPLE 2.3. (1) Let A be a hypersurface of degree e with dim(^) = J

and emb04) = t;. Then
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(2) Let A be numerically a complete intersection of type (&ι,..., br). Then

ΠU 61, m(Λ)=Σϊ=ι bt-r and 0^) = *(Λ)(m(A)-2)/2+l.
(3) (Cf. [11], Example 11.4.) Put A = k[X, 7, Z, W\I(XZ9 XW9 YW) and

3 = k[jr, 7, Z, W]/(XYZ, XW, YW, ZW). Then 4 is Cohen-Macaulay, J5 is not

Cohen-Macaulay and F(A, t) = F(B, t) = (1 + 2f)/(l - 02 Hence g = pa = gs =

gΔ = Q for both ^ and B.
(4) Let A be an artinian homogeneous algebra over a field k with emb (A)

= v. Then 0,04) = 0 if and only if A*k{Xl9...9 X.]l(Xi9...9 Xv)
2. gs(A)=l if

and only if A = A0®Aί®A2 with A2 = k. Hence to give such an A is equivalent
to give a symmetric bilinear form on the k- vector space Alm Therefore, if k is

algebraically closed, then A*k\Xl9..., X]/ ,̂..., XVY, XtXj(i^i)9 X\-X*
(l^z<r), Xj (r<j^vj) with r = emb(^4) — r(A) + l, and A is Gorenstein if and

only XA*

The following proposition can be proved easily by using Proposition 1.4

and Corollary 1.5. So we omit the routine proof.

PROPOSITION 2.4. Let A be a Gorenstein homogeneous algebra over afield

which is not a polynomial ring, and let dim(X) = d^l, emb(^4) = ι?, e(A) = e.

Then :
(0) gs(A) = QogA(A) = QorQg(A)=loA is a quadric hypersurface.

(1) 9JίA)=logΔ(A) = logJίA) = gA(A)^loπg (A) = 2.
(2) gs(A) = 2 never occurs.

(3) gs(A) = 3ogΔ(A) = 2oA is a quartic hypersurface.
(4) gs(A) = 4<^>gΔ(A) = 3 and e(A) = 6oA is a complete intersection of

type (2, 3).
(5) gs(A) = 5<s>g Δ(A) = 4 and e(A) = SoA is numerically a complete inter-

section of type (2, 2, 2).
(6) gs(A) = gΔ(A) + l^>reg (A) = l<*v = e!2 + d- l^gs(A) = e(A)!2 4- logΔ(A)

= e(A)/2.

(7) gs(A) = gΔ(A) + 2 never occurs.

EXAMPLE 2.5. (1) A is Gorenstein and g^(A) = 3 if and only if A is a
quintic hypersurface or a complete intersection of type (2, 3). Assume that A
is Gorenstein and reg (^4) ̂  3. Then, gs(A) = 6 if and only if A is a quintic hyper-
surface; gs(A)^l, 8; gs(A) = 9 if and only if A is a complete intersection of type

(2, 4); gs(A)=lQ if and only if A is a hypersurface of degree 6 or a complete
intersection of type (3, 3).

(2) Let C be a non-hyperelliptic smooth projective curve of genus g ̂  3 and
A=®n^0H°(C9 &c(nK)) be its canonical ring. Then A is a two-dimensional
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Gorenstein normal homogeneous domain with reg(yl) = 3, emb(A) = g, e(A) =

20-2, gJίA) = g,gΔ(A) = g-l, g(A) = g + l and Pa(A) = l (cf. [5], p. 641).

§ 3. The case of local rings

Throughout this section, (jR, m, k) denotes a Cohen-Macaulay local ring
with dim(.R) = d^l, emb (#) = £>, e(R) = e. Let / be an m-primary ideal of JR.
Recall that ^(/) = β(/) + (d-iμ(Λ//)-^(///2) and gs(I) = eί(I)-e(I)+t(R/I).
If k is an infinite field, then we put <5(/) = min {n \ JIn = In+1 for some minimal
reduction J of/} (the reduction exponent of/, cf. [6]). We have <5(/)<^reg (G(/)),
and the equality holds if G(/) is Cohen-Macaulay. We also put δ(m) = δ(R).

