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§ 1. Introduction

Let BO be the space which classifies stable (real) vector bundles, and consider
its mod 2 cohomology H*(BO Z2) (the coefficient Z2 will be omitted often). Then,
H*(BO) is the polynomial algebra over Z2 on the universal Stiefel- Whitney
classes ^//''(flO) for i^ l [2, Th. 7.1]. Let yt.e//'(£O) be the universal Wu
classes (cf. [1, p. 225], [4, p. 315]) defined inductively by

(1) ί;0 = l = w0 and w ί =Σy=o^ / l ?i-y; i e > w = Sqv or v = Sq~lw

(Wu's formula, cf. [2, Th. 11.14]) for w = Σ i W , , υ=^iυi and the Steenrod
squaring operator Sq=ΣiSql with Sq~l given by Sq~1Sq = l=Sq Sq~*.

In this note, we prove a formula representing vt by w/s modulo

(2) the ideal /< 2> = (w2, w^,...) of H*(BO) generated by the squares w? for /^ 1 :

THEOREM, (i) (Stong) va = vaί'-vaι mod/ ( 2 ) for any a^.1, where a =
a±-\ ----- \-al is the dyadic expansion of a.

(ϋ) t'2αΞt>l2)+ Σ?=0 WiW2a-i mθ(^ ̂ (2) /(9r ^^J P^WβΓ α 0/ 2,

e, the notation x(2) for xeHa(BO) is used in the following sence:

(3) // χΞΣί=ι Xf e //α(βO) mod /(2) w/ίA monomials xt on w/s, we have
uniquely x(2) e H2a(BO) mod /(2) gf/ί

and (xy)(2) Ξ 0 mod

COROLLARY. ι; = l + Σ w^ w^ mod/<2>,
where Σ Z5 ί^A:e« 0yer β// sequences l^iί<- <il (/^l) satisfying

(4) {/!,..., //} = {α1,^1,.. ;,(*„, βm,γί9 ...,yj (/ =
ctj + βj and j j are all powers of 2.

A formula modulo the ideal generated by w2 and ΓT/=ι w/,- is previously
known to the author. Theorem (i) is due to Professor Robert E. Stong, and the
author is most grateful to his valuable advices during this work.
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§2. Proof of Theorem (i)

Let RPk be the /c-dimensional real projective space, and consider the m-fold

product space Xnttn = (RPl x RP")m with the projections pt: Xnm-+RPlxRP" to

the ith factor, ql: RPlxRP"-+RPl and qn: RP1 x RP"^RPn (n^2). Moreover,

let ξk be the canonical line bundle over RPk, and consider the vector bundle

where C1 is a bundle such that (θί1 is the trivial bundle.

Then, the total Stiefel- Whitney (resp. Wu) class w(fy l l i J I I)=Σi

^Λfm)=Σί^π,m) = 'S«"!w(|7π,m)) of ^,m is given by the following

LEMMA 2.1. Put Λi = ̂ ί(pfq*ξn) and σ^w^pfqfξ^. Then:

( i ) //*(A'Π f W; Z2) = Z2[σ lf α1?..., σm, αm]/(σ?,..., σj, αΓ1,-,

(ϋ) w(^ im)=ΠΓ=ι{l+σί(l+αi)"1}; '•«., w^/M/1)= Σ (Πϊ-i
ί/iβ swra is ίβ/cen orer α / / l g / 1 < - - - < / Γ ^ m α«J 5 fc^0 (1^/c^r

= /.

