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Let F be a field of characteristic different from 2, F be the multiplicative

group F\{0}, and WF be the Witt ring of quadratic forms over F. We denote

by IF the ideal of even dimensional forms in WF, by /"F its π-th power and

by <«!,..., any the diagonalized form a^xlλ ----- \-an

χl f°r al9...,aneF. We
also denote by DF<α1?..., £?„> the set of elements of F represented by <0 l 5..., O
and we put DF(tt) = DF<l,..., 1> (n terms), DF(oo) = W^=1 DF(n).

A field F is called formally real if — l^DF(oo), pythagorean if DF(2) = F2,

and quasi-pythagorean if DF(2) = R(F), where R(F) denotes Kaplansky's radical

{αeF |D F <l, -fl> = F}.

For a pythagorean field F, the structure of WF and especially the relations

of the graded Witt ring GWF=®*=() InF/I"+lF to the rings k+F and //*(F, 2)

have been studied in [4] and [6].

We shall study in this paper the same subject for a quasi-pythagorean field

to obtain Theorem 1.5 and Proposition 2.2 below, with some additional results.

The author would like to express his deep appreciation to Professor

Mieo Nishi for his continuous encouragement.

§1.

First we recall the definition of Milnor's X-ring K*F for any field F. Let

K1F be an additive group with a fixed isomorphism /: F-+KίF, and T(K1F)

be the tensor algebra on K1F over the ring Z of integers.

K2F® - is defined to be TXKjF)//, where / is the two-sided ideal of

generated by {/(0)®/(l -0)| a eF, aφ\}.

We denote by \(a^ Λ(a^ the image of \(a^®*-®\(a^ in KnF. Then the

basic properties of K*F are as follows.

PROPOSITION 1.1 ([13]).

(1) ηξ = (-l)mnξηfor every ξεKm, ηεKn.

(2) /(α)/(-fl) = 0 in K2F for every aef.

(3) l(a)2 = /(a)/(-l) in K2F for every a eF.

is defined to be K*F/2K*F and is a commutative graded algebra over



652 Tatsuo IWAKAMI

the field Z/2Z by Proposition 1.1 (1). The group klF is isomorphic to F/F2.
We shall write, by abuse of notation, l(aι) I(an) for /(#,)•• •/(#„) mod 2K*F and
a for flF2, so that the isomorphism is expressed by

LEMMA 1.2. /c*F is isomorphic to the factor ring T(kίF)/J of the tensor

algebra T(kλF) on klFover Z/2Z, by the ideal J generated by ( l ( a ) ® l ( b ) \ a, be

F, Df<X ί>>9 1}.

PROOF. If we write Tfor T(/C,F), then

So ^F^(772T)/(2T+//2T), and Γ/2Tis the tensor algebra T(k,F) on k,F over
Z/2Z. Then it suffices to show that the image 7' of 27+7 in T(k^F} is equal to
J. The inclusion J'^J is obvious. On the other hand, if le/)F<tf, 6), then

ax2 + by2=\ for some x, yeF. In case x, yeF, we have I(ax2)®l(by2)el,
that is, {/(tf) + 2/(x)}®{/(6) + 2/(y)}E/, which implies l(a)®l(b)eJf. In case
one of x and y (say y) is zero, we have /(#x2) = 0 in X j F and l(a)e2T. So /(α)®

/(ft)eJ'. Q.E.D.

Lemma 1.2 is stated in another way, as follows.

LEMMA 1.3. For atjef (/=!,..., r;./ = l,..., Λ), ξ = Σι=ι '(flii) '(^π) /5

^w<7/ to zero /« A:MF if and only if there exist bp(je F (p= 1,..., 5; ^f= 1,..., «)

SMC/1 ί/7ί7r Σ i = l ' ( « / l ) ® ®/(ί/ ί l l)=Σj=l /(&pl) ®" ® /(*pn) /Λ T(fc,F) flfWέ/

such that, for each p, DF(bpv(p}, ^p,v ί p ) + 1>3 1 /or some v(p) (1 <v(/?)<n- 1).

