Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits

Toshihiko Matsuki
(Received May, 7, 1987)

§ 1. Introduction

Let G be a connected Lie group, σ an involution of G and H an open subgroup of $G^{\sigma}=\{x \in G \mid \sigma x=x\}$. Then the G-homogeneous manifold $H \backslash G$ is called an affine symmetric space. Suppose that G is a real semisimple Lie group. Let P be a minimal parabolic subgroup of G and P^{\prime} a parabolic subgroup of G containing P. Then the double coset decomposition $H \backslash G / P$ is studied in [2], and [5], the relation between $H \backslash G / P^{\prime}$ and $H \backslash G / P$ is studied in [3], and the closure relation for $H \backslash G / P$ is studied in [4].

Let θ be a Cartan involution of G such that $\sigma \theta=\theta \sigma$. Put $K=G^{\theta}$ and let H^{a} be the open subgroup of $G^{\boldsymbol{\sigma} \theta}$ such that $K \cap H=K \cap H^{\mathrm{a}}$. Then $H^{\mathrm{a}} \backslash G$ is called the affine symmetric space associated to $H \backslash G$. Let A be a θ-stable split component of P and put $U=\left\{x \in K \mid x A x^{-1}\right.$ is σ-stable $\}$.

There exists a natural one-to-one correspondence between the double coset decompositions $H \backslash G / P^{\prime}$ and $H^{\mathrm{a}} \backslash G / P^{\prime}$ given by $D \rightarrow D^{\mathrm{a}}=H^{\mathrm{a}}(D \cap U) P^{\prime}$ for $H-P^{\prime}$ double cosets D in G ([2], [3]). Moreover it follows easily from Corollary of Theorem in [4] that this correspondence reverses the closure relations for the double coset decompositions. In this paper we prove the following theorem.

Theorem. Let D_{1} and D_{2} be arbitrary $H-P^{\prime}$ double cosets in G. Then we have the following.
(i) $D_{1}^{c 1} \supset D_{2} \Leftrightarrow D_{1} \cap D_{2}^{\mathrm{a}} \neq \emptyset$.
(ii) Let $I\left(D_{1}, D_{2}\right)$ be the set of all the $H-P^{\prime}$ double cosets D in G such that $D_{1}^{\mathrm{cl}} \supset D^{\mathrm{cl}} \supset D_{2}$. Then

$$
\left(D_{1} \cap D_{2}^{\mathrm{a}}\right)^{\mathrm{cl}} \cap D_{2}^{\mathrm{a}}=\cup_{D \in I\left(D_{1}, D_{2}\right)} D \cap D_{2}^{\mathrm{a}}
$$

(iii) Let x be an element of U. Then $H x P^{\prime} \cap H^{a} x P^{\prime}=(K \cap H) x P^{\prime}$.
(iv) $D_{1} \cap D_{2}^{\mathrm{a}}$ is nonempty and closed in $G \Leftrightarrow D_{1}=D_{2}$.

Example. Let G_{1} be a connected semisimple Lie group, θ_{1} a Cartan involution of $G_{1}, K_{1}=\left\{x \in G_{1} \mid \theta_{1} x=x\right\}$, and P_{1} a minimal parabolic subgroup of G_{1} with a θ_{1}-stable split component A_{1}. Let P_{1}^{\prime} and $P_{1}^{\prime \prime}$ be parabolic subgroups of
G_{1} containing P_{1}. Put $G=G_{1} \times G_{1}, H=\left\{(x, x) \in G \mid x \in G_{1}\right\}, H^{a}=\left\{\left(\theta_{1} x, x\right) \in G \mid x \in\right.$ $\left.G_{1}\right\}$ and $P^{\prime}=P_{1}^{\prime} \times P_{1}^{\prime \prime}$. Then we have natural bijections

$$
H \backslash G / P^{\prime} \simeq P_{1}^{\prime} \backslash G_{1} / P_{1}^{\prime \prime}
$$

and

$$
H^{\mathrm{a}} \backslash G / P^{\prime} \simeq \theta_{1}\left(P_{1}^{\prime}\right) \backslash G_{1} / P_{1}^{\prime \prime}
$$

by the maps $(x, y) \rightarrow x^{-1} y$ and $(x, y) \rightarrow \theta_{1}\left(x^{-1}\right) y$, respectively. Hence by the Bruhat decomposition of G_{1}, every $H-P^{\prime}$ double coset and $H^{a}-P^{\prime}$ double coset have representatives in $W\left(A_{1}\right) \times 1$.

