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1. Introduction

We are concerned with the following reaction-diffusion-convection equation:

(1.1) ut = {ux-^K(x-y)u(t, y)dy u}χ + ε/(u), x e / = (-1/2, 1/2), t > 0

subject to the boundary conditions

(1.2) ux - Γ K(x-y)u(t, y)dy u = 0 at x = ± 1/2

and the initial condition

(1.3) w(0, x) = w0(x) ̂  0, xe/ .

This is a proto-type of spatially aggregating population models of biological
individuals in a one dimensional finite habitat /, which was first proposed by
Kawasaki [3] and discussed Nagai and Mimura [5] (ε = 0) and Mimura and
Ohara [4] (ε>0) in the whole interval — oo<x<oo. Here u = u(t, x) represents
the population density at time t and position x. From an ecological point of
view, the convection velocity in the right hand side of (1.1) is specified as

J f l / 2 Γx

K(x - y) - u(y)dy = \ K(x-y) u(y}dy + \ K(x-y) u(y)dy,
I J x J -1/2

where K(x) is an appropriate function satisfying X(x)<0 (resp. >0) for x>0
(resp. x<0). One knows that when

J l / 2 Γx

K(x - y) - u(y}dy + \ K(x-y) u(y)dy > 0 (resp. < 0).
x J -1/2

the individuals move to the right (resp. left) direction. This indicates that the
individuals move toward the region of higher distribution. For the growth term
ε/(w), we assume that ε is a sufficiently small constant, which implies that the
dispersal process is very fast compared with the growth process of the species.
For the ecological interpretation, see Shigesada [7]. The boundary conditions
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(1.2) imply that the species is confined in the habitat /.

When the aggregative process is absent (i.e. X(x) = 0), the problem (1.1),

(1.2) is reduced to a usual reaction-diffusion equation with homogeneous Neumann

boundary conditions, so that the asymptotic behavior of solutions can be

completely analyzed. When f(u) = u(ΐ — u)(u — a) (0<α<l) for instance, there

are two stable equilibrium solutions u=Q, 1 and an unstable one u = a, and if

maxJce/M0(x)<α, u(t, x)->0 as f-> + oo, while if minxel uQ(x)>a, u(t, x)-»l as

f-* + oo. That is, the unstable equilibrium solution u = a plays a role of a

"separator" between u = 0 and w = l. Therefore, in ecological terms, the para-

meter a is regarded as the index of extinction or existence of the species.

We are concerned with the asymptotic behavior of solutions to (1.1), (1.2),

(1.3) in the presence of K(x). In this paper, as the first step to study this problem,

we specify K(x) to be the simplest case

- r (x>0)
(1.4)

where r is a nonnegative constant (the case of more general K(x) will be stated in

the forthcoming paper [2]). When r is small or K(x) is small for any x e R, we

can imagine that the asymptotic behavior of solutions is qualitatively similar

to that in the absense of K(x). However, when r is large, the asymptotic behavior

of the solutions is quite different from that in the absence of K(x). Let us show

two numerical experiments as follows:

i) Suppose that a is close to 1. Then, when r is large, u(t, x)->0 as t-> + oo

even if w0(x) is large (Figure 1-1).

ii) Suppose that a is rather small. Then, when r is large, u(t, x) goes to a

solitary stationary state as ί-> + oo even if uQ(x)<a (Figure 1-2).

Ecologically, i) and ii) are interpreted as follows: When a is close to 1, the strongly

aggregative effect, which corresponds to the case that r is large, never benefits

-0.5 0.0 0.5

Fig. 1-1. Evolutional behavior of the solution u(t, x), where f(u)=
u(l-u)(u-ά), r=28, α=0.8, and e = 3.0.
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-0.5 0.0 0.5

Fig. 1-2. Evolutional behavior of the solution «(/, *) when ^ u0(x)dx~

0.29, where f(u) = u(\-u)(u-a\ r=28, 0=0.35 and e = 3.0.

to the survival of the species, while for the case ii), the species can survive by the
strongly aggregative effect even if its initial population density is rather low.
That is, aggregation has not always advantage to the survival of the species, which

does essentially depend on the nonlinearity of the growth term/(w).
To understand these situations, we study the dependency of the asymptotic

behavior of solutions of (1.1), (1.2), (1.3) on the aggregative effect under the

restriction that ε is sufficiently small.
Our results will be stated in Sections 2~5. By applying the results to/(w) =

u(i — u)(u — a), the global picture of equilibrium solutions with respect to
re(0, oo) can be shown for any fixed a. The solid lines correspond to stable
equilibrium solutions and the broken line does to the unstable one. As being seen
in Section 3, there is a critical value α* e(0, 1) such that for a e(fl*, 1), there are

0.0

Fig. 2-1. a is fixed to satisfy 0e(a*, 1).
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0.0
v<*M

Fig. 2-2. a is fixed to satisfy 0e(0, a*).