A homomorphism Sj . /c tF-^/F//2F is defined by s1(/(α)) = <l, — α) in FΓF
for α e F . If Df<α, ft>al, then <1, -α><l, -6> = 0 in WF. So s t induces a
homomorphism s*: K*F-+GWF of graded algebras. Since the π-fold Pfister

forms ^ί/ ,,..., α „> = <!, α !>•••<!, aw> (α/eF) generate /"F as an additive group,
sn is surjective for any n. It was proved in [13] that s l 5 s2 are isomorphisms for
any field F.

For a formally real field F, we denote by XF the set of all orderings on F.
Then ( X F , F/DF(co)) is a space of orderings in the sense of M. Marshall [9],
[1 1]. In a space of orderings (X, G), H(a)={σe X \ σ(a)= 1} for a eG are open
and closed, and constitute a subbasis for the topology on X. We define the
chain length of X, denoted by cl(X), to be the supremum of the set of integers
k for which there exists a chain

//(fl 0) c //(α,)cz c H(ak)

of length /c in X.

Two spaces of orderings (X, G) and (X', G') are said to be equivalent, and
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denoted by (X, G)~(Xf, G'), if there exists a group isomorphism α: G->G' such
that the dual isomorphism α*: Horn (G', {± !})->Hom (G, { + 1}) carries X'
onto X.

PROPOSITION 1.4 ([3], [11]). Suppose (X, G) is a space of orderings with
cl(X)<co. Then there exists a pythagorean field K such that (X, G)~(XK,

K/K2).

For a pythagorean field K with cl(XK)<ao, B. Jacob [6] proved that s*:
k*F-+GWF is an isomorphism. We shall generalize this as follows.

THEOREM 1.5. Let F be a formally real, quasi-pythagorean field with
cl(XF)<co. Then s*: k^F^GWF is an isomorphism.

PROOF. By Proposition 1.4, there exists a pythagorean field K such that
(XF, F/R(F))~(XK, K/K2), since DF(σo) = R(F) for any quasi-pythagorean field

F ([7], Lemma 2.2). Then we have F/R(F) ^ K/K2. We denote the isomorphism
by aR(F)^a'K2. Composing it with the natural homomorphism F/F2->F/#(F),
we obtain a homomorphism φ: F/F2^K/K2 which we identify with a homo-
morphism φ^'.k^F^k^K. Now XF ~ Xκ also implies WF/WtF^WK by [10],
Theorem (2.6), where WtF = {(\, -ay\aeR(F)} is the nilradical of WF ([7],
Proposition 2.3). So φ induces an isomorphism φn: InF/In+ίF-+I"K/In+ίK
for any n>2. It is clear that, for any field L and x, y eL, DL<x, y>3 1 if and
only if «-x, -y»=0 in WL. Hence it follows from WF/WtF^ WK that DF<α,
by B 1 if and only if Dκ(a\ b'^B\. Thus φj induces a surjective homomorphism
ψ?*: k*F-+k*K, and for n>2, φrt is injective by the above fact and Lemma 1.3,
since DF<α, by 3 1 for a G R(F), bεF (note that DF<0, by a 1 if and only if DF<1,
— ay 9 b). We have a commutative diagram

fcΛF -£L+ knK

\Sn(K)\

_

where <pπ and ^π are isomorphisms for n > 2, and sn(K) is an isomorphism for any
n by [6], Theorem 5. So we see that sn(F) is an isomorphism for n>2. Since
50(F) and 5t(F) are isomorphisms for any field F, s*(F) is an isomorphism.

Q.E.D.

For any field F, WredF= WF/WtF may be considered as a subring of the ring
C(XF, Z) of continuous functions from XF to Z with the discrete topology, i.e.,

we identify φmoά WtF with φ: XF-*Z defined by φ(σ)= Σ?=ι σ(at) f°r σe ^F»
0 = <α1,...,α / J>6 FFF. Then the stability index of A^, denoted by st(XF), is defined
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to be the infimum of the set of integers k such that 2kC(XF, Z)^ WredF. It is
known that XF is finite if and only if both cl(XF} and st(XF) are finite ([8], Theorem

13.9).

