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1. Introduction

There are so many mathematical models characterized by quasi-linear

parabolic systems of differential equations which describe actual problems arising

in physics, chemistry, biology and many other fields. When such systems take

of the form

(1.1) 4g- = div(D(x, ί, u)Γu + E(x, t, u)) + / ( x , t, u),

W = (M 1 , . . . , un), in which/may be replaced by/(x, t9 u, Fu), they are often called

reaction-diffusion-advection systems. Here, D(x, t) is a nonnegative definite

matrix. If D is a constant matrix, / is independent of t and x and £ = 0, (1.1) is

reduced to homogeneous reaction-diffusion systems

(1.2) ^L = DΔu+f(u).

In many of applications, D is diagonal. (1.2) are extensively investigated by

numerous authors from both analytical and numerical points of view. In this

paper, we shall not touch upon them but refer to excellent reviews by Fife [9]

and Smoller [46].

On the other hand, we encounter spatially inhomogeneous or heterogeneous

reaction-diffusion-advection systems such as

(1.3) 4 £ L = άivid^Fu^u.Γe^x)) +/,(x, u) ( i = l , . . . , n),

in which /f(x, ύ) and df(x), ef(x) explicitly depend on space variables x. These

models occur widely as ones for dynamics of chemical substances or biological

species in heterogeneous media or environments (Okubo [32], Fife [9], etc.).

Let us show one simple but very suggestive model equation introduced by Fisher

[11] in population genetics though there are many other models described by

heterogeneous reaction-diffusion equations (Gurney and Nisbet [15], Kawasaki

and Teramoto [20], Kurland [23], Nagylaki [30], Pacala and Roughgarden [33],

Skellam [45] and their references therein). It is described by
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( 1 . 4 ) -jΓ- = - = - 2 - + 2 m ( x ) w ( l - w ) , x e / = (O, 1) , ί > 0

with Neumann baundary conditions. Since the unknown function u in (1.4)
denotes the frequency of a gene, we pay attention to only solutions of (1.4), for

which 0<w<l. Assume I m(x)dx=l. When m(x) is constant, that is, m(x) = l,

we know that any solution u(t, x) satisfying 0 < u < 1, and u # 0 tends to 1 as ί->oo
for any λ>0. On the other hand, when m(x) is not constant and m(x)<0 on a
set of positive measure, Fleming [12] showed that there exists λo>0 such that for
0<λ<λo, u(t, x) satisfying 0 < M < 1 and uφΰ tends to 1 as ί-»oo, while for λ>λ0,
there appears a unique stable inhomogeneous equilibrium φλ(x) of (1.4), 0<φλ(x)
<1 on / and u(t, x) satisfying 0<w<l, and u=£0, uφ\ tends to 0A(x)as ί-»oo.
Thus, the appearance of heterogeneity of m(x) drastically changes the situation.
For the study of such heterogeneous systems, there have been at least three ap-
proaches. The first two, which are essentially powerful to scalar equations, are
the super- and sub-solutions methods (Fife and Peletie [10], Howes [19], Leung
and Bendjilali [25], Matano [27], Pauwelussen and Peletier [34]) and the vari-
ational ones (Fleming [12], Kawasaki and Teramoto [20], Yanagida [49]), which
give the existence and sometimes the stability of inhomogeneous stationary
solutions. The third is perturbed bifurcation techniques, which can widely
be applied to homogeneous reaction-diffusion systems of equations perturbed by
weak heterogeneity (e.g. Mimura and Nishiura [29]). Although we know
these three approaches, it is still hard to study spatial and/or temporal pattern
formation in heterogeneous reaction- diffusion systems of equations. For this
purpose, Su Yu [48] considered a fairly general class of systems

ί 4τ- = DΔu + ef(x, εt, ύ), t > 0, xe Ω,
(1.5) dt

' u(0, x) = uo(x), XEΩ,

with Neumann boundary conditions. Here, Ω is a bounded domain in Rm.
Under certain assumptions, he showed that when ε is sufficiently small, there
exist K>0 and T(e)>0 such that

||iι(ί, )-ΰ(εt)\\L2(Ω) <Kε

for t> Γ(ε), where u(t, x) is the solution of (1.5) and Π(εt) is the solution of

! f ) , τ>o,
(1.6)

with ΰo = (meas.Ω)-1 Γ uo(x)dx and f(T, ΰ) = (meas. Ω)"1 Γ f(x9T,ΰ)dx.
J Ω J Ω
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Thus, we can study the effect of heterogeneity of the reaction term / on the

asymptotic behavior of solutions of (1.5) through the analysis of O.D.E. (1.6),

which is much easier than that of P.D.E. Unfortunately, his result did not

discuss the transient behavior of solutions for 0 < ί < T(ε). Furthermore if we are

interested in dynamics of populations in heterogeneous environments for instance,

we meet heterogeneous reaction-diffusion-advection systems of (1.3) rather than

(1.5) (Okubo [32], Comins and Blatt [4], Fife and Peletier [10], Shigesada et. al

[44], Yanagida [49], Howes [19]).

For such systems, Shigesada [43], Ei and Mimura [7] analyzed the transient

behavior as well as asymptotic behavior of solutions for ecological model

equations of the form

(1.7)
= div(di + εffc, "X xeΩcR w , t > 0,

t/^O, x) = uOi(x), xeΩ, u =(uu...9un) (ϊ = l,..., w)

with a positive small parameter ε. Here, Ω is a bounded domain in Rm and the

boundary conditions are no-flux ones and dt>0 (i = l,..., n). To investigate the

spatial and/or temporal pattern formation of solutions of (1.7), Shigesada [43]

applied the two-timing method (see Section 3) to (1.7) and constructed the lowest-

order approximate solution of the form

(1.8) «?(*, εt, x) = Niiεήφlx) + w£t9 x) (i = l,..., n),

where ^(x) = exp {-^OO/dJ/ I exp {-e^/d^dx and Nt(T) is the solution of
J Ω

b..., Nn) = Γ fix, NίΨl(x),..., Nnφn(x))dx,
J Q

= Γ ujo(x)dx (i = l,.. , n)
J Ω

and wf(ί, x) is the solution of

(1.9)

(1.10)

wf(0, x) = uOi(x) - I uOi(x)dx
J Ω

0 = 1,..., n),

with the no-flux boundary conditions. Ei and Mimura [7] proved that if the

solution of (1.9) converges to an asymptotically stable equilibrium of (1.9), then

the solution wf(ί, x; ε) of (1.7), satisfies
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specially,

ui{t,x\ε)dx-Ni{εt) < O(ε)\L'
uniformly on ί e [0, oo) for i= 1,..., n.

On the other hand, it is possible that solutions of (1.9) exhibit stable limit

cycles or strange attractors such as chaos. Especially, in the case of limit cycles,

it is observed by computer simulations that u(t, x; ε) behaves like a periodic

solution in t and the orbit described by ( ut(t, x; ε)dx,...9 I un(t, x; ε)dxj

agrees fairly well with the orbit (N^εt),..., Nn(εt)) in phase plane R" though Ei

and Mimura [7] have not discussed this case.

This observation motivates us to study case that (1.9) possesses stable

limit cycles. Our result (mainly stated in Section 4) is as follows: Assume

that there exists a stable limit cycle γ of (1.9) and that (N^εt),..., Nn(εt))-+γ as

ί->oo. Then there exist C > 0 and tε>0 such that

dist \γ, ( I u t(ί, x; ε)dx,...9 I un(t, x; ε)dx)\ < Cε

for any t>tε when ε is sufficiently small. In Section 5, we will analyze (1.7) in

detail with applications to more concrete actual problems of two-species prey-

predator model and illustrate, in a very explicit manner, the effect of heterogeneity

on the behaviors of solutions.

