Universal Wu classes

Dedicated to Professor Masahiro Sugawara on his 60th birthday

Toshio Yoshida

(Received January 16, 1987)

§ 1. Introduction

Let $B O$ be the space which classifies stable (real) vector bundles, and consider its $\bmod 2$ cohomology $H^{*}\left(B O ; Z_{2}\right)$ (the coefficient Z_{2} will be omitted often). Then, $H^{*}(B O)$ is the polynomial algebra over Z_{2} on the universal Stiefel-Whitney classes $w_{i} \in H^{i}(B O)$ for $i \geqq 1$ [2, Th. 7.1]. Let $v_{i} \in H^{i}(B O)$ be the universal Wu classes (cf. [1, p. 225], [4, p. 315]) defined inductively by

$$
\begin{equation*}
v_{0}=1=w_{0} \text { and } w_{i}=\sum_{j=0}^{i} S q^{j} v_{i-j} \text {; i.e., } w=S q v \text { or } v=S q^{-1} w \tag{1}
\end{equation*}
$$

(Wu's formula, cf. [2, Th. 11.14]) for $w=\sum_{i} w_{i}, v=\sum_{i} v_{i}$ and the Steenrod squaring operator $S q=\sum_{i} S q^{i}$ with $S q^{-1}$ given by $S q^{-1} S q=1=S q S q^{-1}$.

In this note, we prove a formula representing v_{i} by w_{j} 's modulo
(2) the ideal $I^{(2)}=\left(w_{1}^{2}, w_{2}^{2}, \ldots\right)$ of $H^{*}(B O)$ generated by the squares w_{i}^{2} for $i \geqq 1$:

Theorem. (i) (Stong) $v_{a} \equiv v_{a_{1}} \cdots v_{a_{l}} \bmod I^{(2)}$ for any $a \geqq 1$, where $a=$ $a_{1}+\cdots+a_{l}$ is the dyadic expansion of a.
(ii) $v_{2 a} \equiv v_{a}^{(2)}+\sum_{i=0}^{a-1} w_{i} w_{2 a-i} \bmod I^{(2)}$ for any power a of 2 , and $v_{1}=w_{1}$.

Here, the notation $x^{(2)}$ for $x \in H^{a}(B O)$ is used in the following sence:
(3) If $x \equiv \sum_{i=1}^{k} x_{i} \in H^{a}(B O) \bmod I^{(2)}$ with monomials x_{i} on w_{j} 's, we have uniquely $x^{(2)} \in H^{2 a}(B O) \bmod I^{(2)}$ given by
$x^{(2)}\left(=\left(x^{2}-\sum_{i=1}^{k} x_{i}^{2}\right) / 2\right)=\sum_{1 \leqq i<j \leqq k} x_{i} x_{j}$ and $x^{(2)}=0$ if $k \leqq 1$;
$(x+y)^{(2)} \equiv x^{(2)}+y^{(2)}+x y$ and $(x y)^{(2)} \equiv 0 \bmod I^{(2)}$ for any x, y.
Corollary. $\quad v \equiv 1+\sum w_{i_{1}} \cdots w_{i_{1}} \bmod I^{(2)}$,
where \sum is taken over all sequences $1 \leqq i_{1}<\cdots<i_{l}(l \geqq 1)$ satisfying
(4) $\left\{i_{1}, \ldots, i_{l}\right\}=\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{m}, \beta_{m}, \gamma_{1}, \ldots, \gamma_{n}\right\} \quad(l=2 m+n, m \geqq 0, n \geqq 0)$ such that $\alpha_{j}+\beta_{j}$ and γ_{j} are all powers of 2 .

A formula modulo the ideal generated by w_{i}^{2} and $\prod_{j=1}^{4} w_{i_{j}}$ is previously known to the author. Theorem (i) is due to Professor Robert E. Stong, and the author is most grateful to his valuable advices during this work.

