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Introduction

We shall be concerned with Lie algebras which are not necessarily finite-

dimensional over an arbitrary field f unless otherwise specified, and mostly follow

[4] for the use of notations and terminology. The classes Min-<]α (α is an

ordinal), Min-si, Min-asc, Min-ser, Min and 5 are related by the series of inclusions

Min-<ι > Min-<ι2 > Min-o3 >•••> Min-si > Min-<ιω > Min-<αω+1

> > Min-asc > Min-ser > Min > 5>

where Min-ser denotes the class of Lie algebras satisfying the minimal condition

for serial subalgebras. Concerning these inclusions, Amayo and Stewart have

proved that if ϊ is of characteristic zero, then Min-<ι>Min-<]2 = Min-si (cf. [4,

Theorem 8.1.4]), and that i f ! is of characteristic p>0, then Min-<ι2>Min-<ι3 =

Min-si (cf. [4, Proposition 8.1.5 and the example in §8.3]). Furthermore, Stewart

has proved that Min-si = Min-asc ([13, Theorem]), and that if ! is of characteristic

zero, then L g f l M i n = g (cf. [4, Corollary 10.2.2]). The first purpose of this

paper is to investigate the relationship among the classes Min-si, Min-ser and

Min. The second one is to present sufficient conditions for Lie algebras satisfying

minimal conditions to be finite-dimensional.

In Section 1 we shall first prove that if ϊ is of characteristic zero, then Lg Π

Min-<ι2 = Lg Π Min-ser (Corollary 1.6), and secondly prove that Lj? n Min-ser >

L5 n Min and so Min-ser > Min (Theorem 1.7). In consequence of these results,

we shall conclude that if ϊ is of characteristic zero, then Lg n Min-<ι>L(5 Π

Min-<ι 2 = Lg fl Min-ser > L^ n Min = g.

In Section 2 we shall prove that {j(asc), E(asc)}3 n Min-si = {j(ser), E}3* n

Min-ser = 5, where 3 (resp. 3*) denotes the class of Lie algebras having no

infinite-dimensional, simple (resp. absolutely simple) factors of ideals (Theorem

2.5). Especially, if I is of characteristic zero, then L(ser)g<3 and so L(ser)g n

Min-<ι2 = 5 (Corollary 2.6).

In Section 3 we shall present classes of generalized soluble Lie algebras for

which minimal conditions imply finiteness of their dimensions. For example,

we shall prove that if £ is an {i, q}-closed class of Lie algebras such that every
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simple (resp. absolutely simple) X-algebra is abelian, then {j(asc), ε(asc)}X Π

Min-si < E51 Π S (resp. {j(ser), E}£ n Min-ser < E<tt n 5) (Theorem 3.2). More-

over, we shall prove that if £ is a class of Lie algebras L such that for any minimal

ideal / of L, / e 21 and L/I e £, then {ι(asc), E(asc)}X n Min-si < E$Ϊ n g and {j(ser),

E}£ n Min-ser < ε2l n 5 (Theorem 3.6).

1.

In this section we shall mainly investigate minimal conditions for locally
finite Lie algebras.

Let L be a Lie algebra over any field f. L is said to be simple if L has no
non-trivial ideals. We use ® to denote the class of simple Lie algebras. In [2,
Theorem 3.8] Amayo has proved that if Le ® then L has no non-trivial ascendant
subalgebras (see also Levic [10]). As in group theory we say that L is absolutely
simple if L has no non-trivial serial subalgebras. We use 6* to denote the class
of absolutely simple Lie algebras. Then clearly ®* < ®. It is still open whether

this inequality is strict. However, it can be easily deduced from the following

lemma that 6* = S provided Min-ser = Min-si.

LEMMA 1.1. If Le Min-ser, then every serial subalgebra of L is a subideal
of L. In particular, ® n Min-ser = ®*.

PROOF. Let Le Min-ser and //serL. There are a totally ordered set Σ
and a series [Λσ, Vσ: σeΣ} from H to L of type Σ. We may assume that Vσ<Λσ

for all σeΣ. Then Aσ < Λτ iff σ < τ. Since Aσ ser L for all σ 6 Σ, Σ must be well-
ordered. It follows that H asc L. Owing to [13, Theorem], we have H si L.