PROPOSITION 3.1 (cf. [6], Theorem 5.1). Assume that dim(JR) = l and put

S=W?=0 (/":/"). Then:
(1) t(RIIn) = e(I)n-ΰ(S/K) + ΰ(InS/In)for all n^O, and

g(ί) ^ gs(I) > gΔ(I) ^ 0, gs(I) - gΔ(I) = t(I2S/I2).
(2) δ(I) = Qog(I) = Oo/ is a principal ideal,

δ(I) ^ ίogJil) = OogA(l) = 0, and

LEMMA 3.2 (cf. [12]). Assume that k is an infinite field and let J be a minimal
reduction of I. Then gΔ(I) = &(12\U\ ^(/) = 0 if and only if (5(/)^l, and in
this case, G(/) is Cohen-Macaulay.

THEOREM 3.3. We have #s(/)^0, ̂ (/)^0, and the following conditions are
equivalent:

(1)
(2)

(3) reg(G(/))^l.

(4)

PROOF. We may assume that k is an infinite field. The fact gs(I)^Q is
proved in [4] (see also [6], Lemma 4.2), and we have gΔ(I)^0 by Lemma 3.2.
The assertions (2)<£>(3)<Ξ>(4)=>(1) follow from Lemma 3.2 and [6], Theorem 4,3.
So we have only to show the assertion (1)=>(3). Take a superficial system of
parameters x1?..., x d e/ with respect to / and put J = (xl5..., xd), /; = (*!,..., £,-,...,
xd), l^ί^d. Then we have 0s(///f) = gs(I) = 0 and dim(Λ// ί) = l. Hence, by
Proposition 3.1, we have *;(///() = (///i)2, i.e., xί/ + /ί = /2 + /ί. Take any element

y o f/ 2 . Then for any jφ\, we have y = χίyί-\ ----- \-Xdyd = xιzι~\ ----- \~xdzd f°Γ

some yh zi such that y^ Zj€l. Hence xί(yί-zί) + '~+xd(yd-zd) = Q, and this
implies that yj — Z j - e J c : ! . Therefore .y/e/ for a l ly, l^j^d, and we have ye
JI. Hence /2 = J/, i.e., (5(/) ̂  1 (or equivalent^, reg (G(/)) ̂  1). Q. E. D.
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THEOREM 3.4. (1) Q^

(2) gs(R) = 0<*gΔ(R) = Qoτeg(G(R))£l. In this case, we have r(R) = e(R)
— 1 if R is not a regular local ring (r(R) denotes the Cohen-Macaulay type of R).

(3) gs(R) = <α/?)oreg (G(Λ)) ̂  2

= 1 + (v - d)t + (e + d - υ - l)ί2

for all n^.2. In this case, G(R) is Cohen-Macaulay.

(4) gs(R) = logΔ(R)= 1 and G(R) is Cohen-Macaulay

oφR(t)=l+(υ-d)t + t

(5) If gs(R) = 2, then gΔ(R) = 2 or gΔ(R) = \. In the first case, G(R) is

Cohen-Macaulay, φR(t)=l+(v-d)t + 2t2 and e2(R) = 2, et(R) = 0 for all j^3.

In the second case, G(R) is not Cohen-Macaulay and r(R) = e(R) — 2.

(6) gs(R) = (e(R^ ~ M if and only ifR is a hypersurface. (We say that R is

a hypersurface of degree e if R = S/(f), where (S, n) is a regular local ring and

fene-ne+ί.)

PROOF. We may assume that k is an infinite field. Take a superficial system

of parameters x1,...,xd such that x^m — m2. (1) Put Rf = R/(xί,..., x^-j).

Then gs(R) = gs(R'\ gΔ(R) = gΔ(Rr) and e(R) = e(R'). Hence the assertion follows

from Proposition 3.1, (1) and Proposition 2.1. The proof of (6) is similar.

(2) follows from Theorem 3.3. (3) If reg (G(R)) ^ 2, then δ(R)^2 and G(R) is

Cohen-Macaulay by [7]. (By the way, G(R) is Cohen-Macaulay ifR is analytically

unramified and δ(R)^2.) Therefore we have only to show that if gs(R) = gΔ(R),

then δ(R)<>2. Put q = (x lv.., xd), <\i = (xl9..., xt,..., xd) and R^R/ty. Then

^Λl)-^(Rj) = ̂ J(R)-^(Λ) = 0. Hence δ(Ri)^2 by Proposition 3.1, (2).