Results in this paper contain another application. Let us consider the

following systems:

(1.11) ^ L = diΔUi + β | Σ τ = 1 aij{x9 u) _^L +/,(„)} , xe Ω, t > 0

0 = 1,..., ή)

with Neumann boundary conditions and

(1.12) ujfl, x) = ut0(x), XGΩ,

where u=(ul9..., un), Ω is a bounded domain in Rm and ί/ f>0. Conway, Hoff

and Smoller [5] proved that when ε is sufficiently small and (1.11) admit a compact

positively invariant set Σ<^Rn independent of small ε, then any solution

(u^t, x),....un(t, x)) of (1.11), (1.12) with values in Σ converges uniformly

and exponentially to their spatial averages ΰ: = (meas. Ω)'1 I U:(t, x)dx
JΩ

(ί = l,..., n), wheie wf(ί) satisfies

(1.13) -^ί- = β/Xfi,,...,«„) + O(εe-") as t • oo. (/ = !,..., n)
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for some σ>0. If we apply our results to (1.11), (1.12), the above statement is

valid without assuming the existence of such an invariant set Σ. Details will

be stated in Section 5.

The outline of this paper is the following: In Section 2, we formulate

(1.7), (1.11) and (1.12) as abstract initial value problems of parabolic type in

a Banach space. Results and proofs are stated in an abstract form in Sections

4 and 6, respectively. In Section 5, we apply results in Section 4 to (1.7),

(1.11) and (1.12). The two-timing method will be stated in Section 3.

2. Setting the problem and assumptions

Let B be a Banach space with norm || ||. We consider the following initial

value problems in B;

(2.1)
*L +Au = eF(u), t > 0,
d t

where ε is a positive small parameter. Suppose A, F and u0 satisfy the following

four assumptions.

Al) A is a sectorial operator in B and σ(A), the spectrum of A, consists of

<71 = {0}, isolated eigenvalue of A, and σ2<^{λeC\ R e λ > a for some

constant a>0}.

We note that σ(A) decomposes the space B = Bίξ&B2 corresponding to the spectral

sets σ1 and σ2, and let Q, P be the projections onto Bu B2, respectively (Dunford

and Schwartz [6, v. 1, Ch. 7]).

A2) B1 = KQT A and Bγ is a finite dimensional space.

Let «£?(£, E') denote the Banach space of continuous linear operators from E

to E' with the sup-norm and we set &(E) = &(E, E) if E and E' are Banach

spaces. BΛ represents the space D(Aa), domain of Aa, with norm | |u | | α = ||w|| +

||(,4 + /d)αw|| for u e D(Aa), where Id is the identity mapping on B.

A3) FeC2(Ba;B) for some 0 < α < l and for each bounded set Bo in B,

there exists M > 0 depending on Bo such that \\F(u)\\, | |F ' (u) | | ^ ( B « B ) ,

\\Eff(u)\\^(BΛf^(Bcc>B))<M for any ueB0, where ' represents the Fre'chet

derivative.

A4) uoeBa.
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3. The two-timing method and formal expansion procedure

To explain basic conception of the two-timing method, we consider the

simple but typical evolution equations in a Banach space B of the form

(3.1) J/L + Au = eF(u, t, ε), ί > 0

with a positive small parameter ε, where F is an analytic mapping in ε and A

is a linear operator whose spectrum consists of simple eigenvalues on imaginary

axis and the spectral set whose elements have positive real parts. In many

problems in which (3.1) appear, transient and large time behaviors of solutions

w(ί; ε) of (3.1) are often our main interest and to study them, we may first consider

Taylor expansions of u(t; ε) with respect to ε of the form u(t; ε)=Σf=oε
JuJ(t).

But, it is a well known^fact that finite Taylor expansions usually furnish asymptotic

approximations to exact solutions only on finite time interval though we need

perturbation procedures which give asymptotic expansions approximating exact

solutions uniformly on the whole time interval 0 < ί < o o , which is quite difficult.

To overcome this difficulty, one of the most powerful perturbation methods

was first developed by Cole and Kevorkian [3] and was simplified by Reiss

[38] later. The method is known under the various names, the method

of multiple scales, or simply the two-timing method. We briefly explain this

procedure following Reiss [38]. This method is based on a conjecture that

more than one time scale is involved in the evolutional behavior of the solutions

of (3.1); a slow time scale and a/αsί time scale. Reiss used T=εt as the slow time,

while retaining the original variable t as the fast time.

Let u(t; ε) be solutions of (3.1). We seek solutions in the form

(3.2) u(t; ε) = u(t, εt; ε) = Σ7=o εJV(ί, εί)

assuming that every term uJ(t, εt) satisfies

(3.3) \uJ(t, T)\ < CJtT

for any ί e [ 0 , oo), arbitrarily fixed T > 0 and some CjVΓ>0. We formally insert

the two-timing approximation (3.2) into (3.1), in which equations we regard t

and T ( = εί) as independent variables and equate coefficients like powers of ε.

Consequently, we can obtain the equation for each uj of the form

(3.4)

where Hj depends on ε, T, t and the previous wfc's. (3.4) involves indeterminacy

of T-dependence of uJ\t9 T), which becomes determinate by requiring (3.3).
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Later on, this procedure will be demonstrated for the equations (2.1). An im-
mediate consequence of this procedure is that there is a positive number T such
that all functions uj(t, εt) exist and are bounded on [0, T/ε], that is, the expansion
(3.2) is at least formally an approximation to u(t\ ε) on [0, T/ε]. Here, we say
that the expansion (3.2) is uniformly valid on some time interval, say, /, if

(3.5) \\u(t; e)-Σ3=o"'(ί> eί)||* < O(ε»+1)

uniformly for t e I. In fact, many authors proved that these two-timing approxi-
mations are uniformly valid on such expanding intervals [0, T/ε] in the sense of
(3.5) (Perko [35], Kollet [22], Hoppensteadt [18], Sanders [40], Persek and
Hoppensteadt [36]). However, in almost all cases to which the procedure can
be applied, two-timing approximations of the form (3.2) seem to be approximate
to exact solutions on the whole time interval in a certain sense, and in chemistry,
physics and many other fields, there have been already a lot of applications of
the two-timing method to various problems under the belief in the validity on
the whole time interval of two-timing approximations (Benney and Lange [1],
Lange and Larson [24] and reviews in Nayfeh [31]), which is the original purpose
of this method. In mathematics, we must clarify under what assumptions and
in what senses the approximations can be regarded as valid on the whole time
interval. To our knowledge, there have not been many papers on their mathe-
matical validity on the whole time interval (Greenlee and Snow [14], keener [21],
Sethna and Moran [42], Hoppensteadt [17], Ei and Mimura [7]). Greenlee
and Snow [14], Keener [21], Sethna and Moran [42] dealt with the oscillation
equations such as unforced Duffing equations, Van der Pol equations and
equations arising in satellite problems. The typical equations are of the forms
ytt + εf(ε9 t9 y, yt) + y = 0, which correspond to (3.1) in the case that A has a pair of
conjugate pure imaginary eigenvalues. For these equations, the two-timing
method is much available to study the existence of limit cycles. Hoppensteadt

[17] considered systems of O.D.E. of the form ε^- =f(t, x, y, ε),-^- =g(t, x,

y, ε) arising from certain singular perturbation problems. Ei and Mimura [7]
and this paper study the validity of the lowest order approximation w°(ί, εt)
of (3.2) for certain heterogeneous reaction-diffusion systems stated in Section 1,
which correspond to (3.1) in the case that A has a simple 0 eigenvalue.

On the other hand, there is one of the most remarkable applications of
the two-timing method, the application to bifurcation phenomena (Matkovsky
[28], Reiss [39], Segel and Levin [41]). Consider the nonlinear bifurcation
problem

(3.6) ^ = Flv; λ]
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with a parameter λ assumed to have a stationary solution vo(λ) for all values of λ

and let λc be a bifurcation point. Then, defining ε = (λ — λc)
a for some α > 0 ,

u = v — vo(λ) and A= — Fv[v0(λc), λc~], (3.6) is often reduced to equations with nearly

the same forms as (3.1). If the two-timing method can be applied to the equations,

we will obtain the structure containing transient behaviors of solutions as well

as asymptotic behaviors such as stationary solutions and limit cycles. Thus,

the two-timing method gives quite a new point of view to studies of bifurcation

phenomena. On the other hand, we see, for example, that both linear operators

corresponding to A of (3.1) in the case of Hopf bifurcation and in the case of

oscillation equations have the same property of spectrum, that is, both linear

operators have pairs of conjugate pure imaginary simple eigenvalues. Then,

it may be possible that the same structures exist in both cases and that results in

oscillation equations are applied to Hopf bifurcation problems, and vice versa.