Consider the intersection $I=H(w, 1) P^{\prime} \cap H^{\mathrm{a}}\left(w^{\prime}, 1\right) P^{\prime}$ for $w, w^{\prime} \in W\left(A_{1}\right)$. Since $H \cap H^{a}=\left\{(x, x) \mid x \in K_{1}\right\}$ and since $G_{1}=K_{1} P_{1}$ by the Iwasawa decomposition of G_{1}, I contains elements of the form $(x, 1)$ with $x \in G_{1}$ if I is nonempty. We have easily

$$
(x, 1) \in I \Longleftrightarrow x \in P_{1}^{\prime} w P_{1}^{\prime \prime} \cap \theta_{1}\left(P_{1}^{\prime}\right) w^{\prime} P_{1}^{\prime \prime} .
$$

Thus we have as a corollary of Theorem (i),

$$
\begin{equation*}
\left(P_{1}^{\prime} w P_{1}^{\prime \prime}\right)^{c 1} \supset P_{1}^{\prime} w^{\prime} P_{1}^{\prime \prime} \Longleftrightarrow P_{1}^{\prime} w P_{1}^{\prime \prime} \cap \theta_{1}\left(P_{1}^{\prime}\right) w^{\prime} P_{1}^{\prime \prime} \neq \varnothing . \tag{1.1}
\end{equation*}
$$

Especially we have

$$
\begin{equation*}
\left(P_{1} w P_{1}\right)^{\mathrm{cl}} \supset P_{1} w^{\prime} P_{1} \Longleftrightarrow P_{1} w P_{1} \cap \theta_{1}\left(P_{1}\right) w^{\prime} P_{1} \neq \emptyset . \tag{1.2}
\end{equation*}
$$

Remark. In [1], V. V. Deodhar studied explicitly the above type of intesection $P_{1} w P_{1} \cap \bar{P}_{1} w^{\prime} P_{1}$ when G_{1} is a semisimple algebraic group over an algebraically closed field. Here $\bar{P}_{1}=w_{0} P_{1} w_{0}^{-1}$ with the longest element w_{0} of the Weyl group. He gave (1.2) as a corollary of his results in this case (replace $\theta_{1}\left(P_{1}\right)$ by $\left.\bar{P}_{1}\right)$.

The author is grateful to J. A. Wolf who suggested him the importance of the intersections of H-orbits and H^{a}-orbits on G / P. In fact, Theorem (iv) was conjectured by him.

§ 2. Notations and elementary lemmas

Let g be the Lie algebra of G. Let σ and θ be the involutions of g induced from the involutions σ and θ of G, respectively. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}, \mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ and $\mathfrak{g}=\mathfrak{h}^{\mathrm{a}}+\mathfrak{q}^{\mathfrak{a}}$ be the decompositions of \mathfrak{g} into the +1 and -1 eigenspaces for σ, θ and $\sigma \theta$, respectively.

Let \mathfrak{a} be the Lie algebra of A. Then \mathfrak{a} is a maximal abelian subspace of \mathfrak{p}. Let Σ denote the root system of the pair $(\mathfrak{g}, \mathfrak{a})$. Then P can be written as

$$
P=P\left(\mathfrak{a}, \Sigma^{+}\right)=Z_{\mathbf{G}}(\mathfrak{a}) \exp \mathfrak{n}
$$

with a positive system Σ^{+}of Σ. Here $Z_{G}(\mathfrak{a})$ is the centralizer of \mathfrak{a} in G and $\mathfrak{n}=$ $\sum_{\alpha \in \Sigma^{+}} \mathfrak{g}(\mathfrak{a} ; \alpha)(\mathfrak{g}(\mathfrak{a} ; \alpha)=\{X \in \mathfrak{g} \mid[Y, X]=\alpha(Y) X$ for all $Y \in \mathfrak{a}\})$.

Lemma 1. Let \mathfrak{P}^{\prime} be a parabolic subalgebra of \mathfrak{g}. Then $\mathfrak{h}+\mathfrak{h}^{\mathbf{a}}+\mathfrak{P}^{\prime}=\mathfrak{g}$.
Proof. Let X be an element of \mathfrak{P}^{\prime}. Then

$$
\theta X=X-(X+\sigma X)+(\sigma X+\theta X) \in \mathfrak{P}^{\prime}+\mathfrak{h}+\mathfrak{h}^{\mathrm{a}} .
$$

Hence $\theta \mathfrak{P}^{\prime} \subset \mathfrak{h}+\mathfrak{h}^{\text {a }}+\mathfrak{P}^{\prime} . \quad$ Since $\mathfrak{P}^{\prime}+\theta \mathfrak{P}^{\prime}=\mathfrak{g}$, we have $\mathfrak{h}+\mathfrak{h}^{\mathbf{a}}+\mathfrak{P}^{\prime} \supset \mathfrak{g}$.
Q. E. D.