By making use of [3, Lemma 4.6 and Theorem 4.7], [4, Theorem 8.2.3] and

Lemma 1.1, we have the following

LEMMA 1.2. Let Le Min-ser (resp. Min-si). Then every chief factor of L

is either absolutely simple (resp. simple) or finite-dimensional. Furthermore,
L has an ascending chief series whose factors are either absolutely simple

(resp. simple) or finite-dimensional.

COROLLARY 1.3. Over any field f, Min-ser <έ(<])(®* U S).

It seems to be a very hard problem whether Min-si implies Min-ser. But by
restricting our attention to locally finite Lie algebras satisfying Min-si, we can

present an interesting condition for those to satisfy Min-ser in the following
theorem:

THEOREM 1.4. Let £ be an {i, Q}-closed class of Lie algebras over any
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field f such that £ Π Lg Π & < 6*. // Le BE Π Lgί Π Min-si, then every serial sub-
algebra of L is a subideal of L. In particular, £ Π Lg Π Min-si < Min-ser.

PROOF. Let Le £ n L^r Π Min-si and HserL. Then by [4, Proposition

13.2.4] we see that (# + /)// ser L/I for any ideal / of L. Let K be a subideal of
L minimal with respect to H<K. We shall prove that H = K. Without loss
of generality, we may assume that K = L and //L = 0, where HL denotes the largest
ideal of L contained in H. Let F be a subideal of L minimal with respect to F
of finite codimension in L. By [4, Lemma 8.2.1] we have F<3 L. Then (H 4- F)/F
ser L/F. It follows that H + Fser L. Since /f + F is of finite codimension in L,
we can easily see that H + F si L. By the assumption of L we have L = H + F.
Let Z^ζ^F). In order to prove that H = L, it is sufficient to show that Z = F.

In fact, if Z = F then Fe 21 n Min-si = 21 n <5 Hence by the minimality of F we
have F = 0, so that L = H + F = H.

Now we assume that Z<F. Then L/Z has a minimal ideal M/Z contained

in F/Z, where Z<M<F and MoL. By Lemma 1.2 M / Z e S u g . First we
show that M/Ze6\g. Suppose, to the contrary, that M/Z eg. Under

the adjoint action of F we regard M as an F-module. Then M/Z is a finite-
dimensional F-module. It follows that F/CF(M/Z) e g. By the minimality of

F we have F = CF(M/Z). By [4, Lemma 8.1.3] M < C2(F) < p(L) e g. It follows
from [4, Corollary 1.4.3] that F/CF(M)e'$. By the minimality of F we have
F = CF(M), so that M<Z. This is a contradiction. Therefore we have M/Ze

S\g. It follows that M/Z e X n Lg n S < S*.
Next we show that H n M = 0. It is clear that [H n Z, L] = [# n Z, #]^

H Π Z. Hence ff n Z<ιL and so H n Z = 0 since HL = 0. Since H Π M ser M e Lg,

by [4, Proposition 13.2.4] we have ((H n M) + Z)/Z ser M/Z. It follows that
either H n M<Z or M = (H n M) + Z. In the first case H n M = H n Z = 0. Next

we consider the second case. Then we have H n M^M/ZeS*\5 Clearly
/ί Π M ser L. Let R be the intersection of all the ideals / of H n M such that
(H n M)// is locally nilpotent. Owing to [14, Theorem 5], we have R<zL. Since

//ΠMeS*\g, by using [4, Lemma 8.1.3] we have R = H f t M . Therefore

H Π M = 0 since HL = Q.
Now since Z<]# + M and H ser H + M e Lg, we have # + Z ser H + M.

There exists a series {Λσ,Vσ:σeΣ} from H + Z to H + M. Then {Λσ n M,

Fσ n M: σeΣ} is a series from Z to M. Since M/Z^O, we can find a σeΣ such

that F f f Π M < y l f f n M . By [4, Proposition 13.2.4] (7σ n M)/Z and (Λ σnM)/Z

are serial subalgebras of M/Z. It follows that Vσ n M = Z and Λσ n M = M. Then

by the modular law, we have H + Z=Vσ<ιΛσ = H + M. Hence [H, M] £ (H -f Z) Π
M = (H n M) + Z = Z. Regard M as an L-module under the adjoint action of L.
Then M/Z is an L-module and H<CL(M/Z)<αL. By the assumption of L we

have CL(M/Z) = L. Hence M/Ze S* n 91 = ̂ . This is the final contradiction.
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Therefore we have Z = F.