Thus, we find it also important to investigate the relation between bifurcation

phenomena and other problems.

Let us construct the two-timing approximations for the problem (2.1) with

Assumptions Al), A2), assuming formally F(u) = Σ™=0Fnu
n. Substituting (3.2)

into (2.1), we have

O n\ d u . d U . A ~ rγ~\

.7) ~dΓ ~Jψ = ( w ) '
where T=εt. Since ε is sufficiently small, we may assume that t and Tare inde-

pendent variables. We first determine u°. Equating coefficients of ε° and ε1

in (3.6) respectively, we obtain

(3.8) 4j£- + Au° = 0

with u°(0, 0) = w0 and

(3.9) *£+

with M^O, 0)=0. The general solution of (3.8) is

(3.10) u°(t,T) = e-'Ay°(T),

where e~'Λ is a semigroup generated by A and y°(T) = u°(0, T). Let us determine

y°(T). Substituting (3.10) into (3.9), we have

(3.11) ^ - + Au1 = G°(t,T).

where G°(t, T) = -e~'Λ - ^ +F(e-'Ay°(T)).
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LEMMA 3.1. The following two conditions are equivalent:
i) (3.2) holds for i = l;

ii) limβG°(f, T) = 0.

PROOF. From Al), A2), we have \\e~tΛ\\<M and \\e~tAP\\ <Me~at for
some M>0, so that ||u°(ί, T)-Qy°(T)\\ <Me-at\\Qy°(T)\\ and

(3.12) |G°(ί, D - j - β - ^ - +

holds for some Mx >0. Let G°(oo, Γ ^ i m ^ G°(ί, T)= - β - ^ +F(Qy°(T)).

We will show that i) implies ii). If βG°(oo, T)^0, then there exists ί o >0 and

στ>0 such that ||βG°(oo, T)\\ >στ and ||βG°(ί, T)-QG°(oo, T)|| <στ/2 for

any ί> ί 0 . Since

(3.13) ii^ί, T) = e-^ii^O, T) + Γ e-^-
J o

= βii^O, T) + Γ QG°(s, T)ds + e-^PiiKO, T)
Jo

+ Γ β-<ί

J o

e have β u 1 ^ T) = Qu\0, T)+ ΓβG°(5, T)ds. Hence, \\Qu\t, T)||>(στ/2)

- ί o ) - l j β G ° ( s , Γ ) d s H β K o ! T ) | | h i h di i) S h-HβuKo! T)||, which contradicts i). Suppose that

ii) holds. (3.11) leads to ||βG°(ί, TJH^M^-^, so that it follows from (3.13)
that

\\u\t, T)\\ < M\\u\09 Dll + Γ {M1e-" + Me-e<f-
J o

< M 2

for some M2 >0, which implies i). |

Noting that βG°(oo, T) = 0 and j°(0) = w0, we have

Defining Y(T) by Qy°(T) reduces (3.14) to

(3.15)
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which is the initial value problem of O.D.E. in Bί ( = QB). By solving (3.15),

γ=QyQ can be determined. Although Py°(T) remains undetermined, an

arbitrary given Py°(T) implies (3.3) for i=l because there is some C τ > 0 such

that ||PG°(t, T)\\<CT uniformly for any ί e [ 0 , oo). Therefore, we may define

Py°(T) = Pu0 as the simplest form. Consequently, we have

(3.16) u°(t, T) = Y(T) + e~tAPu0.

In order to determine u\t, T), we equate the coefficients of ε2 and then we

have

Flu2

(3.17) -™- + Au2 = G\t, T)

with w2(0, 0) = 0, where Gι(t, T) = —G-~^ +F'{u°)uK The general solution of

(3.9) is

(3.18) uι(t9 T) = e-tΛy\T) + G°(ί, T),

where y1(T) = uί(0, T) and G°(t, T) = Γ e-^-^ΛG0{s, T)ds. In a similar way
J o

to Lemma 3.1, we know that the assumption (3.3) for ί = 2 is equivalent to the
condition

(3.19) lim,^ QG\t, T) = 0.

Since u\t9 T)-*Qy\T) + G°{oz, T), (3.19) implies

(3.20) - *£r + F\Y{T)){Yi + G»{«)9 D) = 0,

where Yι(T) = Qy\T) and <5°(oo, Γ) = limf_00 G°(t, T). The equation (3.20)

with yJ(0) = 0 is an initial value problem of O.D.E. in B^ where Y(T) and <5°(oo,

T) have already been determined, so that YX(T) is determined. Consequently,

letting Py\T) = 0, we have uι(t9 T)= Y\T).
In the same way as above, «*(*, T) can be determined for i>2.

REMARK. Though Puι(t, T) remains undetermined for any i, we may set

Puf(0, T) = 0 as the simplest form such that Pw°(0, 0) = 0 (i = l, 2, 3,...). In

fact, in the same way as that of Py°, we see that an arbitrarily given Puf(0, T)

satisfies the assumption (3.2).

4. Main results

In this section, we consider abstract equations (2.1) under Assumptions

Al)-A4).

We first consider the following O.D.E.:
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ί Ύ =

™ d in Bl9
1 ψ(0) = φ0

and let π(T; φ0) be a solution of (4.1). Then u°(t, T) constructed in Section 3
is represented as u°(t, T) = π(T; Quo) + e-tAPuo. When π(T; Qw) exists on
[0, T'] for we£α, we define br(w) by b r(w)= ||Pw||α + sup0<Γ<τ, |π(T; βw)| and
especially when π(T; Qw) exists on [0, oo) for weB0, we define b(w) by b(w) =
b^w). Here | | is the Euclidean norm of E if it is a finite dimensional space.

THEOREM 4.1. Suppose that π(T; Qu0) exists for Te [0, T{]for some 7\ < oo.
Then, there exist C>0, ε ^ O such that a solution u(t; ε) o/ (2.1) ex/sίs on
[0, TJε] and satisfies

||ιι(ί;β)-iιo(ί,βί)ll <Ce

for any εe(0, ε j αnJ απj; ί 6 [0, 7\/ε], w/zerβ C αnrf εx depend only on bTί(u0) +

DEFINITION. We call a closed bounded set Γ in B1 an exponentially asympto-
tically stable attractor if there exist an open bounded set VZDΓ and constants
M ? >0, β>0 such that

dist (π(T; ι;), Γ) < Moe^T dist (i?, Γ)

for any ve Kand any T>0, where dist(F1 ? F2) = inf {\υί — υ2\\ v1 e Vx and υ2e V2}
for closed bounded sets Vί and V2 in B t.

THEOREM 4.2. Suppose that π(T; βw0) converges, as T->oo, ίo some
nentially asymptotically stable attractor Γ. Then there exist constants εί>0
and C1>0 such that u(t; ε) exists and satisfies

\\Pu(t;ε)-e-tAPu0\\0[< Ctε

for any εe(0, ε j and any ίe[0, oo). Moreover, there exists tε>0 for any
εe(0, εx] such that

dist(Γ, βtt(ί ε)) < Cxε

/or βnĵ  ί>ί ε. Here εt and Cγ depend only on b(u0) and 7\ such that π(Tx; Qu0)
e V, where Vis a neighborhood of Γ stated in Definition.

COROLLARY 4.1. In addition to the assumptions of Theorem 4.2, assume
that Γ is an equilibrium o/(4.1). Then, there exist constants ε1>0 and Cι>0
such that

\\u(t;ε)-u°(t,εή\\x<Cιε
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for any ε e (0, ε j and any t e [0, oo).