Lemma 2. Let D_{1} and D_{2} be arbitrary $H-P^{\prime}$ double cosets in G. Then we have the following.
(i) $\left(D_{1} \cap D_{2}^{\mathrm{a}}\right)^{\mathrm{cl}} \cap D_{2}^{\mathrm{a}}=D_{1}^{\mathrm{cl}} \cap D_{2}^{\mathrm{a}}$.
(ii) $D_{1}^{\mathrm{cl}} \supset D_{2} \Rightarrow D_{1} \cap D_{2}^{\mathrm{a}} \neq \emptyset$.

Proof. (i) It is clear that $\left(D_{1} \cap D_{2}^{\mathrm{a}}\right)^{\mathrm{c}} \cap D_{2}^{\mathrm{a}} \subset D_{1}^{\mathrm{cl}} \cap D_{2}^{\mathrm{a}}$. Let x be an element of $D_{1}^{\mathrm{c} 1} \cap D_{2}^{\mathrm{a}}$. Then we have only to show that $x \in\left(D_{1} \cap D_{2}^{\mathrm{a}}\right)^{\mathrm{c} 1}$. For any neighborhood V of the identity in $H^{\text {a }}$, the set $H V x P^{\prime}$ contains a neighborhood of x in G by Lemma 1. Hence $D_{1} \cap H V x P^{\prime} \neq \emptyset$. Since $H D_{1} P^{\prime}=D_{1}$, we have

$$
D_{1} \cap V x \neq \varnothing .
$$

On the other hand, $V x \subset D_{2}^{\mathrm{a}}$. Hence $\left(D_{1} \cap D_{2}^{\mathrm{a}}\right) \cap V x \neq \varnothing$ and we have proved that $x \in\left(D_{1} \cap D_{2}^{\mathrm{a}}\right)^{c 1}$.
(ii) is clear from (i) since $D_{2} \cap D_{2}^{\mathrm{a}} \neq \varnothing$.
Q. E. D.

§ 3. Proof of Theorem (i) and (ii)

By Lemma 2 (i), Theorem (ii) follows from Theorem (i).
Proof of Theorem (i). By Theorem 1 in [2], we can write $D_{1}=H x P^{\prime} \supset$ $H x P$ with $x \in U$. Considering $x P x^{-1}$ and $x P^{\prime} x^{-1}$ as P and P^{\prime}, respectively, we may assume that $D_{1}=H P^{\prime}$ and that a is σ-stable. By Lemma 2 (ii), we have only to prove the following.

$$
D_{1} \cap D_{2}^{\mathrm{a}} \neq \varnothing \Longrightarrow D_{1}^{\mathrm{cl}} \supset D_{2} .
$$

Suppose that $D_{1} \cap D_{2}^{\mathrm{a}} \neq \emptyset$. Then $H P \cap D_{2}^{\mathrm{a}} \neq \emptyset$ since $D_{2}^{\mathrm{a}} P^{\prime}=D_{2}^{\mathrm{a}}$. Hence there exists an element y of $D_{2}^{\text {a }} \cap U=D_{2} \cap U$ such that $H P \cap H y P^{\mathrm{a}} \neq \emptyset$. On the other hand, if $(H P)^{\mathrm{cl}} \supset H y P$ for some $y \in D_{2}$, then it is clear that $D_{1}^{\mathrm{cl}} \supset D_{2}$. Thus we have only to prove the following.

$$
\begin{equation*}
\text { If } H P \cap H^{\mathrm{a}} y P \neq \varnothing \text { for } y \in U \text {, then }(H P)^{\mathrm{cl}} \supset H y P \tag{3.1}
\end{equation*}
$$

We will prove (3.1) by induction on the real rank of $G(=\operatorname{dim} a)$. Suppose that $\mathfrak{a} \subset \mathfrak{q}$ and that $\operatorname{Ad}(y) \mathfrak{a} \subset \mathfrak{b}$. Then by [2] Proposition 1 and Proposition 2, $H P$ is open in G and $H y P$ is closed in G. By [4] Proposition, we have always $(H P)^{\mathrm{cl}} \supset H y P$. Hence we may assume that

$$
\begin{equation*}
\mathfrak{a} \cap \mathfrak{h} \neq\{0\} \tag{3.2}
\end{equation*}
$$

or that

$$
\begin{equation*}
\operatorname{Ad}(y) \mathfrak{a} \cap \mathfrak{q} \neq\{0\} \tag{3.3}
\end{equation*}
$$

We first show that the case (3.3) is reduced to the case (3.2). Assume the condition (3.3). Then $\operatorname{Ad}(y) \mathfrak{a} \cap \mathfrak{h}^{\mathfrak{a}} \neq\{0\}$ since $\operatorname{Ad}(y) \mathfrak{a} \subset \mathfrak{p}$. Consider $\operatorname{Ad}(y) \mathfrak{a}$, $\mathfrak{h}^{\mathbf{a}}$ and $y P y^{-1}$ as $\mathfrak{a}, \mathfrak{b}$ and P in the case (3.2), respectively. Then we have in the proof of the case (3.2) that

$$
H^{\mathrm{a}} y P y^{-1} \cap H P y^{-1} \neq \emptyset \Longrightarrow\left(H^{\mathrm{a}} y P y^{-1}\right)^{\mathrm{cl}} \supset H^{\mathrm{a}} P y^{-1}
$$