Therefore xίm
2 + qί = m3 + q/. Take any element y of m3. Then for any j^l,

y = xίyl-] ----- l-^:d>vd = x 1 z 1 H ----- hxdzd for some yί9 zi such that yί9 z yem 2. As in

the proof of Theorem 3.3, we have yj — zy e q, and jy is in (m2, q) for all j. Hence

j7 = M + vv with w e q 2 , vveqm 2 . Since x1 ?...,xd are analytically independent, we

have w e q 2 n m 3 = q2m, and this implies that yeqm 2 , i.e., δ(R)^2. (4) and (5)

follow from (1), (2), (3) and [9]. Q. E. D.

EXAMPLE 3.5. (1) Put H = (e, e+l,..., 2e-iy, e^2 and

Then ŝ(^) = ̂ ) = ̂ (̂ ) = 0, g(K) = g(R) = e-l, r(R) = e-l and

(in particular, mπ = mπ for all
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(2) Put 7f = <e, έ?+l,...,* + r, £? + r + 2,...,2e-l>, O^r^e-3 and K =
Then gs(R) = gs(R) = gΔ(R)=l, g(R) = g(R) = e, c(H) = e + r + 2, R is not

Gorenstein and 5(/?) = <5(Λ) = 2 (hence G(R) and G(K) are Cohen-Macaulay).
(3) Put 7f = <e, e+l,...,2e-r-l>, lgrg(ί?-l)/2 and Λ = fc[7f]. Then

^s(R) = ̂ s(R) = ̂ (R) = r, 0(R) = 0(70 = e_+r-l, φR(t)=l+(e-r-\)t + rt2,c(H) =
2e and 5(70 = δ(R) = 2 (hence G(β) and G(R) are Cohen-Macaulay). For example,
if R = /c[ί5, ί6, f I, then gs(R) = gs(R) = gA(R) = 2.

(4) Put H = <β, e+1,. ..,2e-3, 3e-l>, e^5 and K = fc[[77]|. Then gs(R) =

2, 0/70 = 0X70=1, 0(70 = *+ 1, 0(70 = *, %(0=l+(*-2)f + f*, c(7/) = 2<?, 5(70 =
2, δ(Λ)=l, R is not Gorenstein, and G(R) and G(7?) are Cohen-Macaulay.

(5) Put H = <έ?,έ?+l,έ<έ?- !)-!>, ^^4 and Λ = k[HJ. Then ^5(Λ) =
^Λ) = β(e - 3)/2, ^(Λ) = g(R) = (e- 2)(e + l)/2, gΔ(R) = e-3, c(H) = β(e - 2), S(Λ) =

e-2, δ(R) = e-l, φJj(ί)=l+2ί + ί3 + ί4H- + ίβ~1 (hence G(K) is not /ί-positive),
R is not Gorenstein and G(R) is not Cohen-Macaulay. For example, if R =

klt\ i\ ί"I, then gs(R) = gs(R) = 2, gA(R)=l, r(K) = 2, δ(Λ) = 2, 5(Λ) = 3,
G(R) is Cohen-Macaulay and G(Λ) is not Cohen-Macaulay.

(6) Assume that e(R) = 4. Then g£R) = Q, 1, 2 or 3. G(R) is not Cohen-
Macaulay if and only if gs(R) = 2, and in this case we have r(R) = 2. For

example, gs(klt\ ί5, ί6, ίnl) = 0, gs(fcϊί4, ί5, ί7I)=l, 0s(/e[f4, ί5, ίnl) = 2 and

(7) (cf. [6], Example 6.4). Put Λ = k[X, y] and / = (̂ ί4, X3Y, XY 3, Y4).

Then ^(/) = 0, />«(/)=-!, ^/)=1, ^(/) = 2, n(/)=l, 5(7) = 2 and F(G(7), ί) =
(Il + 3ί + 3ί2-ί3)/(l-02 Hence pα(7) is not necessarily non-negative, #s(7)^
gΔ(I) does not hold in general, and <5(7) = 2 does not imply that G(/) is Cohen-

Macaulay.

THEOREM 3.6. Assume that R is Gorenstein. Then:
(1) gs(R) = QogA(R) = Q<z>R is a regular local ring or a quadric hyper-

surface.

(2) gAR) = l<*gΔ(R)=logJ(R) = gΔ(R)*l<»ng(G(R)) = 2. In this case,
G(R) is Gorenstein.