COROLLARY 4.2. Suppose that F maps Bί into itself and that there exist

ε o > 0 and C o > 0 such that \Qu(t; ε)\<Cofor any t>0 and any εe(0, ε o ]. Then,

there existde(0, a), εx e(0, ε0] and Cί>0 such that

ί; ε) | |α

and that Qu(t; ε) satisfies

-L -^ Qu(t; ε) = QF(Qu(t; ε)) + gε(t)

for any ί > 0 , any εe(0, ε j α«d some gε(t) with |^ ε(0l^^i^~5 ί» w/ϊere α is the

constant given in the assumption Al).

5. Applications

EXAMPLE 1. A model of rapidly dispersing animals in heterogeneous

environments.

We consider systems (1.7) with uOi>0 in Ω and no-flux boundary conditions

(5.1) (Ji(x,ui),v} = 0 on xedΩ ( ΐ = l , . . . , « ) .

Here, J f(x, wf)= —diVui — uiVei{x) (d^O) and ί2 is a bounded domain in Rw

with reasonably smooth boundary. < , > and v denote the Euclidean inner

product of Rm and the outward normal vector on dΩ, respectively. Moreover,

we assume that uoi(x)eC(Ω; R), φ ) e C 2 ( Ω ; R ) and / i ( x , u ) e C 2 ( Ω x R / l ; R )

( Ϊ = 1 , . . . , Λ ) .

We briefly explain the biological meanings of this model. Every w. = «.(*, x)

represents the population density of ί-th species in the habitat Ω. Jt is the flux

of the j-th species due to the dispersal process associated with random movements

of individuals and the flow due to directed movements of individuals toward

favorable environments respectively. et(x) is called the evironmental potential

in the sense that et(x) induces the advection velocity, — Fef(x), toward the mini-

mum points of et(x) in Ω. The second term of (1.7), ε/f(x, u), represents the net

growth rate due to ecological interactions among n-species. We express the

net growth rate by the product of ε and ft so that the dispersal term, div J f(x, w),

and f are of the same order of magnitude. In many ecological systems, we

may sssume ε to be very small because it is frequently seen in nature that the

change in population density as a result of the dispersal process occurs more

rapidly than the change due to the growth process (see also Shigesada [43]).

We now give the correspondence between (1.7) and the abstract equations
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(2.1) in order to construct the O.D.E. corresponding to (4.1). Let the Banach

space B be C(Ω; R") with sup-norm || || and the linear operator A be diag(A1 ?...,

An), where Λj = div ^(x, v) for υ e D(Λj) = {VG C(Ω R) Π W2>P(Ω R) ΛjV e

C(Ω; R) with <J/x, v), v> = 0 on dΩ for some p>m} (j = l,..., w). Then, we

see that A with the domain D(A) = D(A1)x ••• x D ( i π ) is a sectorial operator in

J5 (Stewart [47]) and has compact resolvents. Moreover, when we define <pf(x) =

exp { — e^/di} I exp { — e^jd^dx ( ΐ = l , . . . , π), it is easily shown that Ker A~

span {ψι} and

J f i
dx =

for t?!, ι ; 2 e ^ ( ^ i ) (ί = l,..., n). Hence, we have K e r ^ = span {\j/ί9..., ψn}, σ(A) =

{Ao = 0 < λ 1 < . } and Qv= Y Γ v1(x)dx-φu..., Γ t?π(x)dx φ Λ for v = f (v l 9 . . . ,
VJβ Jfl /

t;π) G 5, where ^(x) = '(0,..., 0, φ^x), 0,..., 0) (ΐ = 1,..., n), which imply that
i

Assumptions Al) and A2) hold for some 0 < α < A 1 . Here, we note that P =
t/ r C \

Id-Q, so that Pv= [v1- v1(x)dx-φu...,vn- vn(x)dx-φn Jfor veB. A3)
V Jfi J Ω /

and A4) obviously hold for α = 0 by assumptions of uoi(x) and/^x, u) ( i= 1,..., ή).

Therefore, if we define π(T; Qu0), which is a solution of (4.1) with π(0; Quo) =

Quo, by t(N1(T)φ1{x),...,Nn(T)φH(x)) and e~tAPu0 by »(Wl(ί, x),..., wM(ί, x)),

then it is obvious that uo(ί, εί, x) = ί(w?(ί, εί, x),..., u°n{t, εt9 x)) in Section 4

is given by (1.8) and NIT), w&t, x) ( i= 1,..., ή) are the solutions of (1.9) and (1.10),

respectively. Thus, we can apply results in Section 4 to this model when ε is

sufficiently small and by solving (1.9), we know behaviors of solutions of (1.7),

expecially, whether species can exist or not. Note that I u%t, εt, x)dx =

J r J Ω

(pi(x)dx = l and I wf(ί, x)dx = 0 (i = l,..., n).
Ω J Ω

We consider a two-species prey-predator model in one dimensional hetero-

geneous environments. It is described by

ί > 0, x G / ^ (0, 1)

(5.2)

u(0, x) = uo(x) > 0, # 0 , v(0, x) = vo(x) > 0, # 0 , x e /,

, Ji(x, ύ) = J2(x, v) = 0 on x G dl,

where J f(x, w) = - d t | j - - ^ ^(x) w ( i = l , 2)and/(x, M, I;) = {(1-M//C(X))(1 +
l/Λ UΛ

ΓM) —bt;}w, f̂(x, M, ϋ) = { — c(x) + hu}v. d{ (i = l, 2), r and b, h are positive con-
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stants and /c(x), c(x) are positive in /. u = u(t, x; ε) (or v = v(t, x; ε)) represents
the density of prey (or predator) and k(x), c(x) denote the carrying capacity of u
and the death rate of v at position x, respectively.

In many ecological systems, we often observe that species can coexist merely
by having different favorable regions each other, otherwise there are no factors.
From an ecological point of view, we are interested in the possibility of coexistence
of u and v in such heterogeneous environments with different favorable regions.
To study it, we assume that et(x) (i = l, 2), k(x) and c(x) can be extended to
functions of C2(R; R) with period 1 and for simplicity that each et(x) has at
most one minimal point on /. A neighborhood of the minimal point of every
et{x) ecologically corresponds to the favorable region of each species. Let
θ be a phase difference between heterogeneity of environments of u and v, that
is, we assume that c(x) and e2(x) are represented as forms of c(x) = c*(x — θ) and
e2(χ) = e*(x — θ), respectively, for some functions c*(x), e*(x) of C2(R; R) with
period 1. Then, we can regard θ as a parameter denoting the degree of overlaps
between favorable regions of u and v. We are interested in the possibility of
coexistence of u and v by changing only θ and fixing all coefficients of (5.2) except
for θ. To analyze such problems of (5.2), we consider the O.D.E. corresponding
to (1.9), which is of the following form

(5.3) Γ > 0 ,

with N 1 ( 0 ) = J uo(x)dx>O, N2(0)= Γ υo(x)dx>0, where F(NUN2) = {(1-

NίIK)(l+RN1)-bθN2}Nΐ and G(NU N2) = {-C + hθNι}N2 for some positive
constants K, R, C and bθ, hθ. Only bθ and hθ depend on the phase difference θ.
Behaviors of solutions of (5.3) have been completely analyzed as follows (Cheng

[2]):
Case 1. If C/hθ>K, then the equilibrium (K, 0) of (5.3) is the only one stable

attractor of (5.3);
Case 2. if l/2(K-l/JR)<C//zβ<K, then the equilibrium (JV+, ΛTJ) of (5.3) with

positive components is the only one stable attractor of (5.3);
Case 3. if 0<Clhθ<l/2(K- 1/R), then there uniquely exists a stable limit cycle

γ, which is the only one stable attractor of (5.3).
It is also known that a unique stable attractor in each case is exponentially
asymptotically stable and that almost all orbits of (5.3) converge to the stable
attractor, so that assumptions of Theorem 4.2 or Corollary 4.1 are satisfied.
Above Case 1 ecologically means the extinction of the predator v. Cases 2 and 3
imply stationary coexistence and periodic coexistence of u and v, respectively.
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We are interested in the possibility of the occurrence of each case. If either
e^x) or e2(x) is constant, then it follows directly that both bθ and hθ are inde-
pendent of θ, in other word, the fortune of the species is determined independently
of θ when ε is sufficiently small.