PROPOSITION 1.6. Let F be a formally real, quasi-pythagorean field with
st(XF)=i<cc. Then sn is an isomorphism for n>2l~l.

PROOF. The proof of [4], Theorem 5.9 for a pythagorean field is valid for
a quasi-pythagorean field with trivial modifications. Q. E. D.

PROPOSITION 1.7. Let F be a formally real, quasi-pythagorean field such
that st(XF)<\ and \XF\ = n<oo. Then the following statements hold:

(1) WF is a trivial extension of the ring WredF by the ideal WtF. In other
words, we have (WtF)2 = Q and there exists a subring A of WF, which is mapped
isomorphically onto WredF by the canonical homomorphism, such that WF =

WtF®A as an additive group.
(2) For any r>2, IrF/Γ+lF is an n-dimensional vector space over Z/2Z.

PROOF. (1) Let XF={σl9...9σn}. Since st(XF)<\9 there exist

(/=!,. . . ,n) such that σ ί(α f)=--l, σj(a^=\ (j^i). Then { — 1, 02,..., αn} f°rm

a basis of F/K(F) over Z/2Z ([4], Proposition 5.8). Let A be the subgroup of

WF generated by {<!>, <α2>,..., <X,>} ^'e see tnat ^ is isomorphic to WredF as
an additive group. For </> = <!, — fljXl, — α7 > (2<i<j<n), 0 = 0 in C(XF, Z).
Hence we have φeWtFnI2F = Q. So <0.><0,> = _ < i > + <0.> + <0.> e A

for i, j (2<i<j<n). Thus A is indeed a subring. Since WtF = {(\9 —by\be

R(F)}, it is easy to see that (WtF)2 = Q and WF= WtF®A.
(2) This follows from the fact that theimageof {2r-1«l», 2|-1«-α2»,...,

2r~1<C — #„>} form a Z-free basis for the image of 7rF in WredF ([4], Proposition

5.8). Q.E.D.

Finally, we remark that if F is a quasi-pythagorean field which is not
formally real, then WF is isomorphic to Z/2ZxF/F 2 in which the ring structure

is defined by

(ε, a) + (δ, b) = (ε + δ,(-\Yδab)

(ε, a) (δ, b) = (ε δ, aδbε)

for ε, δ E Z/2Z, a, be F/F2 ([12], p. 49).
In this case, we have R(F) = F, 72F = 0 and /c2F = 0. So it is clear that s*

is an isomorphism.

§2. J5Γ*(F,2)

Let F(2) be the maximal 2-extension of a field F of characteristic different
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from 2, i.e., F(2) is the composite, in a fixed algebraic closure of F, of all the
finite galois extensions whose degrees are 2-powers. Then G(2) = G<3/(F(2)/F)
is a pro 2-group. We put H"(F, 2) = H"(G(2), Z/2Z), where we identify Z/2Z
with the subgroup { ± 1} c F(2) .

From the exact sequence

1 - ,{±1} - > F(2) -*-> F(2)' - > 1 (φ(x) = x2)

of G(2)-modules, we deduce the cohomology exact sequence. Since //1(G(2),
F(2)') = 0 by Hubert Theorem 90, we have the following exact sequences:

(1) f^f^ul(F, 2)->0,

(2) 0-»//2(F, 2)->H2(G(2), F(2)Ή//2(G(2), F(2) ).
The sequence (1) shows that

(5 : F/F2 - > //HF, 2), 5(α) = σ(p^ (α e F, σ e G(2))

is an isomorphism, and (2) shows that //2(F, 2) is isomorphic to J5r2(F), the
subgroup generated by the elements of order 2 in the Brauer group of F, since

these elements are split by F(2).
H*(F, 2) = ®%=0H

n(F9 2), in which the multiplication is defined by the
cup product, is a commutative graded algebra over Z/2Z. We have seen that
k1F^F/F2^Hl(F, 2), and as shown in [1.3], the isomorphism l(a)*-*δ(a) induces
a ring homomorphism

ht .k+F - >H*(F,2), ha(l(al) . l(an)) = δ(al) U - U δ(an)9

since δ(a) U δ(b) corresponds to the Brauer class of the quaternion algebra (--

which splits if DF<0, fc> 9 1.
To state the following proposition, we have to recall one more definition.