§ 2. Proof of Theorem (i)

Let $R P^{k}$ be the k-dimensional real projective space, and consider the m-fold product space $X_{n, m}=\left(R P^{1} \times R P^{n}\right)^{m}$ with the projections $p_{i}: X_{n, m} \rightarrow R P^{1} \times R P^{n}$ to the i th factor, $q_{1}: R P^{1} \times R P^{n} \rightarrow R P^{1}$ and $q_{n}: R P^{1} \times R P^{n} \rightarrow R P^{n}(n \geqq 2)$. Moreover, let ξ_{k} be the canonical line bundle over $R P^{k}$, and consider the vector bundle

$$
\eta_{n, m}=\oplus_{i=1}^{m}\left(p_{i}^{*} q_{n}^{*} \xi_{n} \oplus \zeta_{i}^{\perp}\right), \zeta_{i}=p_{i}^{*} q_{1}^{*} \xi_{1} \otimes p_{i}^{*} q_{n}^{*} \xi_{n}, \text { over } X_{n, m},
$$

where ζ^{+}is a bundle such that $\zeta \oplus \zeta^{\perp}$ is the trivial bundle.
Then, the total Stiefel-Whitney (resp. Wu) class $w\left(\eta_{n, m}\right)=\sum_{i} w_{i}\left(\eta_{n, m}\right)$ (resp. $\left.v\left(\eta_{n, m}\right)=\sum_{i} v_{i}\left(\eta_{n, m}\right)=S q^{-1} w\left(\eta_{n, m}\right)\right)$ of $\eta_{n, m}$ is given by the following

Lemma 2.1. Put $\alpha_{i}=w_{1}\left(p_{i}^{*} q_{n}^{*} \xi_{n}\right)$ and $\sigma_{i}=w_{1}\left(p_{i}^{*} q_{1}^{*} \xi_{1}\right)$. Then:

$$
\begin{equation*}
H^{*}\left(X_{n, m} ; Z_{2}\right)=Z_{2}\left[\sigma_{1}, \alpha_{1}, \ldots, \sigma_{m}, \alpha_{m}\right] /\left(\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}, \alpha_{1}^{n+1}, \ldots, \alpha_{m}^{n+1}\right) \tag{i}
\end{equation*}
$$

(ii) $w\left(\eta_{n, m}\right)=\prod_{i=1}^{m}\left\{1+\sigma_{i}\left(1+\alpha_{i}\right)^{-1}\right\}$; i.e., $w_{i}\left(\eta_{n, m}\right)=\sum\left(\prod_{k=1}^{r} \sigma_{i_{k}} \alpha_{i_{k} k}^{s_{k}}\right.$, where the sum is taken over all $1 \leqq i_{1}<\cdots<i_{r} \leqq m$ and $s_{k} \geqq 0(1 \leqq k \leqq r)$ with $r+\sum_{k=1}^{r} s_{k}$ $=i$.
(iii) $v\left(\eta_{n, m}\right)=\prod_{i=1}^{m}\left(1+\sum_{r \geqq 0} \sigma_{i} \alpha_{i}^{-1+2^{r}}\right)$; i.e., $v_{i}\left(\eta_{n, m}\right)=\sum\left(\prod_{k=1}^{r} \sigma_{i_{k}} \alpha_{i_{k}}^{-1+t_{k}}\right)$, where the sum is taken over all $1 \leqq i_{1}<\cdots<i_{r} \leqq m$ and powers t_{k} of $2(1 \leqq k \leqq r)$ with $\sum_{k=1}^{r} t_{k}=i$.