We next consider the following case in which et{x) (/=!, 2), k(x) and φc)
are non-constant:

dt = 1 (ί = l, 2); k(x) = 8((8/9)sin2πx+l); = - 21ogfc(x); r = 2;

b = 1 c(x) =
(8/9)sin2π(x-0) +

<?2(x) = 21ogc(x); h = 1.

ei(χ) 0' = I* 2) have effects that u and i; move toward the higher place of k(x) and
the lower place of φc), respectively. These are ecologically plausible assumptions.
Figure 1 is the graph of C/hθ. Note that it suffices to restrict θ within O<0<O.5.
Figure 1 indicates that there exist θl9 θ2 (0<θί<θ2<0.5) such that the ranges of
θ2<θ<0.5, θi<θ<θ2 and 0 < θ < ^ 1 correspond to Cases 1^3, respectively.
In Figures 2-1 ~2-3, evolutional behaviors of solutions of (5.2) and (5.3) in each

case are described. In Figure 3, orbits of ( I u(t, x; ε)dx, 1 v(t9 x; ε)dx j and

(N^εt), N2(εt)) are drawn in phase plane R2, which indicates that these two
orbits are orbitally close. Figures 3 and 4 denote that solutions of (5.2) in Case 3)
are nearly periodic.

Thus, the relation of positions of favorable regions can play a much important
role for coexistence of species, which is the problem appearing not until we take

10.0-τ

0.0

Figure 1 The graph of £ - for θ e[0, 0.5].
he
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7.0 -i
I u(ΐ,x;ε)dx

25.0 50.0

Figure 2-1 Evolutional behaviors of j u{t, x\ ε)dx, j v(t, x; ε)dx and N^εt),

N2(εt) with 0=0.5 and ε=0.1 (Case 1). Solid lines denote

\ u(t, x; ε)dx and \ v(t, x\ ε)dx and broken ones do Nι(εt)
JI JI

and N2(εt).

14.0-1

0.0

I u(t, x; ε)dx

\ υ{ΐ9x',ε)dx

N2(εt)

30.0 60.0

Figure 2-2; Evolutional behaviors of \ u(t, x; ε)dxy \ v(t, x; ε) dx and
Jl JI

Nt(et), N2(εt) with 0=0.35 (Θ1<θ<θ2) and ε=0.1 (Case 2).
c c

Solid lines denote \ u{t, x; ε)dx and \ υ(t, x\ ε)dx and broken
Jl Jl

ones do N^εt) and N2(εί).
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7 . 0 -

85.0 170.0

Figure 2-3; Evolutional behaviors of \ u(t, x; ε)dx and iVΊ(eί) with

0=0.28 (O<0<0i) and ε=0.1 (Case 3). Solid line denotes

\ u(jy x; ε)dx and broken one does N^εί).

v

13.0-

0.0 8.0

Figure 3; Orbits described by ί \ u{t, x\ ε)dx, \ v(t, x; ε)dx) and (N^εt),

7V2(ε0)with 0=0.28 and ε=0.1 (Case 3). A solid line denotes

the orbit described by ί \ u(t, x; ε)dx, \ v{t, x\ εVxjand broken

one does the orbit described by (JVΊ(εί), N2(εt)).
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u(t,x;ε) v(t, x; ε)

Figure 4; Evolutional behaviors of u(t, x; ε) and v{t, x\ ε) with 0=0.28

and e=0.1 (Case 3).

account of the environmental heterogeneity. More detailed consideration in
various ecological models will be stated in Ei, Mimura and Yamanoue [8].

EXAMPLE 2. On the validity of the lumped parameter assumption.

Let ΩczRm be a bounded domain with reasonably smooth boundary dΩ
and v be the outward normal vector on dΩ. We consider the following systems
more general than (1.11);

(5.4)
du
dt

= DΔu + εf(Pu, w), xeΩ, t > 0

with Neumann boundary conditions on dΩ and the initial condition

(5.5) w(0, x) = uo(x) e C2(Ω; R"), xeΩ9

where u = t(uί9..., un), D is a positive definite constant matrix and /eC 2 (R m "x

R"; R"). Let the Banach space B be C(Ω; R") with sup-norm and A be -DA

with domain {ueBf] W2>P(Ω; Rn); DAueB and | ^ - =0 on dΩ for some p>m}.

Then, it is easily seen that Assumptions Al), A2) are satisfied with B^ = ker A = Rn

and Qu = (meas. Ω)-1 Γ u(x)dx for ueB (e.g. Stewart [46]) and that Ba is
_ J Ω

imbedded into Cι(Ω;Rn) for some l/(2-ra/p)<α<l (e.g. Friedman [13]),
which implies that when we define F{u) = f(Vu,u) for ueB", F satisfies the
Assumption A3). A4) obviously holds for (5.5).

Now, we consider the proposition that the asymptotic behavior of solutions
of (5.4) and (5.5) is determined by the dynamics of the O.D.E. of the form;



Heterogeneous reaction-diffusion systems 145

d c =εf(0,c), ί>0,
dt

or equivalently,

(5.6) _ ^ = / ( 0 , c), T > 0 ,

where c = t(cί,..., cn) and T=εt, which is called the lumped parameter assumption
by Conway, Hoff and Smoller [5]. (5.6) is just the O.D.E. corresponding to (4.1),
that is, (5.6) is rewritten as

j£ , T>0.

Instead of the assumption in [5] that (5.4) admits a compact invariant set in
Rn, we assume the existence of an open bounded set VaBί ( = RΠ) with following
property:

(5.7) Fis a positively invariant open bounded set of (5.6) and there exists <50>0,
To>0 such that dist(π(T0; F), dV)>δ0, where π(T; v) is a solution of
(5.6) with π(0; υ) = υ e Bι.

Define VTi = {veB1\ π(7\; v)eV} for any fixed T ^ O . Then, it follows from
the assertion of (6.10) in Section 6 that when Qu0 e VTi, there exist ε0 >0 and Co >0
such that \Qu(t, ε) |<C 0 for any ί>0 and any 0<ε<ε o , where u(t, x; ε) is a
solution of (5.4), (5.5). Moreover, F maps R" into itself. Therefore, we see
from Corollary 4.2 that there exist a >0, εt >0 and C1>0 such that

(5.8) ||P

and that Qu(t, ε) satisfies

(5.9) -L ̂ L Qu(t, ε) = QF(Qu(t9 ε)) + gε(t)

for any ί>0, any εe(0, εx] and some gε{t) with |^ ε(0l^^i^~5 ί (5.8) indicates
that any solution of (5.4), (5.5) whose spatial average Qu(t, ε) lies in VTί

converges exponentially to the spatial average itself. (5.9) corresponds to (1.13)
and show that the asymptotic behavior of solutions of (5.4) and (5.5) is subject
to the dynamics of (5.6).

Thus, the lumped parameter assumption is interpreted as one of assertions
for validity of two-timing approximations (see Section 3).
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6. Proofs

Throughout this section, we assume that 0<ε< 1.

6.1. PROOF OF THEOREM 4.1

We simply write Tγ as Tand several constants depending on T(or inde-
pendent of T) as the same symbol Cτ (or C).

Transforming (2.1) by υ(t; ε) = u(t; ε) — u°(t, εt), we have

j -^- + Av = ε{F(v + u°(t, εt))-QF(π(εt; Qu0))}, t > 0,

' v(0) = 0,

which is written as

' ^ + {A-εF'(u°(t9 εt))}v = ε{F(u°(t, εt))

-QF(π(εt;Quo)) + N(t,v;ε)}, t > 0,

v(0) = 0,

where

(6.2) N(t, v;ε) = F(υ + u°(t, εt)) - F(u°(ί, εί)) - F'(u°(ί, εt))v.