(3) gs(R) = 2 never occurs.
(4) gs(R) = 3ogΔ(R) = 2oφR(t)=l+(v-d)t + t2 + t3. In this case, G(R)

is Cohen-Macaulay, reg(G(#)) = 3, <?2(£) = 4, e3(R)=l, ei(R) = Q for all i^4,

and G(R) is Gorenstein if and only if R is a quartic hypersurface.

(5)

PROOF. (1) follows from Theorem 3.4, (2). (2) follows from Theorem 3.4,

(3), (4) and from the fact that G(R) is Gorenstein if R is Gorenstein and g Δ(R) = 1

(cf. [7]). (3) If 0/70 = 2, then we have 2 = gs(R)2:gΔ(R)^2, i.e., gs(R) = gΔ(R) = 2.

This contradicts (2). (4) If gs(R) = 3, then 2 ̂  gΛ(R) < gs(R) = 3. Hence gA(R) = 2.
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Conversely, if gΔ(R) = 2, then G(R) is Cohen-Macaulay by [8], and we have
reg (G(#)) = gΔ(R) +1 = 3. Hence φR(t) = 1 + 0 - d)t + 12 4- ί3 and we get gs(R) = 3.

(5) Since 3 ̂  gΔ(R) < gs(R) = 4, we have gΔ(R) = 3. Q. E. D.

EXAMPLE 3.7. (1) Put# = <e, e+\,...,2e-2>, e^2 and R = klH\. Then
JR is Gorenstein and gs(R) = gs(R) = gΔ(R)=l.

(2) Put H = <2β, 2a + l,..., 3α-l>, α = 2 and Λ = Jk[H]. Then G(R) is
Gorenstein, reg(G(K)) = 3, φR(t)=i+(a-l)t + (a-l)t2 + t3, gs(R) = gs(R) = a + l,

gA(R) = a, g(R) = g(R) = 3a and δ(R) = δ(R) = 3. For example, if # = /c[f6, ί7,

ί8], then g£R) = gJ(K) = 4 and ^(Λ) = 3.
(3) Put H = <2α + l, 2α + 2,..., 3α, 4fl + l>, fl^2 and R = klH]. Then #

is Gorenstein, φR(t)=l + at + (a-l)t2 + t\ g£R) = gs(R) = a + ί 9 gA(R) = a, G(R)

is Cohen-Macaulay and is not Gorenstein and δ(R) = δ(R) = 3. For example, if

R = klLt5, ί6, r9!, then R is Gorenstein and gs(R) = g£R) = 3, gΔ(R) = 2.

(4) Put JR = /c[ί6, ί7, ί15]. Then R is Gorenstein and gs(R) = l, gA(R) = 3.
Hence the converse of Theorem 3.6, (5) does not hold.

(5) Let R be a Gorenstein local ring with e(R) = 5. Then gs(R) = l9 3 or 6.
G(K) is always Cohen-Macaulay, and G(R) is Gorenstein if and only if gs(R) = ί

or 6. For example, <?s(/φ5, ί6, ί7, ί8I) = l, ^s(/cp5, ί6, ί9J) = 3 and ^s(fcϊ/5, ί6])

= 6.

PROPOSITION 3.8. Assume that dim (#) = 2. TTzen g(I) = pa(Γ) + ̂ s(/) = /?fl(/)

^ —9S(I)> an& the following conditions are equivalent:

(1) Λ(/) = 0.
(2) n(/)<0.

(3) ^(/) = Pfl(/) (r«p. ̂ (/) = pa(l) = 0).

PROOF. The first assertion and (3)=>(1) are clear. (1)=>(2) : By Theorem 3.3,

we have n(/) + 2 = reg (G(/))^ 1. (2)=>(3) follows from [6], Theorem 1.3, (7).

Q.E.D.

COROLLARY 3.9. Assume that dim (K) = 2. Then:
(1) gj(R) = Qog(K) = pa(R) = Qog(R) = Q and G(R) is Cohen-Macaulay.

(2) gs(R) = log(R) =1 and pa(R) = 0.
(3) Ifg(R) = Q9thenpa(R)^-2.
(4) IfR is Gorenstein, then gs(R) = 3 if and only ifg(R) = 4 and pa(R)=l.

PROOF. (1) If g(R) = 0 and G(jR) is Cohen-Macaulay, then 0 = 0(#) =

pa(R)^Q, which implies that pa(R) = Q. The other assertions are clear.