Proof. (i) holds by the definition of ξ_{k}. $p_{i}^{*} q_{k}^{*} \xi_{k}$'s are line bundles, and the basic properties of the Stiefel-Whitney classes for line bundles imply that $w\left(p_{i}^{*} q_{n}^{*} \xi_{n}\right)=1+\alpha_{i}, w\left(\zeta_{i}^{\frac{1}{i}}\right)=\left(1+\sigma_{i}+\alpha_{i}\right)^{-1}$ and (ii), because $\sigma_{i}^{2}=0$ and so $\left(1+\alpha_{i}\right)(1+$ $\left.\sigma_{i}+\alpha_{i}\right)^{-1}=1+\sigma_{i}\left(1+\sigma_{i}+\alpha_{i}\right)^{-1}=1+\sigma_{i}\left(1+\alpha_{i}\right)^{-1}$. (ii) implies (iii), because the basic properties of $S q$ (cf. [3]) show that $S q \sigma_{i}=\sigma_{i}, S q\left(\alpha_{i}^{t}\right)=\alpha_{i}^{t}+\alpha_{i}^{2 t}$ for $t=2^{r}$, and
$S q\left(1+\sum_{r \geqq 0} \sigma_{i} \alpha_{i}^{-1+2^{r}}\right)=S q\left\{1+\sigma_{i}\left(1+\sum_{r \geqq 0} \alpha_{i}^{2 r}\right)^{-1}\right\}=1+\sigma_{i}\left(1+\alpha_{i}\right)^{-1}$.
Lemma 2.2. Put $w_{i}=w_{i}\left(\eta_{n, m}\right) \in H^{i}\left(X_{n, m} ; Z_{2}\right)$. Then:
(i) $w_{i}^{2}=0$ for any $i \geqq 1$, and $w_{i_{1}} \cdots w_{i_{1}}=0$ for any $i_{k} \geqq 1$ and $l>m$.
(ii) In $H^{i}\left(X_{n, m} ; Z_{2}\right)$ with $i \leqq n+1$, the monomials $w_{i_{1}} \cdots w_{i_{i}}$, for $1 \leqq l \leqq m$, $1 \leqq i_{1}<\cdots<i_{l}$ and $\sum_{k=1}^{l} i_{k}=i$, are linearly independent.

Proof. Lemma 2.1 (i) and (ii) show the lemma, because $w_{i_{1}} \cdots w_{i_{l}}=\sum_{1 \leqq j_{1}, \ldots, j_{l} \leqq m}\left(\prod_{k=1}^{l} \sigma_{j_{k}} \alpha_{j_{k}}^{-1+i_{k}}\right)+\sum_{l^{\prime}>1}\left(\prod_{k=1}^{l} \sigma_{j_{k}} \alpha_{j_{k}}^{s_{k}}\right)$.

Lemma 2.3. Let $\left(t_{1}, \ldots, t_{r}\right)$ be a sequence of powers t_{k} of 2 with $\sum_{k=1}^{r} t_{k}=a$.

Then, for any $b \geqq 1$, the number of all subsequences $\left(t_{j_{1}}, \ldots, t_{j_{s}}\right)\left(1 \leqq j_{1}<\cdots<j_{s} \leqq r\right)$ with $\sum_{k=1}^{s} t_{j_{k}}=b$ is congruent to $\binom{a}{b} \bmod 2$.

Proof. If $t_{k}=1$ for all k, then the lemma is trivial. Assume $t_{k} \geqq 2$ for some k; and consider $T=\left(t_{1}, \ldots, t_{k-1}, u, v, t_{k+1}, \ldots, t_{r}\right)$ with $u=v=t_{k} / 2$, and its subsequences $S \subset T$. Then, $\#\{S \mid S \ni u, S \neq v\}=\#\{S \mid S \neq u, S \ni v\}$ and $\#\{S \mid S \ni u, v$, or $S \nexists u, v\}=\#\left\{\right.$ all subsequences of $\left.\left(t_{1}, \ldots, t_{r}\right)\right\}$, where \# denotes the number of elements. Thus the lemma holds by induction.

Proposition 2.4. $v_{a}\left(\eta_{n, m}\right)=\prod_{i=1}^{l} v_{a_{i}}\left(\eta_{n, m}\right)$, where $a=a_{1}+\cdots+a_{l}$ is the dyadic expansion of $a \geqq 1$ (i.e., $a_{1}>\cdots>a_{l}$ and they are powers of 2).

Proof. Compare the both sides by Lemma 2.1 (iii), by noticing that $\sigma_{i}^{2}=0$. Then the equality follows from Lemma 2.3 , since $\binom{a}{a_{i}} \equiv 1 \bmod 2$.