COROLLARY 1.5. Over any field I, Lg fl ® = L$ Π ©* // and only if Lg n

Min-si = Lg Π Min-ser.

PROOF. If Lg Π © = L5 n 6*, then since the class C of all Lie algebras is

an {i, Q}-closed class satisfying OΠLgnS<S*, by Theorem 1.4 we have

Lg n Min-si = Lg n Min-ser. Conversely, if L^ Π Min-si = L^ Π Min-ser, then by
Lemma 1.1 we have

Lg n <5 = Lg n Min-si n © = Lg n Min-ser n 6 = Lg n 6*.

It is not known whether over a field of positive characteristic Lg Π 6 coincides
with Lg n ©*. However, Stewart has proved in [14, Theorem 8] that Lg n ® =
Lg n 6* over any field of characteristic zero. By making use of this result,
[4, Theorem 8.1.4] and Corollary 1.5, we obtain

COROLLARY 1.6. Over any field I of characteristic zero,

L5 n Min-<ι2 = Lg n Min-ser.

Concerning the other minimal conditions for locally finite Lie algebras, we

can prove the following

THEOREM 1.7. Over any field ϊ,
(1) Lg n Min-o >Lg n Min-<]2;

(2) Lg Π Min-ser >L5 n Min. In particular, Min-ser >Min.

PROOF. (1) We here consider a well-known example. Let A be a vector

space over I with basis {α0, α1?...} and think of A as an abelian Lie algebra.
Let x be the downward shift on A, that is, x be the derivation of A defined by
α0x = 0 and α ί+1x = αί (ΐ>0). Form the split extension L = ,4 + <x> of A by <x>.

Then it is well known (cf. [4, p. 119]) that CΠ+1(L) = <00, , O (n<ω), ζω(L) = A
and Cω + 1(L) = L. Hence Le3<M5. Moreover, {/: 7oL} = {Cα(L): α<ω+l}
and so Le Min-o. But L ί Min-<ι2 since 4 e 21 \ g.

(2) For each integer π>2, set 5M = sI(n, !). We regard each matrix in Sn

as a matrix in 5Π+1 with the (n-hl)-th row and column consisting of 0, so that
Sn<Sn+ί (n>2). Form the direct limit L = dir lim Sπ, which may be considered
as the Lie algebra L over ϊ satisfying L=\jn^2Sn. Then it has been shown in
[15, Example 3] that LeLg n 6. We can further show that Le 6*\Min. In

fact, let H ser L and H Φ 0. There is an integer m > 2 such that H n Sn φ 0 for any

integer n>m. To each integer n>m, there corresponds an integer k(n)>n
such that if ί is of characteristic p>Q then k(n) is not devided by p. Since H n
Sk(/j) ser Sk(n) E 6 n S, we have Sn<Sk(n) = H n Sk(n)<H (n>m). It follows that
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H = L. Hence we have Le ®*. For each integer i>2, let At be the matrix in Sf

with the (/, 0-component 1, the (1, l)-component — 1 and all the other components
0. Then it is easy to see that <^: />2> is an infinite-dimensional abelian sub-
algebra of L. Thus we have L £ Min.

REMARK. Stewart has proved that over any field ϊ of characteristic zero,
Lft n Min = 5 (cf. [4, Corollary 10.2.2]). By making use of this result, Corollary

1.6 and Theorem 1.7, we can conclude that over any field I of characteristic zero,

Lft n Min-o > Lft Π Min-<ι2 = Lft n Min-si = Lft n Min-asc

= Lft Π Min-ser > Lft n Min = ft.

2.