Fig. 2. Global structure of equilibrium solutions with respect to re[0, oo) for fixed #e(0, 1).
VO(*)ΞΞO, v^x) and v2(x) are single pulse solutions. represents a stable solution
and does an unstable one.

three equilibrium solutions t;0(x)^0, t;1(x) and ι;2(x) and v0(x), v2(x) are asymp-
totically stable when r is small, while there is only one equilibrium solution

VQ(X)==Q which is asymptotically stable when r is large (Figure 2-1). It is

suggested that this situation explains the former case i) of the numerical

experiments. On the other hand, for αe(0, 0*) there are three equilibrium

solutions t;0(x) = 0, ^(x) and v2(x) and t;0(x), v2(x) are asymptotically stable
for any r>0 (Figure 2-2). In order to know attractive domains of y0(x)

and v2(x), we apply 2-timing methods discussed by Shigesada [7] and Ei and

Mimura [1] (this method will be stated in Section 6), and show that there is a

critical value M* such that when I w0(x)dx>M*, u(t, x)-»t;2(x), while when

J J /
w0(x)dx<M*, u(t, x)->i?0(x) = 0. In fact, when r = 28 and a = 035 (which

are specified in Figure 1-2), M* is explicitly determined as M*^0.27. Therefore,

if w0(x) is chosen as I M0(x)dx^0.29>M*, we find u(t, x)->v2(x), which explains
u I

the latter case ii) of the numerical experiments. Thus, the numerical experiments

can be theoretically interpreted.

2. Main results

In what follows, we specify K(x) to be (1.4), that is,

*rM (*) Ξ f K(x - y) u(y)dy = r ( Γ/2 u(y)dy - Γ* u(y)dy
J I \ J x J -1/2

and assume that/(w) satisfies /(O) ̂  0 and/eC2(R). Let B denote the Banach

space C(7) with sup-norm For weCl(I) and reR, we define a mapping



The effect of non-local convection 285

R: (w, r)eBx R->K(w, r) by R(w, r)(x)==w(x), where u(x) is a solution of

ί w, = ux - kr[u] - u,
(2.1)

When w(x) is a constant function, say W(X)ΞC, R is explicitly represented as

4c exp { -2(cr)J/2 x}/(l + «?xp { -2(cr)1/2 - x})2 (cr>0),

c>sec2{(-cr)V2'x} (cr^O).
R(c, r)(x) =

When c and r are both positive, we find that R(c, r)(x) is a symmetric nonnegative

function in B with ||K(c, r)( ) l l α o = Kfo r)(°) = c (Figure 3). When cr is negative
and sufficiently small, it is found that R(c, r)( -) e B.

1.0-

0.5-

-0.5
Fig. 3. Graph of R(l .2, 4)(jc).

THEOREM 1. Fix ε>0 arbitrarily and u0(x)eB. Then a nonnegative
solution u(t, x; ε) o/(l.l), (1.2), (1.3) uniquely exists in C^CO, T]; B) and u(ί,
•, ε)e C2(7) for some T>0. // limsupM^ + 00/(M)/w3<0, u(t, x; ε) βxisίs /or

any time and is globally bounded.

(2.2)

Let us consider the stationary problem of (1.1), (1.2):

J 0 = [ΌX - kr[v] - v}x + εf(v) for x e /.

It?,- fcr|>] ϋ = 0 at x = ± 1/2.

THEOREM 2. Suppose that there exists (c0, r0)eR+ x R + satisfying

, r0)(x))Jx = 0 and -^-J^/(Λ(C, r)(x)Mx|(co>ro)^0, where R+=[0, oo).

there uniquely exists a function v(ε, r; c0, r0)eC2(( — ε0, ε0)x(r0 — ε0,

/or SHUΪ// £o>0 5WC^ ^aί v(ε> rl co» ro)(x) l5 Λ solution of (2.2)
satisfying ι;(0, r0; c0, r0)(x) = /?(c0, r0)(x).

REMARK 1. For fixed c0 and r0, t;(0, r; c0, r0)(x) satisfies the equation
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(2.3) vx - kr[v] v = 0 in x e /.

On the other hand, nonnegative solutions φc) of (2. 3) are parametrized by (c, r)e
R+ xR + as v(x) = R(c, r)(x) and R(c, r)(x) = #(c', r')(x) implies (c, r) = (c', r')
Therefore, if ι?(ε, r; c0, r0)(x) is a solution, there is a unique function c(r)e

-εo» r0 + ε0);R) satisfying ι<0, r; c0, r0)(x) = Λ(c(r), r)(x), c(r0) = c0 and

By Theorem 2 and Remark 1, we find that for small ε, v(ε, r; c0, r0)(x) is

approximated by R(c(r), r)(x), especially ||t;(ε, r; c0, ro)IL is approximated by
Λ(φ ),

THEOREM 3. /n addition to the assumptions of Theorem 2, suppose that

A J^ /(Λ(c, r)(x))Jx |(cθffo) < 0 (resp. > 0) .

there exists a positive constant εx such that for all (ε, r)e(0, εί)x(r0 — εl9
ro + ει) n R+ Kε> r j co> ro)(x) ίs asymptotically stable (resp. unstable) in B.

3. Applications

In this section, we will show two examples, which suggest that the number

of equilibrium solutions and their stability crucially depend on the nonlinearities

of/(u).

EXAMPLE 1. We specify the growth term in (1.1) to be a cubic function of

the form

We study the dependency of equilibrium solutions of (2.2) and their stability on
two parameters a in the growth term and r in the aggregative effect. Let Fa(c r) =

Γ (R(c9 r)(x))dx. Then Theorems 2 and 3 show that zeros of Fα(c; r) for fixed

α e(0, 1) and r e R + correspond to equilibrium solutions of (2.2) and that the

stability of each equilibrium solution is determined by the sign of dFJdc at each
zero. We first show the structure of zeros of Fa(c; r), which is shown in Figure 4.