Proof of Theorem (i). Take n and m to satisfy $n+1 \geqq a$ and $(m+1)(m+2)$ $>2 a$, and let $\tilde{\eta}_{n, m}: X_{n, m} \rightarrow B O$ be the classifying map of the bundle $\eta_{n, m}$ over $X_{n, m}$. Then, $\tilde{\eta}_{n, m}^{*}\left(v_{a}\right)=v_{a}\left(\eta_{n, m}\right)=\prod_{i=1}^{l} v_{a_{i}}\left(\eta_{n, m}\right)=\tilde{\eta}_{n, m}^{*}\left(\prod_{i=1}^{l} v_{a_{i}}\right) \quad$ by Proposition 2.4; hence $v_{a}-\prod_{i=1}^{l} v_{a_{i}}$ is in $I^{(2)}$ by Lemma 2.2.

§ 3. Proof of Theorem (ii)

Lemma 3.1. $\sum_{i=0}^{a-1} S q^{i}\left(x v_{a-i}\right)=\sum_{i=0}^{a-1}\left(S q^{i} x\right) w_{a-i}$ for any $x \in H^{*}\left(B O: Z_{2}\right)$.
Proof. $\quad \sum_{i=0}^{a} S q^{i}\left(x v_{a-i}\right)=\sum_{i=0}^{a} \sum_{j=0}^{i}\left[=\sum_{j=0}^{a} \sum_{i=j}^{a}\right]\left(S q^{j} x\right)\left(S q^{i-j} v_{a-i}\right)$ $=\sum_{j=0}^{a}\left(S q^{j} x\right) w_{a-j}$ by (1), and the lemma holds since $v_{0}=1=w_{0}$.

Lemma 3.2. Let a be a power of 2 , and $0 \leqq b<2 a$. Then,

$$
\begin{aligned}
& w_{2 a+b}+S q^{b} v_{2 a}+\sum_{i=0}^{b-1} w_{b-i} S q^{i} v_{2 a} \equiv \sum_{i=0}^{a-1} w_{\rho+b-i} S q^{i} v_{a} \quad \text { if } \quad b<a, \\
& \quad \equiv \sum_{i=b-a+1}^{a-1}\left(w_{a+b-i}+\sum_{j=0}^{b-a} w_{b-i-j} S q^{j} v_{a}\right) S q^{i} v_{a} \quad \text { if } \quad b \geqq a, \quad \bmod I^{(2)} .
\end{aligned}
$$

Proof. Hereafter, ' $\bmod I^{(2)}$ ' is often omitted. We notice that
(5) $S q^{i}\left(I^{(2)}\right) \subset I^{(2)}$, and $S q^{i} v_{k} \equiv 0$ if $i \geqq k \geqq 1$ (e.g., $k=2 a+b-i \leqq a$), by the definition of $I^{(2)}$ in (2) and the dimensional reason. Hence

$$
\begin{aligned}
& \sum_{i=0}^{b} S q^{i} v_{2 a+b-i} \equiv \sum_{i=0}^{b} S q^{i}\left(v_{2 a} v_{b-i}\right)=\sum_{i=0}^{b}\left(S q^{i} v_{2 a}\right) w_{b-i}=A, \quad \text { and } \\
& w_{2 a+b}+A \equiv \sum_{i=b+1}^{c-1} S q^{i} v_{a+c-i} \equiv \sum_{i=b+1}^{c=1} S q^{i}\left(v_{a} v_{c-i}\right) \quad(c=a+b) \\
& \quad=\sum_{i=b+1}^{c-1} \sum_{j=0}^{i=0}\left[=\sum_{j=0}^{b} \sum_{i=b+1}^{c-1}+\sum_{j=b+1}^{c-1} \sum_{i=j}^{c=1}\right]\left(S q^{j} v_{a}\right)\left(S q^{i-j} v_{c-i}\right)=B,
\end{aligned}
$$