Denote by X(t, τ; ε) the solution of the operator equation

, dX
dt(6.3)

ί X(τ, τ) = Id,

+ {A-F'(u°(t, εt))}X = 0, t > τ,

where /J is the identity on B. Then (6.1) is reduced to

(6.4) v(t; ε) = ε Γ X(t, s; ε) {F(ιι°(s, εs))-QF(π(εs; Qu0))
J o

+ N(s, v(s; ε);

LEMMA 6.1. Suppose Mί9 M 2 >0, 0<α, β<\ and w(t) is nonnegative and
locally integrable with

on 0<t<T Then, there is a constant Cτ>0 depending on T such that w(t)<
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PROOF. One can find a proof of the lemma in Henry [16, Chapter 7, Lemma
7.1.1]. So we omit the proof. |

LEMMA 6.2. There exists Cτ>0 such that

\\X(t, τ; ε ) | | ^ , χ β ) < CΓ(l + J ^

forO<τ<t<T/ε.

PROOF. NOW, we have for b e B,

\\e->*b\\ = \\e"ΛQb\l + lle-'^iΊI. = llβ&L + \\e~'APb\\

for some C>0 and

||u°(ί, εί)L < W«ί; Quo)\ + \\e"APuot <

for some C>0, so that ||F'(«°(ί, εί))||J?'(B«,B)<CΓ holds for some Cτ>0 and for
0 < ί < T/ε. We have also from (6.3),

(6.5) X(t, τ; ε)b = e~^^Ab + ε Γ e-«-s>AF'(u°(s, εs))X(s, τ; έ)bds

for b e B and 0 < τ < t < Tjε. Hence,

ί, τ;ε)b\\x <

+ J^yr) W\ + CT J^(l + ( " ^ ^ ) ll*(ί/β, τ;

+ -(73Ϊ)ΪΓ) 11*11 + c

for some C > 0 and C Γ > 0. If 0 < t — τ < 1, then (t — τ)~α > 1 holds and we have

for some C T > 0 , which implies by Lemma 6.1,

\\X(t, τ; ε)b\\a < C'T {J_ετy \\b\\ < C'ij^^y ll&ll

for some C'T and Q (depending on T). If ί - τ > l , then ( ί-τ)~ α <l holds and
we have
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τ; e)ft||« £ 2C||6|| + Cτ J ° | < £ f } _ s ) a ||ΛΓ(s/ε, τ;

t(t+i)

<Cΐ\\b\\ + Cτ Γ" , ' .« ||X(s/β, τ; ε)b\\xds
J ε(τ+l) Vε ί ""•>;

for some Cj (depending on T). Hence by Lemma 6.1, we have

for some Cτ and 0 < τ + 1 <t<T/ε. Consequently, we have

for 0<τ<t<T/ε, beB and some Cτ>0. |

LEMMA 6.3. T/ẑ r̂  exist C and Cτ>0 such that

for 0<τ<t<T/ε.

PROOF. By (6.5), we have

for beB and 0<τ<t<T/ε. Since it follows from Lemma 6.2 that \\X(s,τ;
ε)Pfo|ία<CΓ(l+(s-τ)-α)||b|| and \\F'(u°(s, ε5))||^( jBα>β)<CT for 0<s<T/ε and for

some Cτ and that Γ e-a^-τ\t-s)~a(l+(s-τ)-a)ds<C for 0<τ<ί< + oo and

some C, we have

(6.6) \\PX(t, τ; ^ ^ Γ

for 0<τ<r<T/ε and some C, CΓ. Since ββ- f Aβ = ρ and PQ = QP = 0 hold,
(6.5) gives
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t, τ; ε)Pb = ε Γ QF'(uΌ(s, εs))QX(s9 τ; ε)Pbds

+ ε Γ QF'(u°(s, εs))PX(s, τ; ε)Pbds.

Hence it follows from (6.6) that

\\QX(t9 τ; e)Pb\\a < Cτε J ' ||βX(s, τ; ε)Pb\\ads + ε C T £ ||PX(s, τ; ε)Pb\\ads

<Cτε Γ ||QX(s, τ; e)P&||eds 4- εCJ.

for some C Γ and C^, so that, by GronwalΓs inequality, we have

(6.7) | | ρ * ( ί , τ ; ε ) P b | | α < C T ε | | f c | |

for some Cτ. Consequently from (6.6), (6.7) we have

, τ; e)P6||α < ||QX(ί, τ; ε)Pfe||α + ||PX(ί, τ; ε)Pb||α

for some C^, which completes the proof.

The equation (6.4) is rewritten as

(6.8) t<ί;ε) =

where

Hε(υ)(t) = εU(t; ε) + ε Γ X(ί, s; ε)Λr(s, φ ; ε); ε)ds
J o

and

U(t; ε) = Γ X(ί, s; ε){F(W°(5; εs))-βF(π(ε 5 Quo))}ds.
J o

Hence, it suffices to show that Hε has a unique solution v(t, ε) such that ||t;(ί; ε)|| <

O(ε) uniformly for t e [0, T/ε].

LEMMA 6.4. There exists Cτ>0 such that \\U(t; ε) | |α<C τ for 0<t<T/ε.

PROOF. It follows from Lemmas 6.2 and 6.3 that
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\\U(f, β)||« < Γ \\X(t, s; ε)PUiB.B.)\\PF(u°(s, εs))\\ds
u o

+ Γ | | * ( t , s; ε)β| |^ ( B, ί« ) | |βF(u°(5, βs))-QF(π(εs βtto))||ds
*/ 0

J t

0

x \\e-*ΛPu0\\Λds

< C"

for 0<r<T/ε and for some CΓ, Cj and C'r depending on T. This shows the

result. I

We now consider the equation (6.8). Let C([0, T/ε]; Ba) be the Banach

space of all bounded continuous functions from [0, T/ε] into B* with the norm

INIIτ = supo< f<Γ / ε \\υ(t)l and define Vr = {υeC([0, T/ε]; B«); \\\v\\\τ<r} for

some r > 0 . Then it follows from Lemmas 6.2 and 6.4 that

< εCτ +
 ε C r J o ( l + (t-3).J ÎIMIIr

^C'τ(ε+\\\v\\\2

τ)

for some Cτ, C'τ and 0<ί<T/ε . Thus, we have | | |H ε(v) | | |Γ<CΓ(ε + |||u|||£) for

some Cτ. If we define ε r = min {1/(4CT)2, r/(2CΓ)}, then it turns out that for

any εe(0, ε τ ] , F 2 C τ ε c : Vr and ί/ε maps V2Cτε into itself. Moreover, we find that

\\\He(Vl)-Hε(v2)HIτ < C^rlllPt-PjIllr

for some Cj and vί9 V2EV2CTE' Consequently there exist ε Γ > 0 and Cτ>0

such that Hε is a contraction on VCτE for any εe(0, ε Γ ] , which implies that //ε

has a unique solution t;(ί; ε) satisfying | | | ι ; | | | r <C Γ ε. The proof of Theorem 4.1

is complete. | |

6.2. PROOF OF THEOREM 4.2

LEMMA 6.5. Γ has an open neighborhood Vwith the following property:

(6.9) V is a positively invariant open bounded set in Bt, that is, π(T; V)aV
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for any Γ>0, and there exist δo>0, To>0 such that dist(π(T0; F), dV)>

δo

PROOF. Since Γ is exponentially asymptotically stable, there exist constants
r o >0, MO>1 and β>0 such that dist(π(ί; V), Γ)<Moe~βτ άist (υ, Γ) for any
veUro(Γ) and any T>0, where Ur(E) = {xeBί; |x-j>|<r for any ye£} if £
is a set in Bγ and r is a non-negative constant. Fix δ0 satisfying 0<2δo<ro/Mo

and define V = \Jτ>oπ(T; U2δo(Γ)). Then, we find V is a positively invariant
open bounded set satisfying Ό2δ0(Γ)ciV<^Όro{Γ). If we choose a constant To

such that M0roe-βTo<δ0, then we see that dist (π(T0; u), Γ)<Moe~βTQ dist (t?, Γ)
< Moroe-βτ° < δ0 for any t; e F, which implies dist (π(T0 F), dF) > δ0. I

Keeping the result of Lemma 6.5 in mind, we show the following assertion
as the first step of this proof:

(6.10) Suppose that V has the property (6.9) and π(Tx; Quo)eV for some
7\>0. Then, there exist εo>0 and C>0 such that for any 0<ε<ε o

we have Qu(t ε)e UCε(V) for any t>TJε and \\Pu(t; ε)-£Γ M u 0 L<Cε
for any t>0. Moreover Qu(t; ε) satisfies

Y-^Quit; ε) = QF(Qu(t; ε)) + gε(εt)

for some gε and any t>Txjε with \gε(εt)\<Cε.