As a direct consequence of Theorem 1.7 (2), we see that there exists an
infinite-dimensional, locally finite Lie algebra satisfying the minimal condition

for serial subalgebras. So it seems to be interesting to consider Lie algebras for
which minimal conditions imply finiteness of their dimensions. In this section
we shall present relatively large classes £ (resp. 9)) of Lie algebras such that

X Π Min-si = ft (resp. φ n Min-ser = ft).

We begin with

LEMMA 2.1. έ(<ι2)ft n Min-o2 = E(si)ft n Min-si = ft.

PROOF. Let A be either <α2 or si. Assume that there exists an infinite-
dimensional Lie algebra L belonging to the class έ(J)ft n Min-A. Then there
are an infinite ordinal σ and a strictly ascending ft-series {Lα: α<σ} of L such that
LΛAL for any α<σ. Set pg(L) = <//: H e f t and //<ιL>. Since L n e f t («<ω),
by using [4, Theorem 9.3.2(b)] we have Lω = \jn<ωLn<ρ%(L)e ft. It follows
that Ln = Lω for some n<ω. This is a contradiction.

REMARK. It is still an open problem whether the class Min coincides with

the class ft. However, in order to give the affirmative answer to this problem,

it is sufficient to prove that 6* n Min < ft. In fact, if it is proved, then by using

Corollary 1.3 and Lemma 2.1 we have

Min < E(<ι)((<3* Π Min) U ft) n Min < έ(<])ft n Min = ft.

Let A be one of the relations <ια (α is an ordinal), si, asc and ser. Let X be

a class of Lie algebras. We use E(Δ)£ to denote the class of Lie algebras L having
an ϊ-series {Aσ, Vσ: σeΣ} such that ΛσΔL and VσΔL for all σeΣ. We use

j(J)ϊ to denote the class of Lie algebras L such that L = <H: H e£ and HAL).
Moreover, we use L(A)X to denote the class of Lie algebras L such that for any
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finite subset X of L there is an ΐ-subalgebra H of L satisfying X^HAL.
Evidently L(zl)ϊ<j(/d)3E. It is not hard to see that ε(si), ε(asc), E(ser) = E, j(si),

j(asc), j(ser), L(SΪ), L(asc) and L(ser) are closure operations. In [4, p. 258] j(si)
and j(asc) are respectively denoted by N and N.

LEMMA 2.2. (1) // £ Π Min-si < g, then E(asc)X n Min-si = έ(si)£ n Min-si <
g and j(asc)£ n Min-si = j(si)ϊ n Min-si <g.

(2) // £ n Min-ser < $, then EΪ n Min-ser = έ(si)X n Min-ser < g and j(ser)ΐ
Π Min-ser = j(si)£ n Min-ser <g.

PROOF. (1) Let Le E(asc)£ n Min-si. By [13, Theorem] L has an ^-series
{Λσ, Vσ: σeΣ} consisting of subideals. We may assume that Vσ<Λσ for all

σeΓ. Since Λσ<Λτ iff σ<τ, Σ must be a well-ordered set. Hence Leέ(si) £.
Using Lemma 2.1 we have

ε(asc)ΐ n Min-si = έ(si) £ n Min-si

= έ(si)(ϊ n Min-si) n Min-si < έ(si)g n Min-si = g.

Owing to [4, Theorem 9.3.2 (b)], we have j(si)5 n Min-si = 5- Therefore by
[13, Theorem] we obtain

j(asc)3E n Min-si = j(si)3E n Min-si

= j(si)(3E n Min-si) Π Min-si < J(si)g n Min-si = 5

(2) By using Lemma 1.1, as in the proof of (1), we have

E£ n Min-ser = έ(si)£ n Min-ser

= έ(si)(£ n Min-ser) n Min-ser < έ(si)3r Π Min-si = g,

j(ser)ΐ n Min-ser = j(si)£ n Min-ser

= j(si)(ϊ n Min-ser) n Min-ser < J(si)5 Π Min-si = g.

Let £ be a class of Lie algebras and (A, B) be one of the following pairs of

closure operations:

(j(si), έ(si)), (j(asc), E(asc)), (j(ser), E).

