Convergence of sum product of a martingale difference sequence

Hiroshi SATO (Received May 13, 1987)

1. Introduction

Let $\{x_k(t)\}_{k\in \mathbb{N}}$ (N is the collection of all natural numbers) be a sequence of complex functions on [0, 1] such that $x_k(t)+1\neq 0$ for every $t\in [0, 1]$. Then the convergence of the product $\prod_k (1+x_k(t))$ has been investigated by many authors in connection with the convergence of the sum $\sum_k x_k(t)$. For example G. H. Hardy [1] proved that if $\{a_k\}$ is a sequence of positive numbers which converges monotonically to zero and $\sum_k a_k^n$ diverges for every $n \in \mathbb{N}$, then $\prod_k (1+a_k e^{2\pi ikt})$ diverges for every rational number t. J. E. Littlewood [2] proved that if $\{a_k\}$ is a sequence of positive numbers converges monotonically to zero, then $\prod_k (1+a_k e^{2\pi ikt})$ converges for every irrational number t with possible exception of the Liouville numbers. In the measure theoretical point of view, L. Carleson's theorem implies that if $\sum_k |a_k|^2 < +\infty$, then $\prod_k (1+a_k e^{2\pi ikt})$ converges almost surely. All of these discussions concerned the convergence or the divergence of $\sum_k a_k e^{2\pi ikt}$.

The author investigated this problem from the probabilistic point of view and proved in [4] that if $\{X_k\}$ is a sequence of independent random variables with mean zero such that $1+X_k>0$, a.s., for every k, then the almost sure convergence of $\prod_k (1+X_k)$ is equivalent to that of $\sum_k X_k$. In this paper we shall extend this result to a martingale difference sequence and prove the following theorem.

THEOREM 1. Let $\{X_k, \mathcal{B}_k\}$ be a martingale difference sequence such that $X_k+1>0$, a.s., for every k. Then $\prod_k (1+X_k)$ converges almost surely if and only if $\sum_k X_k$ converges almost surely.

As an application we shall give a new criterion for the absolute continuity of locally equivalent measures.

2. Proof of Theorem 1

A sequence of random variables $\{X_k\}$ is a submartingale difference sequence iff X_k is \mathcal{B}_k -measurable and

$$E[X_{k+1} | \mathcal{B}_k] \ge 0$$
, a.s.,

70 Hiroshi Sato

and martingale difference sequence iff

$$E[X_{k+1} | \mathcal{B}_k] = 0$$
, a.s.,

for every k. Before proving Theorem 1, we remark several lemmas.

LEMMA 1 (A. N. Shiryaev [5], VII-5-Theorem 5). Let $\{X_k\}$ be a submartingale difference sequence such that

$$|X_k| < K$$
, a.s., $k \in \mathbb{N}$,

for a positive constant K and assume that $\sum_k X_k$ converges almost surely. Then we have

$$\sum_{k} E[X_{k+1}^2 | \mathcal{B}_k] < + \infty$$
, a.s..

LEMMA 2. Let $\{X_k\}$ be a submartingale difference sequence such that

$$X_k < K$$
, a.s., $k \in \mathbb{N}$,

for a positive constant K and assume that $\sum_k X_k$ converges almost surely. Then $\sum_k X_k^2$ converges almost surely.

PROOF. For any $k \in N$ define

$$Y_k = \begin{cases} X_k, & \text{if } |X_k| < K, \\ 0, & \text{otherwise.} \end{cases}$$

Then we have for any $k \in \mathbb{N}$, $|Y_k| < K$ and

$$E[Y_{k+1} | \mathcal{B}_k] \ge E[X_{k+1} | \mathcal{B}_k] \ge 0$$
, a.s.,

so that $\{Y_k\}$ is a submartingale difference sequence. Therefore by Lemma 1 we have

(1)
$$\sum_{k} E[Y_{k+1}^2 | \mathscr{B}_k] < + \infty, \quad \text{a.s.},$$

and consequently

$$(2) \qquad \sum_{k} E[Y_{k+1}^4 | \mathscr{B}_k] \le K^2 \sum_{k} E[Y_{k+1}^2 | \mathscr{B}_k] < + \infty, \quad \text{a.s.}.$$

On the other hand, since $\sum_k X_k$ converges almost surely, we have

(3)
$$\sum_{k} P(Y_{k+1} \neq X_{k+1} | \mathcal{B}_k) = \sum_{k} P(|X_{k+1}| > K | \mathcal{B}_k) < + \infty$$
, a.s.,

and by W. Stout [6], Theorem 2-8-8, (1), (2) and (3) imply the almost sure convergence of $\sum_k X_k^2$. Q. E. D.