Hence

$$
H P \cap H^{\mathrm{a}} y P \neq \emptyset \Longrightarrow\left(H^{\mathrm{a}} y P\right)^{\mathrm{cl}} \supset H^{\mathrm{a}} P
$$

On the other hand, we have

$$
(H P)^{\mathrm{cl}} \supset H y P \Longleftrightarrow\left(H^{\mathrm{a}} y P\right)^{\mathrm{cl}} \supset H^{\mathrm{a}} P
$$

for $y \in U$ by Corollary of [4] Theorem. Thus the case (3.3) is reduced to the case (3.2) and so we may assume (3.2) in the following.

By [4] Theorem (iv), there exists a sequence $\alpha_{1}, \ldots, \alpha_{n}$ of simple roots in Σ^{+} such that

$$
\begin{equation*}
(H P)^{c 1}=H\left((L \cap H) P_{L}\right)^{c 1} w P L_{\alpha_{n}} \cdots L_{\alpha_{1}} . \tag{3.4}
\end{equation*}
$$

Here $w=w_{\alpha_{1}} \cdots w_{\alpha_{n}}, L$ is the analytic subgroup of G for $\mathfrak{I}=\left[3_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{h}), 3_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{b})\right]$, $P_{L}=L \cap P\left(=L \cap w P w^{-1}\right)$ and $L_{\alpha}=Z_{G}\left(\mathfrak{a}^{\alpha}\right), \mathfrak{a}^{\alpha}=\{Y \in \mathfrak{a} \mid \alpha(Y)=0\}$ for $\alpha \in \Sigma$.

Lemma 3. $H w P=(K \cap H)(L \cap H)_{0} w P . \quad\left((L \cap H)_{0}\right.$ is the connected component of $L \cap H$ containing the identity.)

Proof. Put $L_{1}=Z_{G}(\mathfrak{a} \cap \mathfrak{h})$ and define a parabolic subgroup P_{1} of G by $P_{1}=$ $L_{1} w P w^{-1}$ as in [4] §1. Then $P_{1} \cap H_{0}$ is a parabolic subgroup of H_{0} and we have $H_{0}=(K \cap H)_{0}\left(P_{1} \cap H\right)_{0}$ by the Iwasawa decomposition of H_{0}. On the other hand, $K \cap H$ intersects with every connected component of H since $H=(K \cap H)$. $\exp (\mathfrak{p} \cap \mathfrak{h})$. Hence

$$
\begin{equation*}
H=(K \cap H)\left(P_{1} \cap H\right)_{0} . \tag{3.5}
\end{equation*}
$$

Let n_{1} be the nilpotent radical of the Lie algebra of P_{1}. Then $P_{1}=L_{1} \exp n_{1}$ is a Langlands decomposition of P_{1}. Since L_{1} and n_{1} are σ-stable, we have

$$
\begin{equation*}
\left(P_{1} \cap H\right)_{0}=\left(L_{1} \cap H\right)_{0} \exp \left(\mathfrak{n}_{1} \cap \mathfrak{h}\right) . \tag{3.6}
\end{equation*}
$$

Let \mathfrak{z} be the center of the Lie algebra I_{1} of L_{1}. Then $I_{1}=\mathfrak{z}+\mathrm{I}$. Since \mathfrak{z} and I are σ-stable, we have $\mathfrak{I}_{1} \cap \mathfrak{h}=\mathfrak{j} \cap \mathfrak{h}+\mathfrak{I} \cap \mathfrak{h}$ and therefore

$$
\begin{equation*}
\left(L_{1} \cap H\right)_{0}=(L \cap H)_{0} \exp (\mathfrak{z} \cap \mathfrak{y}) . \tag{3.7}
\end{equation*}
$$

We get the desired formula from (3.5), (3.6) and (3.7) since $\exp n_{1} \subset w P w^{-1}$ and $\exp \mathcal{Z}^{\subset} \subset w P w^{-1}$.
Q.E.D.