[PROOF of (6.10)]. Let φ = Qu(t\ έ) and w — Pu{t\ ε). Then φ and w satisfy

(6.11)

where T=εt, and

(6.12)

w(0) = Pu0.

Hereafter, let the argument of φ be T( = εt) and that of w be ί, namely, we write
φ = φ(T; ε) and w = w(t; ε). From assumptions of (6.10), there exist ^ 0

> ^ a n ( l
To>0 such that dist(π(Γ0; F), dV)>δ0. Moreover, we can assume that
d i s t^Tj ; Quo)9 δV)>δ0 and π(T; Qwo)6 Ffor any T ^ T ^

Theorem 4.1 implies that there exist ε1 = ετ and (^ = CΓ l >0 such that

(6.13)

(6.14)
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for any 0<ε<ε 1 and any 0<T <Tι. From (6.13), we obtain

(6.15) \φ(T; ε)| < C,ε + |π(T; Quo)\ < C2

for some C 2>0, any 0<ε<ε 1 and any OKT^T^ Let K1 = Uι(V). Here, we
define several constants as follows:

Mo is the constant satisfying \\e~tAP\\^iBfBa) < Moe~atΓa and

M, is the constant satisfying b(u0) < Mt

AΓ2 = max{C2, supx 6 j C l |x|};

M3 = sup{||x + 3;||£(; |x |<M 2 , \\y\\x<l+M0Mι for xeB1 and yeBξ};

Af4 = sup{||F(jc + ̂ ) | | ; |x |<M 2 , llyll.^l+AfoM, for xefl, and yeBj}

M5=MOMΛ ^ — ^ ( = M 0 M 4 x l i m t ^ d s ) ;
Jo s \ Hoo J o yi — S) /

M 6 = sup{||F'(x + y) | |^ ( B 1 < > B ); | x | < M 2 a n d I b L ^

Joo p-αs

0 S

We also define /ε(Γ') = {T"; |φ(T; ε) |<M 2 for any T<T<T"}. Note that Iε{Tx)
is a nonempty closed interval containing Tx.

LEMMA 6.6. There exists ε2 (0<ε 2<ε 1) such that

\\w(t;ε)-e-tAPuo\Ϊ0[<M5ε

for any 0<ε<ε 2 and any εtelε(θ).

PRCOF. Let J£v)(t) = e-tAPu0+ε \ e~{t-^APF{φ(εs\ ε) + v(s))ds for ve
j o

C(/| Ba), where /2 = {t εί e 7ε(0)}. Suppose that v e C(l\ B*) satisfies

(6.16)

for t e l\. Then,

(6.17) \\JE(v)(t)-e-<APuol < ε Γ ^ ' ^ \\F(φ(εs;

Now, it follows that |φ(εs;ε)|<M2 and | | φ ) | | α < M 5 ε+|
Moe~sA\\Puo\\Λ<l + MoMί for 5G/|, where 6̂  = 111111(6!, 1/M5), which implies

s; e) + φ)) | | <M 4 . Therefore, from (6.17),
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< εM0M4 j

for any 0<ε<ε2 and any ί e / | . We also have

^ ds = εM5

x \\F'(φ(εs;

x sup^Hr

< ε Γ M0M6^ds-supteIi llPtW-
t/ 0 "

= εM7 supίe/i IbiίO-

for any telε

2 and U J G C ^ B 8) satisfying (6.16) (ί = l, 2). Consequently,
fixing 0<ε2<min{ε2, 1/M7}, we see that Jε is a contraction on {veC(I\\ BΛ);
\\v(t) — e~tAPu01|α<M5ε} for any 0<ε<ε 2 and that w(t; ε) is a unique fixed point
of Jε, as required. |

LEMMA 6.7. There exist C3 and ε 3 >0 such that φ(T; ε) satisfies:

(6.18) - |2τ = βF(φ) + flfβ(T)

/or αnj 0<ε<ε 3 , αnj Tel^T^ and some gε(T) with \g£T)\<C3ε.

PROOF. From Lemma 6.6 we have || w(T/ε; ε)||α< 14- M0M1 and \φ(T; ε)| < M 2

for any TeIt{T^9 which implies \\F'(φ(T; ε) + w(T/ε; ε)) | |^ ( β « B ) <M 6 . Hence, it
follows that

(6.19) \QF(φ(T; ε) + w(T/ε; ε))-QF(φ(T',

ΓΓ
%j o

C3M6||w(T/ε;ε)||α

||w(T/ε; ε)||α

for any TelJ^T^) and some C 3>0. It follows also from Lemma 6.6 that ||w(T/
ε; ε)||α<M5ε + M0M1^- f l Γ/ ε<M5ε + M 0M 1e- f l T l/ ε<(M 5 + M0M1)ε for any 0<
ε<ε 3 and any TelJ^T^, where ε3 = sup {0<ε<ε2; αT^εlogίl/ε)}. Conse-
quently, we see from (6.11) that φ(T\ έ) satisfies dφjdT=QF{φ)-\-gε{T) with
|0ε(Γ)|<C3ε, where gE(T) = QF(φ(T, ε) + w(T/ε; β))-QF(φ(T; ε)) and C3 = C3
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LEMMA 6.8. There exist C4 and ε 4 >0 such that if φ(T'; ε)eVfor some
T'>Tί9 then it follows that [T\ Γ + T 0 ] c / ε ( Γ ) and \φ(T\ ε )-π(Γ-7" ; φ(V;
ε))\<C4ε(<ί)for any Te [Γ', T' + To~] and any 0<ε<εA.

PROOF. Fix V {Tf>Tλ) satisfying the assumption of Lemma 6.8. Define
γ(T\ ε) = φ(T;ε)-π(T-V; φ(V;ε)). Since V>TL and \φ(T; ε)\<M2 on
Iε(T'), similarly to the proof of Lemma 6.7 it follows that φ satisfies (6.18) for
any 0<ε<ε 3 and any TeIε(T). That is,

(6.20)

with \gε(T)\<C3ε, where π = π(T- V; φ(T; ε)). Fix 0<ε 4<min {ε3, l/(C3T0

exp (MβT0))} and suppose that there exists T2 e (T, V + To] such that | Y(T; ε)| < 1
for Te IV, T2) and | Y(T2 ε)| = 1. Note that [T', T2] <=/ε(T') because π 6 K and
|y(Γ; ε)|<l, which implies φ(T; ε)eKί. Then from (6.20), we have

\Y(T;ε)\< Γ [l\\QF'(π + ΘY(s;ε))\\^(B»,B)dθ\Y{s',ε)\ds+ Γ |
J r Jo J T'

< Γ M6|y(s;e)|ds + C3e(Γ-r)
J 7"