We recall ([4, p. 20]) that {A, B} is defined to be the closure operation such that

{A, B}X is the smallest class containing •£ which is A-closed and B-closed. For
any ordinal α, we inductively define the class (AB)ΛΪ as follows: (AB)O£ = Ϊ;

(AB)α+13E = AB((AB)αϊ) for each ordinal α; (AB)AΪ= Wα < λ(AB)αΐ for each limit
ordinal λ. Furthermore, we denote by (AB)*£ the class of Lie algebras L such that
Le(AB)α£ for some ordinal α. Then it is not hard to verify that (AB)*Ϊ is an
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{A, B}-closed class such that 3£<(AB)*ϊ<{A, B}3£. Thus we have {A, B}Ϊ =

*£.

PROPOSITION 2.3. (1) // 3E n Min-si < g, then

{j(asc), E(asc)}£ n Min-si = {j(si), έ(si)}£ n Min-si < g.

(2) // X Π Min-ser < ft, then

{j(ser), E}£ n Min-ser = {j(si), έ(si)}£ n Min-ser < g.

PROOF. We here prove (1) only, since (2) can be proved similarly. Let α

be an ordinal and assume that

(j(si)έ(si))α£ n Min-si = (j(asc)E(asc))α£ n Min-si < g.

Then by using Lemma 2.2 (1), we have

(j(si)έ(si))α+1£ n Min-si < (j(asc)ε(asc))α+1* n Min-si

= (j(asc)E(asc))α+13E n 5 = j(si)E((j(asc)E(asc))αΐ) n $

= j(si)E((j(asc)E(asc))αϊ n g) n g < (j(si)έ(si))α+1* n g.

It follows that (j(si)έ(si))α+1ϊ n Min-si = (j(asc)E(asc))α+13C n Min-si <g. There-

fore by transfinite induction on α we can easily see that for any ordinal α,

(j(si)E(si))α£ n Min-si = (j(asc)E(asc))α£ n Min-si < $.

Thus {j(si), έ(si)}3E n Min-si = {j(asc), E(asc)}3E n Min-si < 5.

Before showing the main theorem of this section, we introduce and investigate
new classes 3 and 3*. We define the class 3 (resp. 3*) to be the class of Lie

algebras having no infinite-dimensional, simple (resp. absolutely simple) factors

of ideals. Equivalently, Le 3 (resp. 3*) iff H/Xeg whenever //, K^L,
K<Hanά H/Ke& (resp. 6*). Both 3 and 3* are Q-closed. Obviously 3 <3*.
By the proof of Theorem 1.7 (2) we have Lg$3*. However, we have

PROPOSITION 2.4. (1) Over any field !, L(asc)g<3 and L(ser)g<3*.
(2) Over any field f of characteristic zero, L(ser)5<3.

PROOF. (1) It is clear that {s, q}L(asc)g = L(asc)5 and SL(ser)g = L(ser)5
By using [4, Proposition 13.2.4], we have QL(ser)5 = L(ser)g. Let Le L(asc)5 n S

and O^xeL. There exists an ascendant g-subalgebra F of L containing x.

Since O^FascLeS, by [2, Theorem 3.8] we have L = Fe5 Hence we have
L(asc)gn®<5. Thus L(asc)5<3 since {s, Q}L(asc)5 = L(asc)$. We can

similarly prove that L(ser)5<3*.
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(2) Assume that ϊ is of characteristic zero. Then by (1) and [14,

Theorems] we have L(ser)g Π S<3* n ®*<g. Therefore L(ser)g<3 since
{s, Q}L(ser)g = L(ser)g.

We now have the main theorem of this section, in which we present a relatively

large class of Lie algebras L such that Le Min-si (resp. Min-ser) implies Le g.

THEOREM 2.5. Over any field f,

(1) {j(asc), ε(asc)}3 n Min-si = 5;
(2) {j(ser), E}3* n Min-ser = g.

PROOF. Using Lemmas 1.2 and 2.1, we have

(3 n Min-si) U (3* n Min-ser) £ έ(<])g n Min-si = g.

Therefore the results follow from Proposition 2.3.

By making use of Proposition 2.4, Theorem 2.5 and [4, Theorem 8.1.4],

we have

COROLLARY 2.6. (1) Over any field I,

{j(asc), E(asc)}g n Min-si = {j(ser), £}g n Min-ser = g.

(2) Over any field I of characteristic zero,

L(ser)g n Min-<ι2 = g.