PROOF OF THEOREM 1. Let $\{X_k, \mathcal{B}_k\}$ be a martingale difference sequence

such that $X_k+1>0$, a.s., for every k. Then $Z_k=\prod_{j=1}^k (1+X_j)$ is a positive martingale and we have $\sup_k E[Z_k]=1<+\infty$. Therefore $Z_\infty=\lim_{k\to+\infty} Z_k\geq 0$ exists almost surely.

Assume that $\sum_k X_k$ converges almost surely. Then, since $\{-X_k\}$ is a submartingale difference sequence such that $-X_k < 1$, a.s., for every k, by Lemma 2 we have $\sum_k X_k^2 < +\infty$, a.s.. Therefore by the Cauchy's principle (see also H. Sato [3], Lemma 8), we have

(4)
$$Z_{\infty} = \prod_{k=1}^{+\infty} (1 + X_k) > 0$$
, a.s..

Conversely, assume that $Z_{\infty} > 0$, a.s., and define $U_k = X_k Z_{k-1}$, and $v_k = (Z_{k-1})^{-1}$, $k \in \mathbb{N}$. Then (4) implies that

$$\sup_k v_k = (\inf_k Z_k)^{-1} < + \infty, \quad a.s.,$$

and we have

$$\sup_k E[|\sum_{i=1}^k U_k|] = \sup_k E[Z_k] = 1 < + \infty.$$

Therefore, since v_k is \mathcal{B}_{k-1} -measurable, by Burkholder's theorem (W. Stout [6], Theorem 2-9-4)

$$\sum_{k} X_{k} = \sum_{k} v_{k} U_{k}$$

converges almost surely.

Q. E. D.

3. Absolute continuity of locally equivalent masures

In this section, we shall prove the following theorem.

THEOREM 2. Let (Ω, \mathcal{B}) be a measurable space, $\{\mathcal{B}_k\}$ be an increasing sequence of σ -algebras which generates \mathcal{B} , P and Q be probability measures on (Ω, \mathcal{B}) , P_k and Q_k be the restrictions of P and Q to \mathcal{B}_k , $k \in \mathbb{N}$, respectively, and assume that for any $k \in \mathbb{N}$ P_k and Q_k are mutually absolutely continuous (denoted by $P_k \sim Q_k$). Then P is absolutely continuous with respect to Q if and only if

$$\sum_{k} \left(\frac{dQ_{k+1}}{dP_{k+1}} - \frac{dQ_{k}}{dP_{k}} \right) \left| \frac{dQ_{k}}{dP_{k}} \right|$$

converges almost surely (P).

Proof. Define

$$Z_k = \frac{dQ_k}{dP_k}, \quad k \in N,$$

$$X_1 = Z_1 - 1,$$

72 Hiroshi Sato

$$X_k = \frac{Z_k - Z_{k-1}}{Z_{k-1}}$$
. $k = 2, 3, 4, \dots$

In the discussions below, the mathematical expectation and the conditional expectation are always taken with respect to P.

Obviously, for any $k \in \mathbb{N}$ Z_k and X_k are \mathcal{B}_k -measurable and we have

$$Z_k = \prod_{i=1}^k (1 + X_i), \quad E[X_{k+1} | \mathcal{B}_k] = 0, \quad \text{a.s.} (P),$$

and

$$X_{k} + 1 > 0$$
, a.s. (P) .

Therefore $\{Z_k\}$ is a martingale and $\{X_k\}$ is a martingale difference sequence. By Doob's theorem (W. Stout [6], Theorem 2-7-2) we have

$$P(0 \le Z_{\infty} = \lim_{k} Z_{k} < +\infty) = 1.$$

and by A. N. Shiryaev [5], VII-6-Theorem 1,

(5)
$$Q(A) = \int_{A} Z_{\infty} dP + Q(A \cap \{Z_{\infty} = +\infty\}), \quad A \in \mathcal{B}.$$

Then it is easy to show that P is absolutely continuous with respect to Q if and only if $Z_{\infty} > 0$, a.s. (P), and the remaining part of the proof is obvious from Theorem 1. Q. E. D.

References

- [1] G. H. Hardy, A note on the continuity or discontinuity of a function defined by an infinite product, Proc. London Math. Soc. (2), 7 (1909), 4-48.
- [2] J. E. Littlewood, On a class of conditionally convergent infinite products, Proc. London Math. Soc. (2), 8 (1910), 195–199.
- [3] H. Sato, Characteristic functional of a probability measure absolutely continuous with respect to a Gaussian Radon measure, J. Func. Anal., 61 (1985), 222-245.
- [4] H. Sato, On the convergence of the product of independent random variables (to appear in J. Math. Kyoto Univ.).
- [5] A. N. Shiryaev, Probability, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1984).
- [6] W. F. Stout, Almost sure convergence, Academic Press, New York, San Francisco and London, 1974.

Department of Mathematics, Faculty of Science, Kyushu University-33