Here, define "stable zero" (resp. "unstable zero") of Fa(c; r) by c satisfying Fa(c\ r)

= 0 and dFJdc<Q (resp. dFJdoO). We note that stable (resp. unstable) zeros
correspond to asymptotically stable (resp. unstable) equilibrium solutions and

that c = 0 is a zero of Fα(c; r) for any (a, r), which corresponds to the trivial

solution M=0 of (2.2). Then for arbitrarily fixed r>0 we find that there exists

α(r)e(0, 1) such that:
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1) For a(r)<a< 1, Fa(c\ r) has only one stable zero c = 0 (Figures 5 and 6);
2) for 0<a<a(r)9 Fa(c; r) has two stable zeros c0(r, a) = Q and c2(r, a) and an

unstable one Cj(r, a) (Figures 5 and 7).

Here, we note that dFJdc (φ, α(r)); r) = 0 (f = 1, 2; Figures 6 and 7) and that α(r)

Fig. 4. The distribution of zeros of Fa(c\ r) except for c=0 in (a, r, c)-

space.

2.0-

1.0

0.0

c2(r, a)

cι(r, α)

c0(r, a)

a(r)

Fig. 5. A cross-section with any fixed r>0.
zero and does an unstable one.

1.0

represents a stable
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Fβ(c; r)

0.0

Fig. 6. Graph of Fa(c r) with a(r) <a<\.

f Fa(c;r)

0.0

Fig. 7. Graph of Fa(c; r) with 0<tf <#(r).

1.0-

a(r)

0.5-
α*

j

5.0

Fig. 8. Graph of a(r).

0.0 10.0
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is strictly monotone decreasing with r (Figure 8) and lim r_ + OD a(r) — a* = (l — 2^/6)

~0.42. Then for arbitrarily fixed a, we find that:

3) when a*<a<\, there is a constant r(α) (inverse function of a(r) defined in

(a*, 1]) such that there exist three zeros ct(r, a) (/ = 0, 1, 2) for 0<r<r(a) and

there exists only one zero c0(r, #) = 0 for r>r(a) (Figure 9-1);

4) when 0<α<α*, there exist three zeros c^r, a) (/ = 0, 1,2) for any r>0

(Figure 9-2).

1.5

1.0 -

0.5

ί c

0.0

24.0

1.5

1.0

0.5

0.0

Fig. 9-1. a=0.5(a*<a<\).

c2(r, a)

24.012.0

Fig. 9-2. 0-0.3 (0<a< a*).

Fig. 9. A cross-section with fixed a. represents a stable zero and does an unstable
one.

We come back to the original problem (2.2). Define L(r0, δ) = {(r, α)|0^r^

r0,0£a£a(r)}\{(r,a)\r(a)-δ£r£r(a)9a*<a£l} for r0>0 and £>0. Then

Theorems 2 and 3 imply that for r0 and δ there exists ε0>0 such that ^(ε; r, a)(x)
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= v(ε, r; C;(r, α), r)(x) (ί = l, 2) exist and t>2(ε; r, a)(x) (resp. ι;x(ε; r, α)(x)) is
asymptotically stable (resp. unstable) for 0<ε<ε0 and (r, fl)eL(r0, δ) and that

ι;0(ε; r, a)(x) = v(ε, r; c0(r, α), r)(x) exists and is asymptotically stable for 0<ε<

ε0 and (r, α)e {(r, α)|0^r^r0, Ogα^l}. With these results in mind, consider

Case 3) (a is fixed satisfying αe(α*, 1)). Then, for large r0>0 and small <5>0

satisfying rQ>r(a) and r(a) — (5>0, there is ε0>0 such that for 0<r<r(α) — δ,

three equilibrium solutions ι;t (ε; r, α) (i = 0, 1, 2) exist for 0<ε<ε0 while only

f0(ε; r, α) = 0 exists for r(a)<r<rQ. This means ecologically that when the

parameter a is fixed in the range of α*<α<l, the species necessarily becomes

extinct as the aggregation constant r increases, that is, the aggregative effect
hinders the survival of the species. Consider Case 4) (a is in (0, α*)). Then for

large r0>0, there is ε0>0 such that three equilibrium solutions ^(ε; r, a) (ϊ = 0,

1, 2) exist for 0<ε<ε0 and 0<r<r0. Since there are two stable equilibrium
solutions ι?0(ε: r, a) and ι?2(ε; r, a) which correspond to the states of extinction

and existence respectively, whether the species can exist or not depends on the
initial distribution u0(x).

Fig. 10. The distribution of zeros of Fa(c; r) except for c=Q in (a, r, c)

space.
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EXAMPLE 2. We next consider the case when f(ύ) =fa(u) = u(l — u)(u — ά)(u —

a — l)(u — 2) (0<0<1). In a similar way to Example 1, we consider zeros of

Fα(c; r)= I f(R(c, r)(x))dx. The distribution of zeros of Fa(c; r) except for

c = 0 in (a, r, c)-space is drawn in Figure 10, For arbitrarily fixed r>0, a cross-
section is shown in Figure 11. By simple calculations, we know that Fa(c\ r)
has at most five zeros, say, cf(r, a) (ΐ = 0, 1, 2, 3, 4) (c0(r, a) = Q<cί(r, a)<
c2(r, 0)<c3(r, α)<c4(r, a)) and that there exist ^0)6(0, 1) (/=!, 2, 3) such that:

Fig. 11. A cross-section with arbitrarily fixed
a stable zero and does an unstable one.

i) c2(r, α) exists if and only if α2(r) < a < a j(r)

ii) c3(r, α) exists if and only if a2(r)<a<a3(r);

iii) Neither c2(r, α) nor c3(r, a) exists if and only if Q<a<a2(r).