REMARK. Over any field f, L(asc)g Π Min-<ι > g. In fact, let L be the

Lie algebra constructed in the proof of Theorem 1.7 (1). Then Le3 Π Min-<α <
L(asc)5 n Min-<3 but L £ g.

3.

Let £ be a class of Lie algebras. X is said to be a class of generalized soluble
Lie algebras if £ n 5<E2l< £. In this section we shall study generalized soluble

Lie algebras satisfying minimal conditions, and present relatively large classes
•£ (resp. ^)) of generalized soluble Lie algebras such that ϊ n Min-si = ε3ί n g

(resp. ?) Π Min-ser = E3ί n g).

PROPOSITION 3.1. (1) // ϊ n Min-si < ε9l < £, then

{j(asc), E(asc)}3E n Min-si = E9I n g.

(2)' // ϊ n Min-ser < E91 < 3E, then

{j(ser), E}Ϊ n Min-ser = E$I n g.
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PROOF. We here prove (1) only, since (2) can be proved similarly. Clearly

we have X n Min-si <E$Ϊ Π Min-si <5 It follows from Proposition 2.3 (1) that

E$l n 5 < {J(asc), E(asc)}£ n Min-si = {j(si), έ(si)}£ n Min-si < 5.

Therefore in order to obtain the result, it suffices to show that

{j(si), E(si)}* n g < E«.

Let α be an ordinal and let <?)=(j(si)E(si))α£. Suppose that 9) n 5<ε9ί. Then
έ(si)?) n 5 = ε(9) n 5)<E$l. Hence by using [4, Corollary 2.2.11], we have

(j(si)E(si))α+1* n 3r = J(si)(έ(si)9)) n S < j(si)E«l n 5 < ε9ί.

Therefore by transfinite induction on α we can easily see that for any ordinal α,

(j(si)E(si))"* n 8f < E9ί.

It follows that (j(si), E(si)}X n δ = (j(si)E(si))*3E n g<E^ί.

We now have the first main result of this section.

THEOREM 3.2. Let X be an {i, Q}-closed class of Lie algebras over any

field I. Then:

(1) //Sn®<£gι<£ϊ, ffcen

{j(asc), E(asc)}3E n Min-si = ε9X n g.

(2) //InS'^S^ae, then

{j(ser), E}Ϊ n Min-ser = E« n g.

PROOF. We here prove (1) only, since (2) can be proved similarly. It is

easy to see that E$ϊ<E(5ι<E£. Let LeX n S Then L has a descending series

{Li:0<ί<n} such that Lί+ί is a maximal ideal of Lf (0<ί</ι). Since X is

{i, Q}-closed, L i /L ί + 1 eϊn®^Sι It follows that LεEgf^EΏ. Hence we
have ϊ n S < EΦί. Clearly 3E < 3. Using Theorem 2.5 (1), we have

61 Π Min-si = έϊ n S = E(Ϊ n S) < E2t < E*.

Therefore by Proposition 3.1 (1)

ESI n g < {J(asc), E(asc)}ϊ n Min-si < (j(asc), E(asc)}έϊ n Min-si = ES21 n

This completes the proof.

Owing to [4, Corollaries 8.5.5 and 9.3.6], we have

ELE9Ϊ n Min-si = j(si)ε2ί n Min-si = έίϊ n Min-asc = E$I n g.
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On the other hand, in [7, Corollary 4.4] Ikeda has proved that

έ(<ι)L91 n Min-<ι2 = E?I n ft.

By [4, Lemma 8.5.4] LE9X n S <ftι Therefore, as a special case of Theorem 3.2,

we further have the following result which generalizes the above results.

COROLLARY 3.3. Over any field ϊ,

{j(asc), EJLE^ί n Min-si = {ι(asc), E(asc)}2ί n Min-si

= {j(ser), E}21 n Min-ser = εST n ft.

REMARK. By [6, Corollary 2.3] we have LE$t<E(<ι)2l. Hence {j(asc),
E(asc)}LE$l = {j(asc), E(asc)}91 and {j(ser), E}LE<H={j(ser), έ}2l.

Next we consider another type of relatively large classes of generalized
soluble Lie algebras.