Now we will continue the proof of Theorem (i). Suppose that $H P \cap H^{\mathrm{a}} y P \neq$ ø. Since $H P \subset H w P L_{\alpha_{n}} \cdots L_{\alpha_{1}}$, we have

$$
H w P \cap H^{\mathrm{a}} y P L_{\alpha_{1}} \cdots L_{\alpha_{n}} \neq \varnothing
$$

By Lemma 3, we have

$$
\begin{equation*}
(L \cap H)_{0} \cap H^{\mathrm{a}} y P L_{\alpha_{1}} \cdots L_{\alpha_{n}} w^{-1} \neq \varnothing . \tag{3.8}
\end{equation*}
$$

Let y^{\prime} be an element of the left hand side of (3.8) and $y^{\prime \prime}$ an element of $\left(L \cap H^{\mathrm{a}}\right)_{0} y^{\prime} P_{L} \cap U$. Then

$$
\begin{equation*}
H^{\mathrm{a}} y^{\prime \prime} w P \subset H^{\mathrm{a}} y P L_{\alpha_{1}} \cdots L_{\alpha_{n}} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
(L \cap H)_{0} P_{L} \cap\left(L \cap H^{\mathrm{a}}\right)_{0} y^{\prime \prime} P_{L} \neq \varnothing \tag{3.10}
\end{equation*}
$$

Since $\sigma L=\theta L=L$ and $\operatorname{dim}(\mathfrak{l} \cap \mathfrak{a})<\operatorname{dim} \mathfrak{a}$, we have

$$
\left((L \cap H)_{0} P_{L}\right)^{c 1} \supset(L \cap H)_{0} y^{\prime \prime} P_{L}
$$

by the assumption of induction. By (3.4), we have

$$
\begin{align*}
(H P)^{\mathrm{cl}} & \supset H(L \cap H)_{0} y^{\prime \prime} P_{L} w P L_{\alpha_{n}} \cdots L_{\alpha_{1}} \tag{3.11}\\
& \supset H y^{\prime \prime} w P L_{\alpha_{n}} \cdots L_{\alpha_{1}} .
\end{align*}
$$

Now consider the formula (3.9) which can be rewritten as

$$
y \in H^{\mathrm{a}} y^{\prime \prime} w P L_{\alpha_{n}} \cdots L_{\alpha_{1}} .
$$

As in the proof of [4] Theorem (vi), we can choose a $y_{1} \in y^{\prime \prime} w P L_{\alpha_{n}} \cdots L_{\alpha_{1}} \cap U$ so that $y \in H^{\mathrm{a}} y_{1} P$. Since $y \in U$, it follows from [2] Theorem 1 that $y \in(K \cap H) y_{1} P$. Hence

$$
\begin{equation*}
y \in(K \cap H) y^{\prime \prime} w P L_{\alpha_{n}} \cdots L_{\alpha_{1}} . \tag{3.12}
\end{equation*}
$$

From (3.11) and (3.12), we have $(H P)^{\text {cl }} \supset H y P$ as desired.
Q.E.D.

§4 Proof of Theorem (iii) and (iv)

Theorem (iv) follows from (ii) and (iii). So we have only to prove (iii) in this section. Recall the definition of $P=P\left(\mathfrak{a}, \Sigma^{+}\right)$in $\S 2$ and let Ψ denote the set of all the simple roots in Σ^{+}.

Lemma 4. Suppose that $H^{a} P$ is not open in G. Then there exists an $\alpha \in \Psi$ such that $\operatorname{dim} H^{\mathrm{a}} P_{\alpha}>\operatorname{dim} H^{\mathrm{a}} P$ (here P_{α} is the parabolic subgroup of G defined by $P_{\alpha}=P L_{\alpha}$).

Proof.. By [2] Theorem 1, we may assume that $\sigma \mathfrak{a}=\mathfrak{a}$. By [2] Proposition $1, \Sigma^{+}$is not σ-compatible or $\mathfrak{a} \cap \mathfrak{b}$ is not maximal abelian in $\mathfrak{p} \cap \mathfrak{b}$. First suppose that Σ^{+}is not σ-compatible. Then by [4] Lemma 4 and Lemma 5, there exists an $\alpha \in \Psi$ such that $H^{\mathrm{a}} P_{\alpha}=H^{\mathrm{a}} P \cup H^{\mathrm{a}} w_{\alpha} P$ and that $\operatorname{dim} H^{\mathrm{a}} w_{\alpha} P>\operatorname{dim} H^{\mathrm{a}} P$. Hence we may assume that Σ^{+}is σ-compatible and that $\mathfrak{a} \cap \mathfrak{h}$ is not maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$.