It is shown that c0(r, α), c2(r, α) and c4(r, α) are stable zeros while c^r, a) and
c3(r, a) are unstable ones (Figures 10 and 11). From Figure 12 we see that α^r)

is monotone decreasing and a2(r) is unimodal with r and that there exists r0>0

such that:

i) flι(r)>tf3(r) when 0<r<r0 (Figure 13-1);
ii) 0ι(r)<α3(r) when r>r0 (Figure 13-2).

We define α*, af and a% by Λ* = α1(r0) = α3(r0), αf slim^^ αf(r) (/ = !, 2, 3) and
03 = supr>0α2(r), respectively (note that 0*<tf*<α?<α s<α t f). In order to

study the r-dependency of the distribution of zeros of Ffl(c; r) for fixed a e(0, 1),
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a

0.8-

0.5-

0.25
0.0 ' r0 16.0

Fig. 12. Graphs of a^r\ a2(r) and a3(r).
32.0

we must consider the following 6 cases (Figures 14-1 ~ 14-6):

4) a^<a<a^\ 5) a^<a<a^: 6)

Equilibrium solutions of (2.2) correspond to zeros ct (r, a) (i = 0, 1, 2, 3, 4). In

Cases l)-3), the species necessarily becomes extinct as r increases to infinity. In

these cases, the aggregative effect hinders the survival of the species. In Case 4),

stable zero c4(r, a) exists for all r>0 but another stable zero c2(r, a) can exist

only for r in the ranges of 0<r<rί and r2<r<r3 (Figure 14̂ ). In Cases 5)

and 6), all zeros exist for sufficiently large r > 0. These situations suggest that the

distribution of equilibrium solutions of (2.2) is much sensitively influenced by the

aggregative effect (r) as well as the growth term (a). Especially for fixed αe

(a*, a*), we can see the appearance of 4 limit points.

4. Proofs

PROOF OF THEOREM 1. Since Theorem 1 is valid for any fixed ε>0, we

simply write εf(u) as/(w). The local existence and the uniqueness of nonnegative

solutions of (1.1), (1.2), (1.3) are shown in a standard manner. We only show

the uniform boundedness of solutions. Let M(ί) be the solution of the following

problem:

(4.1) at

I M(θ)=||«0|L + ι.

Setting U(t, x)=u(l, x)-M(ί) and substituting U into (1.1), we obtain
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3.0 -I

1.5

0.0

0.0 0.5

Fig. 13-1. r=0.4(r<r0).

3.0-

1.5

0.0

βι(r)
-i a

0.0 βaWβiO'jflsO') 0.5 1.0

Fig. 13-2. r=28 (r>r0).

Fig. 13. A cross-section with fixed r. represents a stable zero and does
an unstable one.

(4.2) Ut = Uxx + 2ru U- kr[u]- Ux + h(U, M)- U

with the boundary conditions

Ux - kr[u] u = 0 at x = ± 1/2

and the initial condition
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1.0

0.0

c2(r, a)

r, a)

c0(r a)

0.0 8.0

Fig. 14-1. β=0.8

1.6

2.0 Ί

0.0

car, a)

Cι(r, α)

c0(r, a)

0.0 6.0

Fig. 14-2. α=0.52 (Λ* <a<a*).

12.0

17(0, x) = MO(X) - M(0) < 0,

where h(U, M) ί/=/(l/-hM)-/(M). By maximum principle, we get l/(ί, x)^

0, that is, u(t, x)^M(ί). Since the assumption of Theorem 1 implies that M(ί) is
bounded, it is shown that u(t, x) is L°°-umformly bounded.

PROOF OF THEOREM 2. It is shown in the Appendix that R can be extended to
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2.0-

1.0

0.0

c4(r, o)

c3(r, a) c*(r, a)

c2(r, a)

c0(r, a)

0.0 12.0

Fig. 1Φ-3. a=OA (a%<a<a$).

24.0

2.0 Ί

1.0-

0.0

c3(r, a)

c2(r

c*(r, a)

c3(r, a)

car, a)
- - - '

c2(r, a)

c0(r, a)

0.0 r* r* 12.0

Fig. 14-4. «=0.35 (a*ί<a<a^).

24.0

an analytic ampping from D into B9 where D is a neighborhood of {(c, r)|c, r e

R+} in BxR. Transforming the stationary problem of (2.2) by v = R(w, r) and

regarding it as an equation in the Banach space B, we obtain

(4.3) Aw = - wxx = εF(w, r),

where A is an operator in B and F( , r) is a mapping defined by F(w, r)(x)=/(R(w,

r)(x)). From (2.1), (2.2) we find that the domain of A is D(A) = {\ve C2(l)\wx = 0
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2.0

1.0-

0.0

r, β)

c,(r, a)

c2(r, a)

, a)

c0(r, a)

0.0

2.0-

1.0

0.0

12.0 24.0

Fig. 14-5. a=0.32(αί<α<flί).

c4(r, a)

c3(r, α)

c2(r, α)

0.0 0.8 16.0

Fig. 1Φ-6. α=0.24 (0<a<*f).

Fig. 14. A cross-section with fixed a. represents a stable zero and does
an unstable one.

at x= ± 1/2}. Then the spectrum of A, σ(A)9 consists only of eigenvalues and is
represented by σ(^4) = {0=λ0<A1<A2< }. Note that KerA = span{l} = R.