(iii) K^J = π?=ι (i + Σr^o *ι«r1+2Γ); /•«-, ^«. J = Σ(ΠUι ^«7k

1+ik),
w/ι^rβ ί/i^ sum is taken over all l^iί<-'<ir^m and powers tk of 2(1 gfc^r)

w/ί/i Σϊ=ιί* = '

PROOF, (i) holds by the definition of £fc. p f q * ξ k S are line bundles, and

the basic properties of the Stiefel- Whitney classes for line bundles imply that

wίpfgJfnHl+αj, w(Cf) = (l + σ j + αί)"1 and (ii), because σ^ = 0and so (1+0^)0 +

σί + αi)~1 = l+σ ί(l+σ ί + α/)~1 = l + σi(H-αί)~1. (ii) implies (iii), because the

basic properties of Sq (cf. [3]) show that Sqσι = σi9 5^f(α|) = αj-hα? f for ί = 2r,

and

. D

LEMMA 2.2. Pwί w, = w^J e Hl(Xntm\ Z2).

(i) w^ = 0/o

(ii) /λί Hi(Xnjn',Z2) with /^ι?H-l, f/?e monomials w^ vv^, /or 1^/^m,

Σl=ι '/t = /*> Λr^ linearly independent.

PROOF. Lemma 2. 1 (i) and (ii) show the lemma, because

w l |=ΣιgyI.....y,^(ΠUι *Λ«Jk

1 + ί k)+Σi'>/(Πl'«ι ^^J- Π

LEMMA 2.3. Lei (ίl9..., ίr) fee a sequence of powers tk of 2 with Σί=ι ίΛ = ̂
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Then, for any b^. 1, the number of all subsequences (f^,..., tjs) (1 ^jί

with Σl=ι tjk

 = b is congruent to ί JM mod 2.

PROOF. If f k = 1 for all /c, then the lemma is trivial. Assume ί*^2 for some

/c; and consider T^ί^,..., ί f c _ l 5 M, u, f Λ + , , . . . , fr) with u = v = tk/29 and its subse-
quences ScT. Then, #{S|59 w, S^} = #{S| S^w, SB v} and #{S|S3M, i;,
or S^u, t'} = #{all subsequences of (ί1?..., ίr)}, where if denotes the number of
elements. Thus the lemma holds by induction. Π

PROPOSITION 2.4. ι>β(ι/Λtm) = Π!=ι vat(ln,m\ where a = al + " + al is the
dyadic expansion of a^.1 (i.e., aί>-">al and they are powers of 2).

PROOF. Compare the both sides by Lemma 2.1 (Hi), by noticing that σ? = 0.

Then the equality follows from Lemma 2.3, since ί j = 1 mod 2. Π

PROOF OF THEOREM (i). Take n and m to satisfy n +1 ̂ a and (m+ l)(m + 2)
>2a, and let ήn^m: Xnm-+B0 be the classifying map of the bundle ηnm over Xn,m.
Then, ήΐ,m(va) = va(ηn>m} = Πl=ιVa.(ηntJ = ή^m(Πli=ιVa) by Proposition 2.4;

hence va— 111=1̂  is in I(2) by Lemma 2.2. Π

§ 3. Proof of Theorem (iί)

LEMMA 3.1. Σ?=o S^l(xι;β_l)= Σ?=o (Sqίx)wa.i for any xe H*(BO: Z2).

PROOF. Σ?=o Sq^xυ.-t) - Σ?=o Σ}=o [= Σj=o Σ?=J (SqJχ)(Sqί-Jυa.ί)
Σy=o (Sqjx)wa_j by (1 ), and the lemma holds since v0 = 1 = w0. Π

LEMMA 3.2. Lei a be a power of 2,

H>2α+ί> + 5^f^2α + Σf^o1 wb_jSi'i;2fl ΞΞ Σf->p+b-ΛΊ7β ϊ/ 6 < a,

'=Σl=i-a+ι(^^-t+Σbj^^^jSqJva)Sqha if b ^ a, mod /< 2 >.