(2) If g£R)=l, then φR(t)=l+(Ό-d)t + t2 by Theorem 3.4, (4). Hence
g(R) = e2(R) = 1 and pa(R) = g(R) - gs(R) = 0. The converse is clear.

(3) We have pa(R) ^ g(R) = 0 by Proposition 3.8. If p£R) = - 1, then gs(R)

= g(R)-pa(R)=l. Hence G(R) is Cohen-Macaulay by Theorem 3.4, (4).
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Therefore pa(R)^.09 which is a contradiction.

(4) If gs(R) = 3, then g(R) = e2(R) = 4 by Theorem 3.6, (4). Hence pa(R) =
g(R) - gs(R) = 1 . The converse is clear. Q. E. D.

Next, we consider the normal genera. Henceforth we assume that R is

analytically unramified. Recall that gΔ(I) = e(l) + ( d - 1K(#//) - A///1) and

We have gA(r)*gA(I)^Q and gjjl)^gjl)^0. We
put δ(I) = min {n \ there exists a minimal reduction J of I such that JIm = Im+1 for
all m^n} (cf. [6]). The following lemma is analogous to Lemma 3.2. We omit

the proof.

LEMMA 3.10. Assume that k is an infinite field and 1 = 1. Let J be a

minimal reduction of I. Then gA(I) = £(I2/IJ), and gΔ(I) = Q if and only ifgA(I) =

0 and Ί* = I2. (In particular, ^(/) = 0 ifδ(I)=l.)

PROPOSITION 3.11 (cf. [6], Theorem 5.4). Assume that dim (#) = !. Then:

(1) ΰ(R/Pί) = e(I)n-ΰ(R/R) + ΰ(InRIΓί) for all n^O, and
_

(2) δ(I) = QoR is a DVR,

THEOREM 3.12. Assume that dim (R) = 2. Then g(I) = pa(I) + gs(I)^pa(I) =

gs(I), and the following conditions are equivalent:
(1)

(2)
(3)
(4) n(/)<0.

(5)

PROOF. The assertions (2)<s>(3)=>(5)=>(!) and (2)=>(4) follow from [6],

Theorem 4.4 and Theorem 6.1. (4)=>(5) follows from [6], Theorem 1.3, (7).

(1) =>(2) : We may assume that / = /. If gs(I) = 0, then gs(I) = gs(I) = 0 and we get

eί(I) = eί(I)9 0(/) = 0 (cf. Theorem 3.3). Hence for all n»0, we have Q^ΰ(R/In)

- #(R/T^) = g(I) - g(I) = - g(I) ^ 0 (cf. [6], Theorem 3. 1). Therefore g(I) = 0.

Q.E.D.

COROLLARY 3.13. Assume that R is normal and dim(β) = 2. Then the

following conditions are equivalent:

(1) R is pseudo-rational (see [6] for the definition).
(2) #(/) = 0/0r all m-primary ideal I or R.
(3) gs(I) = Qfor all m primary ideal I or R.

(4) <7j(/) = 0 for all m-primary ideal I of R.

(5) ll — l2 for all m-primary ideal I of R.
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(6) 0S(/) = 0 and Proj(Λ(/)) is normal for all integrally closed m-primary
ideal I of R.

(7) <7S(/) = 0 and R(I) is normal for all integrally closed m-primary ideal
lofR.

PROOF. The equivalence of (1), (2), (3), (7) and the assertions (2)=>(4)o(5)

follow from Theorem 3.12, Lemma 3.10 and [6]. (5)=>(6): We have #s(/) = 0

by Theorem 3.3 and Lemma 3.10. By the induction, /2" is integrally closed for

all n^l. Hence /" is integrally closed for all n»0. (6)=>(2): Since 7" = /w for

all n » 0, we get g(I) = g(I) = 0. Q. E. D.

EXAMPLE 3.14. Assume that R is Gorenstein, dim (R) = 2, gs(R)=l and e(R)
^3. Then gs(R) = g(R) = g(R) = gA(R) = l. In fact, since e(R)^3 and R is

Gorenstein, we have 1 = gs(R) ^ gs(R) ^ 1. Hence gs(R) = l and we get gΔ(R) =
g(R)=l by Theorem 3.6, (2) and Corollary 3.9, (2).

REMARK. After completing this work, the author learned that C. Huneke
[2] had obtained results similar to our Theorem 3.3 and Theorem 3.12 inde-
pendently.
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