Put $\mathfrak{I}_{1}=3_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{b})$. Suppose that there exists an $\alpha \in \Psi \cap \Sigma\left(\mathrm{I}_{1} ; \mathfrak{a}\right)$ such that $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}^{\mathfrak{a}} \neq\{0\}$. Here $\Sigma\left(\mathrm{I}_{1} ; \mathfrak{a}\right)$ is the root system of the pair $\left(\mathrm{I}_{1}, \mathfrak{a}\right)$, and it is clear that $\alpha \in \Sigma\left(\mathrm{l}_{1} ; \mathfrak{a}\right)$ if and only if $\alpha \in \Sigma, \sigma \alpha=-\alpha$. Then by [4] Lemma 3 (F), $\operatorname{dim} H^{\mathrm{a}} P_{\alpha}>\operatorname{dim} H^{a} P$. Hence we may assume that

$$
\begin{equation*}
\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}^{\mathfrak{a}}=\{0\} \quad \text { for all } \quad \alpha \in \Psi \cap \Sigma\left(\mathfrak{l}_{1} ; \mathfrak{a}\right) . \tag{4.1}
\end{equation*}
$$

Let β be a root in $\Sigma\left(\mathrm{l}_{1} ; \mathfrak{a}\right) \cap \Sigma^{+}$and write $\beta=\sum_{\alpha \in \Psi} n_{\alpha} \alpha$. Choose an element $Y \in \mathfrak{a} \cap \mathfrak{h}$ such that $\alpha(Y)>0$ for all $\alpha \in \Sigma^{+}-\Sigma\left(\mathrm{I}_{1} ; \mathfrak{a}\right)$ by [4] Lemma 4. If $n_{\alpha}>0$ for some $\alpha \in \Psi-\Sigma\left(\mathrm{I}_{1} ; \mathfrak{a}\right)$, then $\beta(Y)>0$. But since $\beta(Y)=0$, we have proved that β is written as a linear combination of roots in $\Psi \cap \Sigma\left(\mathfrak{l}_{1} ; \mathfrak{a}\right) . \quad$ By (4.1) and Lemma 6 in $\S 5$, we have $\mathfrak{g}(\mathfrak{a} ; \beta) \subset \mathfrak{h}$. Hence

$$
\mathfrak{a} \cap \mathfrak{q}+\sum_{\beta \in \sum\left(\mathfrak{1}_{1} ; \mathfrak{a}\right)} \mathfrak{g}(\mathfrak{a} ; \beta) \subset \mathfrak{b}^{\mathfrak{a}} .
$$

Since $\mathcal{Z}_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{h})=\mathfrak{l}_{1}=\mathcal{Z}_{\mathfrak{t}}(\mathfrak{a})+\mathfrak{a}+\sum_{\beta \in E\left(\mathfrak{l}_{1} ; \mathfrak{a}\right)} \mathfrak{g}(\mathfrak{a} ; \beta), \mathfrak{a} \cap \mathfrak{h}$ is a maximal abelian subspace of $\mathfrak{p} \cap \mathfrak{b}=\mathfrak{p} \cap \mathfrak{q}^{\text {a }}$. But this is a contradiction to the assumption on $\mathfrak{a} \cap \mathfrak{b}$.
Q.E.D.

Lemma 5. If $H P$ is closed in G, then $H P=(K \cap H) P$.
Proof. If $H P=(K \cap H) x P$ for some $x \in H P$, then $H P=(K \cap H) P$. So taking a conjugate of P, we may assume that $\sigma \mathfrak{a}=\mathfrak{a}$. Since Σ^{+}is σ-compatible, we can apply Lemma 3 for $w=1$ to get

$$
H P=(K \cap H)(L \cap H)_{0} P .
$$

Since $\mathfrak{a} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$, we have $L \subset H^{\text {a }}$ by [4] Lemma 6 (i). Since $H \cap H^{\mathrm{a}}=K \cap H$, we have $H P=(K \cap H)\left(L \cap H^{\mathrm{a}} \cap H\right)_{0} P=(K \cap H) P$ as desired.
Q.E.D.

Proof of Theorem (iii). Choose $x^{\prime} \in x P^{\prime} \cap U$ so that $H x^{\prime} P$ has the minimum dimension among the $H-P$ double cosets contained in $H x P^{\prime}$. Clearly $H x P^{\prime} \cap$ $H^{\mathrm{a}} x P^{\prime}=\left(H x^{\prime} P \cap H^{\mathrm{a}} x P^{\prime}\right) P^{\prime}$. Since $\left(H x^{\prime} P\right)^{\mathrm{c} 1} \cap H x P^{\prime}=H x^{\prime} P$, it follows from Theorem (i) that $H x^{\prime} P \cap H^{\mathrm{a}} x P^{\prime}=H x^{\prime} P \cap H^{\mathrm{a}} x^{\prime} P$. So we have only to prove that

$$
\begin{equation*}
H x^{\prime} P \cap H^{\mathrm{a}} x^{\prime} P=(K \cap H) x^{\prime} P \quad \text { for } \quad x^{\prime} \in U . \tag{4.2}
\end{equation*}
$$

We will prove (4.2) by induction on the codimension of $H^{\mathrm{a}} x^{\prime} P$. Rewriting $x^{\prime} P x^{\prime-1}$ by P, we may assume that $x^{\prime}=1$ and that $\sigma \mathfrak{a}=\mathfrak{a}$.