Let L be a Lie algebra. As in group theory, L is said to be residually corn-

mutable if either a £ [a, b]L or b £ [a, b]L whenever a, b e L\0. We use 9ϊc to

denote the class of residually commutable Lie algebras. It has been proved
in [12, Theorems 4.5 and 4.8] that E(<])2ί<9!c and 91c n Min = E$ί n g. Hence
9k is a relatively large class of generalized soluble Lie algebras. In the recent

paper [6] we have introduced and investigated the class 9l[*}9 which is also

relatively large, of generalized soluble Lie algebras. Le 9t[jf} iff x e L\0 implies
x^([x, L(**]L)(*>, where Lm denotes the intersection of all the terms in the
transfinite derived series of L. Then we have proved in [6, Proposition 4.1 (2)
and Theorem 4.6] that E(<i)M<K{*} and «<%> n Min-o <έ(<ι)^ί.

In [1] L is said to be quasi-artinian if for any descending chain / 1>/ 2>

of ideals of L there exists an integer n>0 such that [/„, L(/|)]<Λ\>! /f. In [9]
we have used qmin-<ι to denote the class of quasi-artinian Lie algebras. Note
that Min-<ι<qmin-<]. Moreover, by using [7, Corollary 2.9], we can easily

prove the following result as in the proof of [11, Theorem 3.7].

LEMMA 3.4. Over any field ϊ, 9tc n qmin-<ι <έ(<ι)2ί.

By making use of Lemma 3.4, [4, Lemma 9.2.1] and [6, Theorem 4.6], we

have

PROPOSITION 3.5. Over any field I,

(1)
(2)

We here define the closure operation M by specifying the M-closed classes as
follows : A class £ of Lie algebras is M-closed iff L/I e X whenever / is a minimal
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ideal of an BE-algebra L. It is not hard to show that both of the union and the
intersection of all the classes of any non-empty collection of M-closed classes
are also M-closed. Therefore M is indeed a closure operation (cf. [4, p. 19]), and
every class 3£ has the largest M-closed subclass, which we denote by £M. Further-

more, we introduce the class 901 of Lie algebras having no non-abelian minimal
ideals. Then by [6, Proposition 4.5] we have 91(

(*)

)<901M , and by modifying the
proof of [6, Proposition 4.5] we can easily see that 9lc<ΪJlM. It follows that

We now have the second main result of this section.

THEOREM 3.6. Over any field f,

(1) {j(asc), E(asc)}9JϊM n Min-si = E<tt n 5
(2) {j(ser), E}W* n Min-ser = E<H n g.

PROOF. Assume that $RM n Min-si $ E$ί. There exists a non-soluble Lie
algebra L belonging to 901M n Min-si. By Lemma 1.2 L has an ascending chief
series {Lα: α<σ} such that Lα + 1/Lαe ® U 5 for any α<σ. By induction on n we
see that L/LneWlM for any n<ω. Since Ln+ί/Ln is a minimal ideal of L/LΠ, we
have

so that LMeE$l n 5 for any n<ω. Hence ω<σ since L^ E$I. By Lemma 2.1
we have

LωEE(<])g Π Min-si = g.

It follows that Ln = Lω for some n<ω. This is a contradiction. Hence we have
901M n Min-si <E$l<90lM. Therefore the results are immediately deduced from
Proposition 3.1.

REMARK. By the above theorem we see that the class 90ΪM is a class of gener-
alized soluble Lie algebras, and that the classes {ι(asc), E(asc)}90ΐM and {j(ser),
E}901M, which seem to be considerably large, are also classes of generalized soluble
Lie algebras. On the other hand, the class 901 is not a class of generalized soluble

Lie algebras. In fact, let S be a 3-dimensional simple Lie algebra over a field I

with basis {x, y, z} such that

[x, j;] = z, [>, z] = x, [z, x] = y.

Let F be the underlying vector space S and regard V as an abelian Lie algebra.

By making V into an S-module under the adjoint action of S, we form the split
extension L= V 4- S of Fby S. Then by [5, Proposition 12] every proper ideal of

L is contained in V. It follows that Le 9JI n 5 However, L is not soluble.
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