< M 6 J ^ | y(s e)|ds + C3Toε,

so that by Gronwall's inequality,

\Y(T; ε)| < ε C 3 V M ^ Γ " τ > < εC 3 V M ^ Γ o < 1

for any 0<ε<ε 4 and any V<T<T2, which is contradictory to \Y(T2; ε)| = l.
Hence, |y(Γ;ε) |<l for any 0<ε<ε 4 and any T'<T<T' + TO. Consequently,
we obtain \Y(T; ε)|<C4ε (<1) for any 0<ε<ε 4 and any T'<T<T' + TO, where
C4 = C3T0exp(M6T0). I

Let ε5=min {ε4, δo/Cl9 <5O/C4}. Then it follows from (6.13) that φ{Tx\ ε)eV
for any 0<ε<ε 5 , so that by Lemma 6.8 we have

(6.21) \φ(T; ε ) - π ( T - Tx φ^T, ε))| < C4ε < min {̂ 0, 1}

for any 0 < ε < ε5 and any 7\ < T < Tλ + To. Since π(T0 φ(7\ ε)) e V with
άist(π(Toιφ(Tι;ε)),dV)>δo, we see from (6.21) that φ(Tί + To; ε)e F and
φ(T; ε) G £/C4ε(K) c:Xi for any Tt<T <Tί + To. Consequently, it follows
from Lemma 6.8 inductively that φ{T1-\-nT0\ ε)e V and φ(T; ε)e UC4ε(V)czKι

for any «eN = {l, 2, 3,...}, any 0<ε<ε 5 and any Tt <T<nT0, which shows
Jε(7\) = [Ti, oo) and (6.10) [End of the proof of (6.10)].
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Using (6.10) and Lemma 6.5, we continue the proof of Theorem 4.2.

It follows from the assumption of Theorem 4.2, Lemma 6.5 and (6.10) that

there exist 7\>0, £ 0 >0and C>0 such that π(T t; Quo)e Fand φ(T\ ε ) e ί / α ( F ) c

Kί for any 0 < ε < ε o and any T>T{. We have also by Lemma 6.8

(6.22) \φ(T; ε)-π(Γ- Γ; φ(T'; ε))| < Cε

for any 0 < ε < ε0, any T" > 7\ and any T'<T<T' + To. Here we can assume that

To satisfies Mo exp ( — βT0)< 1/3, where Mo and β are constants such that dist (π(T;

v), Γ) < M o exp ( - βT) dist (v, Γ) for any v e V and any T> 0. Then for arbitrary

it follows from (6.22) that

dist(φ(T'+T0; ε), Γ) < dist(π(T0; φ(Γ; ε)), Γ)

T 0 ;ε)-π(T 0 ;φ(T';ε)) |

' ε), Γ) + Cε

<i- dist(eKr;ε),Γ)+J-

for any T'>Tί if £<min{ε0, η/{3C)}. Hence, we obtain inductively

(6.23) dist (φ(T' + nT0; ε), Γ) < ^ dist(<p(Γ' ε), Γ)+ »?• Σ?=i 3T

for any «eN, any T'>T^ and any ε<min{ε0, ?//(3C)}, where Cx is a constant

satisfying dist(φ(T; ε), Γ)<C± for any T>T^ and any 0<ε<ε o . (6.23) implies

that

(6.24) dist((KΓ;ε), Γ) < η

for any T>Tη if ε<min{ε0, η/(3C)} and Tη = Tι + {[\ogz(lC1lη)'] + \}T0, where

[ ] is a Gaussian symbol. If we set η = 3Cε for 0<ε<ε o , then ε = ηl(3C) satisfies

ε<min {ε0, η/(3C)}, so that (6.24) holds, namely,

(6.25) dist(φ(T; ε), Γ) < 3Cε

for any T>T3Cε. (6.25) shows that dist (Qu(t; ε), Γ)<3Cεfor any t>tε=T3Cε/ε.

Finally, it is obvious from Lemma 6.6 that \\Pu(t; ε) — e~tΛPu0\\a<C2ε for some

C2. Thus, the proof of Theorem 4.2 is complete. 1 1
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6.3. PROOFS OF COROLLARIES 4.1 AND 4.2

PROOF OF COROLLARY 4.1

It suffices to show that there exist C>0 and ε o >0 such that \φ(T; ε)-π(T;

Quo)\ < Cε for any 0<ε<ε o and any 0< T< oo, because it has already been shown

that ||Pu(t ε) — e~tAPuo\\(X = O(ε) uniformly on /e[0, oo). By assumptions of

Corollary 4.1 we can take some positive constants r, βu β and Mo, δ such that

\π(T;v)-ξ\<Moe-βτ\v-ξ\ for any veV = Ur(ξ) and Rcσ(QF'(v)\Bί)<-βt for

any veUδ(V). Let 7(T; ε) = φ(Γ; ε)-π(T; ζ)uQ). Then, from Theorems 4.1

and 4.2 there exist T^O, ε x >0 and C x >0 such that φ(T; ε)eUCιE(V)c:Uδ(V)

for T > Γ ! and 0 < ε < ε ! and that Y(T; ε) satisfies for 0 < ε < ε x ;

(6.26)

forO^T^Γi and

(6.27) *^r = £ βF'^y+π(T; Quo))dθY +

for some gε(T) and T > Tx with |^ε(T)| <C tε.
Denote by U(T, S; ε) the solution of the operator equation

ί w = Γe
(6.28) I dΊ J o

, S; ε) = Id.

Then (6.27) is reduced to

(6.29) Y(T; ε) = U(T, Tt; ε)Y{Tι\ε) + Γ I/(Γ, 5; e)gJtS)dS

for T > T ! . Since ^7(T; ε) + π(Γ; βu o )e C/d(K) for T ^ Γ ^ it follows that

(6.30) Re σ(QF'(ΘY(T; ε) + π(Γ;

for T>Tt. Here we make r, (5 and εj small so that \dφ/dT\ is sufficiently small

for T>TV Then, (6.30) implies that \U(T9 S; ε ) | ^ ( B l ) < M 1 exp { - ^ ( Γ - S ^ f o r

some Mx and any T>S>Tt, though we omit the details (Potier-Ferry [37,

Proposition 5]). Consequently, it follows from (6.26) and (6.29) that

(6.31) \Y(T; ε)| < M1e-^τ~τ^-C^ + Γ Mιe-^{τ"s^
J Ti

<M2ε



Heterogeneous reaction-diffusion systems 157

for any T>Tί9 any 0 < ε < ε 1 and some M2. (6.26) and (6.31) complete the

proof. 1

PROOF OF COROLLARY 4.2

From the assumption of Corollary 4.2, there exist ε o >0, C>0 such that

\Qu(t; ε)\<C for any t>0 and any εe(0, ε0]. If we regard C and ε0 as the

constants M2 and εx in the proof of (6.10) respectively, then Lemma 6.6 directly

holds with Iε

2 — [0, oo) and we obtain

(6.32)

and

(6.33) \\w(t;ε)-e-<APu0\\a<M5ε

on fe[0, oo) for any 0<ε<ε 2 . Here, we note that we use same symbols as in

the proof of (6.10). Since F maps Bί into itself, we have F(φ(T; ε)) e Bί9 namely,

PF(φ(T; ε)) = 0. Moreover, (6.33) shows that ||w(ί; εiW^l+MoM^ There-

fore, we obtain

\\PF(φ(εs; ε) + w(s; ε))|| < Γ \\PF(φ(εs; e) + θφ; ε))\\^B.tB)dθ\\w{s; ε)||α
J o

<M 6 | |w(s;ε) | | α ,

which implies from (6.32) that

(6.34) ||w(ί; ε)||. < Moe-«| |P«oL + *£MoM6 ^*'~y Ms; β)ll«ds.

If we define |||w||| = s u p l S 0 ea'||w(ί; s)||α, it follows from (6.34) that

(6.35) HIw||| < M 0 | | P « 0 | | + ε M 7 | | | w | | | ,

ds. (6.35) shows that if we fix ε*
o s

asO<ε*<l/M 7 ,

(6.36) ^

holds for any ε e (0, ε*]. (6.36) and the proof of Lemma 6.7 give the direct proof

of this corollary. |
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