PROOF. Hereafter, 'mod /(2Γ is often omitted. We notice that

(5) Stf'ί/^Oc/U), and S^sO if / ^ f c ^ l (e.g., k = 2a + b-i^a),

by the definition of / ( 2 ) in (2) and the dimensional reason. Hence

Σ?=o Sg'Ί^α+ft-i = ΣU Sq'^M-i) = Σto (Sήf 'ϋiJWfr-i = Λ, and

f'-^,.!) = B,

by (1), Theorem (i) and Lemma 3.1. Moreover, if 0^fe<α, then
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B = Σhj=o (SqJv.)(we-j±C) + Σj:i+ι (SqJv.)wc_Jt where

hence Σ*=o WOC^O. If a<,b<2a, then

BsΣ5:i-β+ι(S^β)(wc_, + C) and C = ΣkgίSί'a.K-j-i D

Now, since t1, = w 1 ? Theorem (ii) follows from the following

PROPOSITION 3.3. Let a be a power of 2. Then,

v2a = w2α + Σai = loWa-ιSq*va and v4a = v(

2

2

a

} + Σ^o1 w^-i mod / < 2 > .

PROOF. Lemma 3.2 implies the first congruence by taking έ> = 0, and the

second one by (3) as follows: w4α + ι;4α + vv2f lί;2αΞΞ Σ?=Γ' vv'2a-i^/^2«= Σf=ι ^ή
where

= 0,

A3 = (Σaι=ί Σ3=i + Σ^ά1 Σ5=l-.+ι) [= Σ?=i Σ?^1

§ 4. Proof of Corollary

For the set N of all positive integers, denote by N2<^N the subset of all
powers of 2, and consider the collection 6 of all finite subsets Scz^V satisfying

(6) S = {ί1-r1, r,,..., i/-r/, r,, r / + 1,. . ., ίro}, *S = m + / ^ l and 0^
for r( eΛ^2 ( l ^ / ^ m ) a n d r f e Λ ^ w i t h r f < f f / 2 ( l^/^/), (see (4)).

LEMMA 4.1. /« (6), m, /, ί, α/icf rf c/re unique for S, 6j7 ordering elements

to satisfy f / > ί / + ι , or f f = ί ί+1 α«ί/ ri<ri+lfor / < / , «A7ί/ tj>tj+ί for j>l.

PROOF. We note that ti/2<ti-riξ N2 for /<;/ in (6). Hence, if SczJV2,

then / = 0 and so w = #S and the lemma holds. Let S($N2. Then / ^ l and

Sj = max (S — Λ^)^ ^1 — r x by the above order. Here, ί,/2 <ίt — r 1=s 1 <^; hence
ί, e7V2 is unique, and so is r t. Since S — {sί9 rJeS, the lemma is proved by

induction, Π

For any a e N, put Θ(α) = {S e ® | Σses s = 0}. Then, we have the following

LEMMA 4.2. Assume that a = al+a2for aleN2 and a2eN with av^a2.

Then:
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(i) S1 U S2 e <5(a) for Skε&(ak) with SίnS2 = φι and tt(S1uS2)^3 if

(ii) Conversely, for any Se6(α) with #S^3 if ai = a2, there are an odd

number of unordered pairs {Sl, S2} ofSke Θ(#Λ) with Sί Π S2 = φ and St U S2 = S.

PROOF, (i) is clear by definition. For S={tl— r1 ? r,,..., f,— rh rh ί/+1,...,

ίm}eβ(fl) and any Skε&(ak) in (ii), Lemma 4. 1 means that if ti — rieSk (i^/),

then r eSfc Thus, the number of all such {S^ S2} is equal to that of all subse-

quences ( f f l , . . . , ίίn) of (ί l5..., fm) satisfying Σ?=ι t ί j

 = aι (resp. /Ί = l, in addition,

if fll = α2). Now, the latter is congruent to ( a )( resp. ( α~ / ) if α1 = α2 ) nιod2
\ f lι/ \ \a\ ~ * i / /

by Lemma 2.3, which is odd by assumption. Thus (ii) is proved. Π

Now, according to this lemma, the Theorem implies immediately that va =

ΣseS(α) Πsesws m°d / ( 2 ) by induction, which is the Corollary by definition.
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