by (1), Theorem (i) and Lemma 3.1. Moreover, if $0 \leqq b<a$, then

$$
\begin{aligned}
& B \equiv \sum_{j=0}^{b}\left(S q^{j} v_{a}\right)\left(w_{c-j}+C\right)+\sum_{j=b+1}^{u-1}\left(S q^{j} v_{a}\right) w_{c-j}, \text { where } \\
& C=\sum_{i=0}^{b-j} S q^{i} v_{c-j-i} \equiv \sum_{i=0}^{b-j} S q^{i}\left(v_{a} v_{b-j-i}\right)=\sum_{i=0}^{b-j}\left(S q^{i} v_{a}\right) w_{b-j-i} ;
\end{aligned}
$$

hence $\sum_{j=0}^{b}\left(S q^{j} v_{a}\right) C \equiv 0$. If $a \leqq b<2 a$, then

$$
B \equiv \sum_{j=b-a+1}^{a-1}\left(S q^{j} v_{a}\right)\left(w_{c-i}+C\right) \quad \text { and } \quad C \equiv \sum_{i=0}^{b-a}\left(S q^{i} v_{a}\right) w_{b-j-i} .
$$

Now, since $v_{1}=w_{1}$, Theorem (ii) follows from the following
Proposition 3.3. Let a be a power of 2. Then,

$$
v_{2 a} \equiv w_{2 a}+\sum_{i=0}^{a-1} w_{a-i} S q^{i} v_{a} \quad \text { and } \quad v_{4 a} \equiv v_{2 a}^{(2)}+\sum_{i=0}^{2 a-1} w_{i} w_{4 a-i} \bmod I^{(2)} .
$$

Proof. Lemma 3.2 implies the first congruence by taking $b=0$, and the second one by (3) as follows: $w_{4 a}+v_{4 a}+w_{2 a} v_{2 a} \equiv \sum_{i=1}^{2 a-1} w_{2 a-i} S q^{i} v_{2 a} \equiv \sum_{i=1}^{4} A_{i}$, where

$$
\begin{aligned}
& \quad A_{1}=\sum_{i=1}^{2 a-1} w_{2 a-i} w_{2 a+i}, A_{2}=\sum_{i=1}^{2 a-1} \sum_{j=0}^{i-1}\left[=\sum_{j=0}^{2 a-1} \sum_{i=j+1}^{2 a-1}\right] w_{2 a-i} w_{i-j} S q^{j} v_{2 a} \\
& \equiv 0, \\
& \quad A_{3}=\left(\sum_{i=1}^{a-1} \sum_{j=0}^{a-1}+\sum_{i=a}^{2 a-1} \sum_{j=i-a+1}^{a-1}\right)\left[=\sum_{j=0}^{a-1} \sum_{i=1}^{a+j-1}\right] w_{2 a-i} w_{a+i-j} S q^{j} v_{a} \\
& \equiv 0, \\
& \quad A_{4}=\sum_{i=a}^{2 a-1} \sum_{j=i-a+1}^{a-1} \sum_{i=0}^{i=a}\left[=\sum_{0 \leqq k<j<a} \sum_{i=a+k}^{a+j-1}\right] w_{2 a-i} w_{i-j-k}\left(S q^{j} v_{a}\right)\left(S q^{k} v_{a}\right) \\
& \equiv \sum_{0 \leqq k<j<a} w_{a-k} w_{a-j}\left(S q^{j} v_{a}\right)\left(S q^{k} v_{a}\right) . \quad \square
\end{aligned}
$$

§ 4. Proof of Corollary

For the set \boldsymbol{N} of all positive integers, denote by $\boldsymbol{N}_{2} \subset \boldsymbol{N}$ the subset of all powers of 2 , and consider the collection $\mathfrak{\Theta}$ of all finite subsets $S \subset N$ satisfying
(6) $S=\left\{t_{1}-r_{1}, r_{1}, \ldots, t_{l}-r_{l}, r_{l}, t_{l+1}, \ldots, t_{m}\right\}, \# S=m+l \geqq 1$ and $0 \leqq l \leqq m$, for $t_{i} \in \boldsymbol{N}_{2}(1 \leqq i \leqq m)$ and $r_{i} \in \boldsymbol{N}$ with $r_{i}<t_{i} / 2(1 \leqq i \leqq l)$, (see (4)).