Let Q be the projection to Ker A. We observe that βw= I w(x)dx for weB.

Then the assumptions of Theorem 2 imply that there exists (c0, r0) e Ker A x R+
such that QF(cθ9 r0) = 0 and QFw(c0, r0)|ketx Φ 0, where F w =(d/dw)F. Therefore,
in quite a similar manner to the proof of Theorem 3 in Ei and Mimura [1], we

can prove that there uniquely exists a function w(ε, r)eC2(( —ε0, εo)x(ro""εo>
Λ>+ε<>); IKA)) for small ε0 >0 such that w(ε, r) is a solution of (4.3) and w(0, r0Xx)
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= CQ. Thus, we know that v(ε, r)(x) = R(w(ε, r), r)(x) is a solution of (2.2).

REMARK 2. Since υ (0, r) (x) = R (c(r), r) (x) (see Remark 1), the relation
v(ε, r)(x) = #(w(ε, r), r)(x) implies w(0, r)(x) = c(r).

PROOF OF THEOREM 3. In this proof, we write w(ε, r) and R(w, r) simply as
w(ε) and £(w), respectively, where w(ε, r)(x) is defined in (4.3), and denote the
norm and the operator norm of B by the same symbol || || . Noting that R( , r)
is an isomorphism of Dr = {yeB\(y, r) e D n (B x {r})} to R(Dr, r) for any fixed
r^O, we transform (1.1), (1.2), (1.3) by w(ί, x; ε, r) = JR-1(w(ί, - ε, r), r)(x).
Then we have

(4.4)

2r Γ uds '. wx - Eru - (wx -
J o

- £Γ/(ιι)

w(0, x; ε, r) = Λ'Kwo* r)W ?

w^ί, ±l/2;ε, r) = 0,

where u = u(t, x; ε, r) = .R(w(ί, ε, r), r)(x), w = w(f, x; ε, r) and EreB* (the dual

αi/2 ΓO \

y(s)ds- y(s)ds)foτ yeB.
0 J -1/2 /

By the continuity of R( , r) from DΓ to B, the asymptotic stability (or instability) of
t;(ε, r; ε0, r0) in B is reduced to that of w(ε) in B (v(ε, r; ε0, r0) = R(w(ε), r)) for (4.4).
To show the asymptotic stability (or instability) of w(ε) in B9 it suffices to investigate
spectrum of a linearized operator at w(ε) since (4.4) is a semilinear equation of w as
equation in the Banach space B. Hereafter, "'" represents Frechet derivative and
"j; " for y e B denotes the product operator. Let A be the operator defined in the

proof of Theorem 2 and the mapping vr: yeDr-+vr(y) be vr = r \ R(y, r)(s)ds,
J o

which is analytic.

LEMMA 1. The linearized operator Lεr at w (ε) is represented by

(4.5) Lε,rV =AV- 2t;r(w(ε)) VX -

+ 2 P/'(K(w(ε))) - (R'(w(ε))F)(5)ds - ιv(w(ε))
J o

/or

PROOF. The linearized operator Lε>Γ at w(ε) is
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(4.6) L£(,F = AV- wx(έ) - 2t>;(w(ε))F - 2tγ(w(ε)) V,

Er/?(w(ε)) (Vx-

+ 2tv(w(ε)) f * /'(K(w(ε)) (K'(w(ε)) (K'(w(ε))F) (s)ds
J 0

- Dr(w(ε)) - £

- ΓV(Λ(w
J 0

-ErK(w(ε)). Γf'
J 0

for Ve D(A). Let 5 be the subspace of B consisting of all even functions. Since
R( , r) maps S into itself and w(ε) e S (see the Appendix), it follows that R(w(£J),
/(#(w(ε))) and/'(£(w(ε)))eS and wx(ε)(0) = 0. Noting that Er = 0 on S and

from (4.3) and w^)(0) = 0, we have (4.5).

By Theorem 2 and Remark 2, we can write w(ε) as

w(ε) = w(ε, r) = c(r) + 0(ε).

Here y(ε, r) = O(εn) for n e N means that ||Xε, r)|| ̂ Cε" uniformly for small
ε>0 and r in a neighborhood of r0. Then we can write Lfi>r as

where

A,9,V= -Vxx-2vr(w(ε)) V χ 9

F,V = f'(R(c(r))) R'(c(r))V + 2t;Γ(c(r)) . ί>
J o

and

ε2δr(ε)F Ξ - £ε>pF + Iε,rF - εFrF.

Note that Fr and δr(ε) are bounded linear operators in B and that εFr=O(ε),
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ε2Gr(ε) = 0(ε2). Define zr(ε) and φ£tr by zr(ε)(x) = yr(w(ε))(x) and

φε>r(x) = exp J2j* zr(ε)(s)dsj/j^ exp J2j* zr(ε)(s) ds

respectively. Then the transformation U = φ£tr- V yields

Lε,rl7 EE φε>r Lείr(φ-ι.U) = Aε,rl7 - εFrt/ - ε2Gr(ε)ί/,

where Aε>rU= -(Ux-2zr(έ) U)x for all U in the domain

(/)|C/JC-2zr(ε).l/ = 0 at x= ±1/2} and FrU^φε,r F,(φ-\ U), G r ( ε ) l / ε , , G,(ε)
(φ~). U). Since the transformation V-* U is a homeomorphism on B, the spectrum
of Lε>r is the same as that of Lεr. Let J(^/) = ( — η, ή) x (r0 — 77, r0 + ^7) and J+(η) =
(0, ?/) x (r0 — 77, r0 + 77) Π R+ for ^7 > 0. Since Lε>Γ has a compact resolvent depending
smoothly on (ε, r) e J(ε0) for some ε0 > 0, the spectrum of Lεr consists only of point
spectrum σp(Lε>r) and every element of σp(Lε>r), /^(ε, r), is a function of C2(J(ε0); C)

such that .̂(0, r) = λff) (i = 0, 1, 2, . . .), where λfc) e σp(L0,Γ) = σp(AQtf) = {0 = A0(r) <