Suppose that $H^{a} P$ is open in G. Then $H P$ is closed in G by [2] $\S 3$ Corollary and $H P=(K \cap H) P \subset H^{a} P$ by Lemma 5. Hence we may assume that $H^{a} P$ is not open in G.

By Lemma 4, there exists an $\alpha \in \Psi$ such that $\operatorname{dim} H^{\mathrm{a}} P_{\alpha}>\operatorname{dim} H^{a} P$. Then by [4] Lemma 3, there are two cases (B^{a}): $\sigma \theta \alpha \neq \pm \alpha, \sigma \theta \alpha \in \Sigma^{+}$and (D^{a}): $\sigma \theta \alpha=\alpha$, $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}^{\mathrm{a}} \neq\{0\}$. Put $z=w_{\alpha}$ in the case ($\left.\mathrm{B}^{\mathrm{a}}\right)$ and put $z=c_{\alpha}$ in the case (D^{a}). Then we have $(H z P)^{\mathrm{cl}} \cap H P_{\alpha}=H z P$ by [4] Lemma $3(\mathrm{~A})$ and (F) (since $\left.\theta\right|_{a}=-1$, we have ($\left.\mathrm{B}^{\mathrm{a}}\right)=(\mathrm{A}): \sigma \alpha \neq \pm \alpha, \sigma \alpha \notin \Sigma^{+}$and $\left(\mathrm{D}^{\mathrm{a}}\right)=(\mathrm{F}): \sigma \alpha=-\alpha, \mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}^{\mathrm{a}} \neq\{0\}$). Applying Theorem (i), we have

$$
\begin{equation*}
H z P \cap H^{\mathrm{a}} P_{\alpha}=H z P \cap H^{\mathrm{a}} z P \tag{4.3}
\end{equation*}
$$

Let y be an element of $H P \cap H^{a} P$. Then we have only to show that $y \in$ $(K \cap H) P$ since it is clear that $(K \cap H) P \subset H P \cap H^{a} P$. Let y^{\prime} be an element of $H z P \cap y P_{\alpha}$. Then by (4.3) and the assumption of induction, we have $y^{\prime} \in H z P \cap H^{\mathrm{a}} P_{\alpha} \cap y P_{\alpha}=H z P \cap H^{\mathrm{a}} z P \cap y P_{\alpha}=(K \cap H) z P \cap y P_{\alpha}$
and therefore

$$
y \in(K \cap H) z P_{\alpha}=(K \cap H) P_{\alpha} .
$$

Since $y \in H^{a} P$, we have

$$
y \in(K \cap H) P_{\alpha} \cap H^{\mathrm{a}} P=(K \cap H)\left(P_{\alpha} \cap H^{\mathrm{a}}\right) P=(K \cap H) J P .
$$

Here J is the image of $P_{\alpha} \cap H^{a}$ under the projection $P_{\alpha} \rightarrow L_{\alpha}$ with respect to the Langlands decomposition $P_{\alpha}=L_{\alpha} \exp \mathfrak{r}_{\alpha}$. We consider the two cases (B^{a}) and (D^{a}) separately.

First consider the case (B^{a}). We have only to show that $J \subset L_{\alpha} \cap P$. Let L_{α}^{s} denote the analytic subgroup of G for the Lie subalgebra of g generated by $\mathfrak{g}(\mathfrak{a} ; \alpha)+$ $\mathfrak{g}(\mathfrak{a} ;-\alpha)$ as in [4] §3. Since $L_{\alpha}^{s} \cap J \supset \exp (\mathfrak{g}(\mathfrak{a} ; \alpha)+\mathfrak{g}(\mathfrak{a} ; 2 \alpha))$, we have $L_{\alpha}^{\mathrm{s}}-$
$\left(L_{\alpha}^{s} \cap J\right) w_{\alpha}\left(L_{\alpha}^{s} \cap P\right) \subset L_{\alpha}^{s} \cap P$ by the Bruhat decomposition of L_{α}^{s}. Since $L_{\alpha} / L_{\alpha} \cap$ $P \simeq L_{\alpha}^{s} / L_{\alpha}^{s} \cap P$, we have $L_{\alpha}-J w_{\alpha}\left(L_{\alpha} \cap P\right) \subset L_{\alpha} \cap P$. On the other hand, we have $J\left(L_{\alpha} \cap P\right) \cap J w_{\alpha}\left(L_{\alpha} \cap P\right)=\varnothing$ since $H^{a} P \cap H^{a} w_{\alpha} P \neq \emptyset$. Hence $J \subset L_{\alpha} \cap P$.