Lemma 4.1. In (6), m, l, t_{i} and r_{i} are unique for S, by ordering elements to satisfy $t_{i}>t_{i+1}$, or $t_{i}=t_{i+1}$ and $r_{i}<r_{i+1}$ for $i<l$, and $t_{j}>t_{j+1}$ for $j>l$.

Proof. We note that $t_{i} / 2<t_{i}-r_{i} \notin \boldsymbol{N}_{2}$ for $i \leqq l$ in (6). Hence, if $S \subset \boldsymbol{N}_{2}$, then $l=0$ and so $m=\# S$ and the lemma holds. Let $S \varangle N_{2}$. Then $l \geqq 1$ and $s_{1}=\max \left(S-N_{2}\right)=t_{1}-r_{1}$ by the above order. Here, $t_{1} / 2<t_{1}-r_{1}=s_{1}<t_{1}$; hence $t_{1} \in N_{2}$ is unique, and so is r_{1}. Since $S-\left\{s_{1}, r_{1}\right\} \in \mathbb{G}$, the lemma is proved by induction.

For any $a \in \boldsymbol{N}$, put $\mathfrak{G}(a)=\left\{S \in \mathbb{\Im} \mid \sum_{s \in S} s=a\right\}$. Then, we have the following
Lemma 4.2. Assume that $a=a_{1}+a_{2}$ for $a_{1} \in \boldsymbol{N}_{2}$ and $a_{2} \in \boldsymbol{N}$ with $a_{1} \geqq a_{2}$. Then:
(i) $S_{1} \cup S_{2} \in \Theta(a)$ for $S_{k} \in \Theta\left(a_{k}\right)$ with $S_{1} \cap S_{2}=\phi$; and $\#\left(S_{1} \cup S_{2}\right) \geqq 3$ if $a_{1}=a_{2}$.
(ii) Conversely, for any $S \in \mathbb{S}(a)$ with $\# S \geqq 3$ if $a_{1}=a_{2}$, there are an odd number of unordered pairs $\left\{S_{1}, S_{2}\right\}$ of $S_{k} \in \Xi\left(a_{k}\right)$ with $S_{1} \cap S_{2}=\phi$ and $S_{1} \cup S_{2}=S$.

Proof. (i) is clear by definition. For $S=\left\{t_{1}-r_{1}, r_{1}, \ldots, t_{l}-r_{l}, r_{l}, t_{l+1}, \ldots\right.$, $\left.t_{m}\right\} \in \Xi(a)$ and any $S_{k} \in \subseteq\left(a_{k}\right)$ in (ii), Lemma 4.1 means that if $t_{i}-r_{i} \in S_{k}(i \leqq l)$, then $r_{i} \in S_{k}$. Thus, the number of all such $\left\{S_{1}, S_{2}\right\}$ is equal to that of all subsequences $\left(t_{i_{1}}, \ldots, t_{i_{n}}\right)$ of $\left(t_{1}, \ldots, t_{m}\right)$ satisfying $\sum_{j=1}^{n} t_{i_{j}}=a_{1}$ (resp. $i_{1}=1$, in addition, if $a_{1}=a_{2}$). Now, the latter is congruent to $\binom{a}{a_{1}}\left(\operatorname{resp} .\binom{a-t_{1}}{a_{1}-t_{1}}\right.$ if $\left.a_{1}=a_{2}\right) \bmod 2$ by Lemma 2.3, which is odd by assumption. Thus (ii) is proved.

Now, according to this lemma, the Theorem implies immediately that $v_{a} \equiv$ $\sum_{S \in \Xi(a)} \prod_{s \in S} w_{s} \bmod I^{(2)}$ by induction, which is the Corollary by definition.

References

[1] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.
[2] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press, Princeton, 1974.
[3] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies 50, Princeton Univ. Press, Princeton, 1962.
[4] R. E. Stong, Notes on cobordism theory, Princeton Math. Notes, Princeton Univ. Press, Princeton, 1968.

Faculty of Integrated Arts and Sciences, Hiroshima University