λί(r)<λ2(r)<"'}. So, for sufficiently small ε0 > 0, Re A0(ε, r)<Re A^ε, r)<Re>ί2

(ε, r)< for (ε, r)e J(ε0). Noting that A0(0, r) = 0, we will show

(4.7) A Re A0(ε, r) |(0>ro) > 0 (resp. <0) ,

which implies that w(ε, r) is stable (resp. unstable) for (ε, r)e J+(ε0). Let ψ(ε9 r)
be an eigenfunction of A0(ε, r), which we can take as the function ι̂ (ε, r) e C2(J(ε0);

B) satisfying (̂0, r) = φ0>r. Define Bltf = Ker Aε>r and the projection from B

to Bl>r by 0εjΓ. The we find that Blr = span{φε)F} and (βε,r)0(x) = Γ Xs)ds

Φε,r(x) f°Γ y e ̂  Operating Qεr to the both side of Lε)Γψ(ε, r) = Λ,0(ε, r)^(ε, r), we
have

(4.8) - εβε,r(Fr + εGr(ε))ιA(ε, r) = A0(e, r)ρε,rιA(ε, r) .

By differentiating (4.8) by ε and putting ε = 0 and r = r0, we obtain

(ε> r) I(0,r0) ' 6θ,r000,r0 -

Since Q0iroΦotro = Φo,r0 and e0,ro^roΦo,r0

== /^roΦo.roX^^ Φo.ro^ Theorem 3 can

be proved by using the following lemma.

LEMMA 2. Under the assumptions of Theorem 3, we have

(4.9) (FroΦo,ro)(x)dx«) (resp. >0).
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PROOF. We simply write Q0>ro, Fro and φ0)Γo, BJfΓO, R( - , r0) as Q0> *Ό and φθ9

B£, £0( ) respectively. Then, the left hand side of (4.9) is

o fo(0ϊ ' 0o) (*>**

where F0 = Fro and F01 denotes the operation of F0 on the constant function 1.

Since </>0(x) = e;cp <2 1 z0(s)ds>/l exp <2 I z0(s)ds> dx and I β x p < 2 J

z0(s)ds>dx>0, it suffices to show

(4.10) x p 2 Z o ( β ) ( 5 ) d s . ( ί Ό i X ^ x < 0 (resp.

where z0(s) = zro(0)(s) = t;Γo(w(0, r0))(s) = ι;ro(c0)(s). Note that z0(x) and

(2 I z0(s)ds J - z0(x) are odd. Then by the definition of F0, the left hand side

of (4° 10) is

p(2 ̂  z0 (s)ds) - 1/W'oX*) W(c0)i

+ 2 f V'(«o(c0Xs)) (Λi(c0)iXs)Λ z0(x)
J 0

= J^ exp(2 J^ z0(s) ds) - {/'(Λ0(c0Xx)) (Rί,

+ 2 JV'(R0(c0Xs)) (R'0(c0)ί)(s)ds z0(

By integrating K2 by parts, it follows that

K, + K2 =

which is
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ex

9 r)(s)Xs|(co,ro),

since z0(x) is odd and/'(l?0(coXx)) (jRό(c0)l)(x) is even. Thus, the assumptions
of Theorem 3 imply (4.9).

REMARK 3. In the proof of Theorem 3, we used the symmetry of w(ε). But
in the case that/(w) depends on x, w(ε) is in general not symmetric. In this case,
the proof of Theorem 3 can be modified by using the following mapping T(r, w)
instead of R(r, w): T(r, w)(x) = u(x) for weC^/) and r e R + , where u(x) is a
solution of

fcr[u] ιι,

Then the results in Section 2 similarly hold.

5. Appendix

LEMMA Al. .R 0/(2.1) can be extended to an analytic mapping from D to
B. Here D is an open neighborhood 0/R+ x R + in BxR. Moreover, R maps
(S x R+) Π D into S, where S is the subspace of B consisting of all even functions,
that is,

S= {weB|w(-x) = w(X)}.

PROOF. In (2.1), putting v(x)= \ w(s)Js, J£ ΞΞ 1 u(s)ds- \ u(s)ds and
J o J -1/2 J 0

integrating (2.1) from 0 to x, we have

(5.1)

(5.2)

If we find v, K satisfying (5.1) and (5.2) for w e B and r e R+, we obtain u = R(w, r)
by putting u = vx. For arbitrarily fixed w 6 B, r and K e R, (5.1) is an initial value

problem of ordinary differential equations of v. So the solution veC1 exists and
we write it as v(xf, K, w, r). Here we note that if v(- K0, w0, r0)eB for some

CK0, w0, r0) e R x B x R, there exists an open neighborhood I/(.KΌ> Wo> ro) °f
(K0, w0, r0) in R x B x R such that for all (K, w, r) e U(K0, w0, r0), v( - K, w, r)
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is an element of B and the correspondence of U(KQ, w0, r0)e(X, w, r)-*v(