Let F be a formally real field and σ e XF. Then the euclidean closure Fσ of F
with respect to σ is an extension of F contained in F(2) and is pythagorean with
unique ordering which induces σ on F.

The existence and the uniqueness, up to conjugacy, of the euclidean closure
was shown in [2].

PROPOSITION 2.1. Let F be a formally real, quasi-pythagorean field with

st(XF) = i<co, and {Fσ}σeXF be the family of all the euclidean closures of F.

Ifn>21-1, thenf: knF^Πσ knFσ and hn: knF-+Hn(F, 2) are injective.

PROOF. If F is a pythagorean field, this proposition is a part of [4],
Theorem 5.9. The same proof applies to a quasi-pythagorean field without
essential change. Q.E. D.



656 Tatsuo IWAKAMI

PROPOSITION 2.2. Let F be a formally real, quasi-pythagorean field with
st(Xp)<\, and suppose XF is finite. Then h* is an isomorphism.

PROOF. Let K = F(v/ -ϊ ). Then Gal(F(2)/K) is a free pro 2-group by [15],
Proposition 3.2. We put G = G(2), N = Gα/(F(2)/K) and consider the group
extension

(1) \^N-+G

In the Lyndon-Hochschild-Serre spectral sequence

EP

2 •« => HP+"(F, 2), Ep

2>
q ^ HP(GJN, H<*(N, Z/2Z)) ,

we have Ep

2>
(ί = Q for </>2, since N is free ([14], Theorem 6.5). Moreover £/2 = 0,

by [5], Theorem 4, since (1) is a split extension. So we have

//"(F, 2) ̂  E"ΪQ® EΓλΛ

Now G / N ^ G a l ( K / F ) is a cyclic group of order 2, and //'(N, Z / 2 Z ) ^ K / K 2 .
Since there exists an exact sequence

1 - > {±F2}/F2 - > F/F2 — > K/K 2 -±-> F/F2,

where v is the norm from K to F ([8], 5.20), we have

EΓl>} =FI{±R(F)} (n>2).

It is clear that Ej-0 ̂  Z/2Z and £§• 1 ̂  F/{ ± F2}. Thus we have

(2) //'(F, 2)^Z/2Z0F/{±F2} ̂

(3) f/"(F, 2)

We know, from Proposition 2.1, that hn is injective. So Theorem 1.5, Proposition

1 .7 (2) and (2), (3) above show that /?* is an isomorphism. Q. E. D.

REMARK 2.3. The above proposition is contained, as a special case, in
[1], Theorem 4.3.

PROPOSITION 2.4. Let F be a formally real, quasi-pythagorean field with

cl(XF)<\. Let {-I, XfO'e/)} be a basis of f/R(F) over Z/2Z Then the fol-
lowing statements hold:

(1) The canonical image of

{<!>, «-Xi», «-*/, -*;», <-x, , -xp -x f c>,... |/,7, k,... are distinct}

forms a free Z-basisfor WredF, and WredF is isomorphic, as a ring, to the group
ring Z\H~\, where H is the subgroup of F/R(F) generated by { — xt (/ e /)}.
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(2) WF is a trivial extension of WredF by the ideal WtF.
(3) /?*: k*F-+H*(F, 2) is injective.

PROOF. (1) and (3) are shown by modifying the proof of [4], Theorem 5.13.
(2) is proved in ths same way as Proposition 1.7 (1), using (1) of this proposition.

Q.E.D.
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