Next consider the case ($\left.\mathrm{D}^{\mathrm{a}}\right)$. We have only to show that $J \subset(K \cap H)\left(L_{\alpha} \cap P\right)$. In this case, $J \supset L_{\alpha}^{\mathrm{s}} \cap H^{\mathrm{a}}$ and it follows easily from the proof of [4] Lemma 3 (D) that

$$
L_{\alpha}=D(1) \cup D\left(w_{\alpha}\right) \cup D\left(c_{\alpha}\right) \cup D\left(c_{\alpha}^{-1}\right) .
$$

Here $D(x)=\left(L_{\alpha}^{s} \cap H^{a}\right) x\left(L_{\alpha} \cap P\right)$ for $x \in L_{\alpha}$. We also have

$$
J\left(L_{\alpha} \cap P\right)=\left\{\begin{array}{lll}
D(1) & \text { if } & w_{\alpha} \notin N_{K \cap H}(\mathfrak{a}) Z_{K}(\mathfrak{a}) \tag{4.4}\\
D(1) \cup D\left(w_{\alpha}\right) & \text { if } & w_{\alpha} \in N_{K \cap H}(\mathfrak{a}) Z_{K}(\mathfrak{a})
\end{array}\right.
$$

since $\left(H^{\mathrm{a}} P \cup H^{\mathrm{a}} w_{\alpha} P\right) \cap\left(H^{\mathrm{a}} c_{\alpha} P \cup H^{\mathrm{a}} c_{\alpha}^{-1} P\right)=\varnothing$. Since $D(1)$ and $D\left(w_{\alpha}\right)$ are closed in L_{α}, we have

$$
\begin{equation*}
D(x)=\left(L_{\alpha}^{\mathrm{s}} \cap K \cap H\right) x\left(L_{\alpha} \cap P\right) \quad \text { for } \quad x=1 \quad \text { and } \quad w_{\alpha} \tag{4.5}
\end{equation*}
$$

by Lemma 5 (Note that $L_{\alpha} / L_{\alpha} \cap P \simeq L_{\alpha}^{\mathrm{s}} / L_{\alpha}^{\mathrm{s}} \cap P$). From (4.4) and (4.5), we get

$$
J\left(L_{\alpha} \cap P\right) \subset(K \cap H)\left(L_{\alpha} \cap P\right)
$$

as desired.
Q.E.D.

§ 5. Appendix

Let \mathfrak{g} be a semisimple Lie algebra with a Cartan involution θ and the corresponding Cartan decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} and Σ the root system of the pair ($\mathfrak{g}, \mathfrak{a}$). Let Ψ be a fundemental system (the set of simple roots in a positive system of Σ) of Σ.

Lemma 6. Let \mathfrak{s} be a θ-stable subalgebra of \mathfrak{g} such that $\mathfrak{g}(\mathfrak{a} ; \beta) \subset \mathfrak{s}$ for all $\beta \in \Psi$. Then $\mathfrak{g}(\mathfrak{a} ; \beta) \subset \mathfrak{s}$ for all $\beta \in \Sigma$.

Proof. Since $\mathfrak{g}(\mathfrak{a} ; 2 \beta)=[\mathfrak{g}(\mathfrak{a} ; \beta), \mathfrak{g}(\mathfrak{a} ; \beta)]$, we have only to prove $\mathfrak{g}(\mathfrak{a} ; \beta) \subset \mathfrak{s}$ for all $\beta \in \Sigma_{0}=\{\beta \in \Sigma \mid 1 / 2 \beta \notin \Sigma\}$ (the set of reduced roots in Σ). Let γ be a root in Ψ and X a nonzero element of $\mathfrak{g}(\mathfrak{a} ; \gamma)$. Then $w_{\gamma}=\exp c(X+\theta X) \in \exp \mathfrak{s}$ represents the reflection in \mathfrak{a} with respect to γ for some $c \in \boldsymbol{R}$. Since $\mathfrak{g}\left(\mathfrak{a} ; w_{\gamma} \beta\right)=$ $\operatorname{Ad}\left(w_{\gamma}\right) \mathfrak{g}(\mathfrak{a} ; \beta)$ for $\beta \in \Sigma$, we have

$$
\begin{equation*}
\mathfrak{g}\left(\mathfrak{a} ; w_{\gamma} \beta\right) \subset \mathfrak{s} \text { if and only if } \mathfrak{g}(\mathfrak{a} ; \beta) \subset \mathfrak{s} . \tag{5.1}
\end{equation*}
$$

Since the Weyl group W of Σ is generated by $\left\{w_{\beta} Z_{K}(\mathfrak{a}) \mid \beta \in \Psi\right\}$ and since $\Sigma_{0}=W \Psi$, we get the desired assertion from (5.1).
Q.E.D.

References

[1] V. V. Deodhar, On some geometric aspects of Bruhat orderings I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511.
[2] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357.
[3] T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J. 12 (1983), 307-320.
[4] T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, to appear.
[5] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), 157-180.

Faculty of General Education, Tottori University