K, w, r)eB is analytic. Hence, defining G: U(K0, w0, r0)->R by

G(/c, w, r) = t;(-l/2; K, w, r) + ι<l/2; K, w, r) + X,

we see that G is analytic. On the other hand, for any (c0, r0) e R+ x R+, (5.1) and

(5.2) is explicitly solvable as

(5.3) K = Q and

v(χ}-v(χ Qc r)-(c°\/2 l-*xp{-2'(co'ro)l/2 x} cBv(x) - v(x, 0, c0, r0) - (—) ι + ̂ /7{_2.(Co.ro)i/2.x}

 e B

(when r0 = 0, K = Q and ι;(x) = c0). Let us consider the mapping

G(fc, w, r) = t<-1/2; K, w, r) + t<l/2; 1C, w, r) + K in 17(0, c0, r0).

Suppose

(5.4) -f^(0,c0,r0)^0.

Then by the implicit function theorem, there uniquely exists K(w, r; c0, r0)e

Cω(ί/(c0, r0); R) such that G(X(w, r; c0, r0), w, r) = 0 and K(cθ9 r0; c0, r0)=0.
Here l/(c0, r0) is an open neighborhood of (c0, r0) in B x R. Then φc; K(w, r;

c0? ^o)» w» r) satisfies (5.1), (5.2) and we obtain R(w, r; c0, ΓO)(X) = M(X) by u(x) =
vx(x) = \v(x)-r-{v2(x; K(w, r; c0, r0), w, r) + X(w, r; c0, r0) v(x; K(w, r; c0, r0),

w, r)} for (w, r)e l/(c0, r0). Let us show that R(w, r; c0, r0) = Λ(w, r; cί9 rj
for (w, r)e U(cθ9 r0) n l/(cl9 rj. (5.3) implies that K(c, r; ci9 rf) = 0 for any
(c, r)eR+ x R + Π U(ci9 rt) (i = 0, 1). Therefore, by the uniqueness of the
mapping K(w, r; cf, rf) in a neighborhood of (ci9 rt)9 it follows that X(w, r; c0, r0) =
X(w, r; cj, r t) for (w, r)e U(cθ9 r0) n t/(c1? rj. This implies that Λ(w, r; c0, r0)
= .R(w, r; cl9 r t) in I7(c0, r0) n C/(c1} rt). Thus, we can define R(w, r) by R(w, r)
= .R(w, r; c, r) for (w, r)e l/(c, r) with the domain /)= W ( c > r ) e R + X R + U(c9 r).

Let us show (5.4). Using (5.1) and (5.3), we obtain by simple calculations

dv - !

Hence, we have

dG c r 1 -
' C°' Γo) - T
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which implies (5.4).

Finally, we shall show that R maps Ds = ( S x R + ) n D into S. For (w, r)e
DSΓ\ [C1(Jf)xR+], we define a mapping X: (w, r)-»w eS by X(w, r)(x) = u(x)
and u(x) = vx(x), where i? is a solution of

(5.5)

Then it is easily shown that X can be extended to an analytic mapping from S x R+

into S. On the other hand, R and X can be regarded as mappings from Ds into B
satisfying (5.1) and (5.2). Note that X satisfies (5.1) and (5.2) as K = 0. More-
over, we observe that for (c, r) e R+ x R+ X(c, r)(x) = R(c, r)(x). The uniqueness
of a mapping satisfying (5.1), (5.2) in Cω(Ds; B) can be shown by using the implicit
function theorem in quite a similar way to the proof of the uniqueness in Cω(D; B).
Thus, we have X(w, r) = R(w, r) in a neighborhood o f R + x R + c : S x R + , which

completes the proof.

LEMMA A2. The solution of (4.3), w(ε, r)(x), w z f / i w(0, r0)(x) = c0

 ίs an even

function.

PROOF. Since by Lemma Al we see that the mapping R maps S x R+ into 5,

we can restrict the problem (4.3) to the problem with respect to the Banach space S.

Quite similarly to the proof of Theorem 2, we can show the unique existence of the
function w(ε, r)eC2(( — ε0, ε0)x(r0 — ε0, r0 + ε0); S) for some ε0>0 such that
w(ε, r)( ) is a solution of (4.3) and w(0, r0)(x) = c0. w(ε, r) can also be regarded as

(5.6) w(ε, r) e C2(( - ε0, ε0) x (r0 - ε0, r0 + ε0) B)

with

(5.7) w(0,

Since the solution of (4.3) satisfying (5.6), (5.7) is unique, we have w(ε, r) = w(ε, r),

which implies w(ε, r) e S.

6. Concluding remarks

In this section, we briefly explain 2-timing methods to obtain attractive

domains of the equilibrium solutions of (1.1), (1.2) and (1.3) (see also Nayfeh [6],

Shigesada [7]).
Let us introduce two different time scales, t and τ ( = εί) and consider solutions

of (1.1), (1.2) and (1.3) as functions of these two time scales, that is, w(f, x; ε) =

w(ί, τ, x; ε). We look for solutions of the form
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(6.1) u(t, τ, x; ε) = tι°(ί, τ, x) + eti^ί, τ, x) + O(ε2) ,

where w 1 is bounded for all ί>0. By noting

~W = ~dΓ + εW

and inserting (6.1) into (1.1) and equating coefficients of like powers of ε°, we

obtain

(6.2) 11? = {u°x - /c[u°] w°}x, - 1/2 < x < 1/2, t > 0,

with the boundary conditions

(6.3) u°x - k[u] M° = 0 at x = ± 1/2

and the initial condition

(6.4) u°(0,0,x) = tι0(x),

where /c[w](x)= I K(x — y)u(y)dy. Similarly, the equation for ul(t, τ, x) can

be described by

(6.5) II } + II? = {lli-feCll1]-!!0-/^^0]-!!1},^-^!!0)

with the boundary conditions

(6.6) Hi - Jc|V] M° - fc[ιι°] w 1 = 0 at x = ± 1/2

and the initial condition

(6.7) i|i(0, 0, x) = 0.

Since (6.2) with (6.3) preserves the total mass, the solution of (6.2) can be expressed

as w°(ί, M(τ), x) with M(τ)= Γ ιι°(ί, τ, x)dx. Here the function M(τ) is

determined as follows: Let us integrate (6.5) over /. We then have

(6.8) nHί, τ, x) dx + = /(w°(ί, M(τ), x))dx

due to the boundary conditions (6.6). We put formally t= oo in (6.8) and suppose

that κ(r, x; ε) converges to a steady state as ί-»oo. Then we may assume that

ιl(t, τ, x)dx > 0 as t > oo.
J /

Thus, (6.8) reduces to
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(6.9) 4? = J, /(w°(α)' M(τ)'

with

(6.10) M(0) = Γ M°(0, 0, x)dx = Γ u0(x)dx.

If M(τ) of (6.9), (6.10) is solved, we obtain M° as u°(ί, M(τ), x). It thus can be
expected that u(t, x; ε) is approximated by t/°(f, Af(εf), x).

Let us apply this approach to our problem for the case that/(w) = w(l — M)
(H — α) (0<tf<l) and

u(s)ds - Γ u(s)

for arbitrarily fixed r>0 and Q<a<l. w°(oo, M, x) in the right hand side of
(6.9) can be regarded as an equilibrium solution of (6.2) with total mass M. Thus,
it turns out that nonnegative solutions of (2.3) can be parametrized by the total
mass M. On the other hand, solutions of (2.3) can also be parametrized by c (v(x)
= R(c, r)(x), see Remark 1). Then the relation between c and M is given by

M = Jff(c) = 2(^Y/2 - \-eXp(fr\^2 = Γ R(c, r)(x)dx7 \ r / \ + exp(c ryi2 J / / v y

and the correspondence M: c-^M(c) is bijective from R+ into itself satisfying
M(0) = 0 and (d/dc)M(c) > 0 for all ceR + . Then we find that ι;°(x, Λ?(c)) =
R(c, r)(x), where y°(x, M) is the solution of (2.3) parametrized by M and therefore

(M°(oo, M(c), x)dx = f(v°(x, M

Moreover, we see that if I f(v°(x, M0))Jx = 0 for some M0, CQ^M'^MQ)

satisfies Γ f(R(cθ9 r)(x))dx = 0 and that conversely if Γ f(R(c0, r)(x))rfx = 0 for
J i Γ J l

some c0, M0 = M(c0) satisfies I f(v°(x, M0))dx = 0. In other words, the

distribution of zeros of FS(M) = I f(υ°(x, MJ)dx is given by that of FR(c) =

Γ f(R(c, r)(x))dx. Especially if a<a* (see Example 1 in Section 3), FS(M)

has three zeros (Figure 15). We write those zeros as M0 = 0, Mi9 M2 (0 = M0<
M! <M2). We consider this situation for fixed a e(0, a*). By (6.9), (6.10) and
the graph of FS(M), we know that

A) M(τ) - > MO = 0 as τ - > oo if M (0) < Mί ,

B) M(τ) - >M2 as τ - > oo if M(0)>M1?
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Fs(M)

0.0

M

Fig. 15. Graph of FS(M) with a<a*.

0.5

M2

0.0 12.5 25.0 37.5

Fig. 16. - represents the total volume^ u(t, x; ε)dx of the solution of (1.1), (1.2),

(1.3), where r=28, a=0.35 and e=0.1. ---- represents the solution M(εt)

of (6.9), (6.10) with r=28, α=0.35 and ε=0.1.

C) M(τ) = for all τ > 0 if M(0) = Mί .

Consequently, we find the approximate solution w°(f, M(εί), x) converges to M°(OO,
M(oo), x) = v°(x, M0) = 0 in the case A) and converges to v°(x, M2) in the case B).

On the other hand, defining ci = M~1(Mi) (ι = 0, 1, 2), we see that there exist v£ε)(x)
= v(ε, r; cf, r)(x) (i = 0, 1, 2), solutions of (2.2), for small ε such that t;i(0)(x) =
R(ci9 r)(x). Thus, when ε is sufficiently small, we expect that A) implies u(t, x ε)
->ι;0(ε)(x) = 0 and that B) implies u(ί, x; ε)-n?2(ε). Here in the critical case C),
we expect nothing for the behavior of u(t, x; ε) only from the approximate function

M°(ί, M(εί), x). Figure 16 shows that the approximate function w°(f, M(εί), x)
agrees well for all f >0 with numerical solutions of (1.1), (1.2), (1.3) which are

solved by a finite difference scheme. Solid curves represent I u(t, x; ε)dx

derived from the numerical solutions with ε = 0.1 while the broken curves are the
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solutions of (6.9), (6.10). Though we claim that 2-timing methods presented here
are applicable to obtain attractive domains of coexisting stable equilibrium
solutions, the complete justification has not been yet accomplished.
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