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§ 1. Introduction

Let (X, g) be a Riemannian manifold and A the Laplacian associated to the
Riemannian metric g. For any bounded continuous function / on X, the heat
equation which has the initial value / is given by the following:

du/dt = - Δu on X x (0, oo)

κ(x, 0)=/(x) for xeX,

where the solution M(X, t) is a function in C°(X x [0, oo)) and is assumed to be
twice continuously differentiable in x and once continuously differentiable in ί,
for (x, t)eXx (0, oo). These equations describe the conduction of heat through
the homogeneous medium X. When X is a compact manifold or X is a bounded
domain with smooth boundary dX in a larger Riemannian manifold (in this
case we impose in addition, the boundary condition that

u(b9 t) = ψ(b) for (b, t) e dX x (0, oo),

where φ is a bounded continuous function on dX and the solution u is in C°(X x
[0, oo)), it is known that w(x, t) converges uniformly to a function which does
not depend on t and is harmonic on X as the time t becomes large (cf. [1] Ch.
VI, VII). The limit function is called the steady state. The purpose of the
present article is to describe the steady state when X is a Riemannian symmetric
space of the noncompact type under the condition that the initial value has the
limit along the Martin boundary in the Oshima compactiflcation X of X. When
X is a noncompact manifold, even in the case for X = R there exists an example
of the initial value which does not converge to a steady state (but it has many
ω-limits each of which is a constant function [8]).
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§ 2. The steady state on a symmetric space

Let X be a Riemannian symmetric space of the noncompact type. Then X
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is isometric to a coset space GjK where G is a noncompact connected semisimple

Lie group with finite center and K is a maximal compact subgroup. Let g and

f be the Lie algebras of G and K respectively and let B denote the Killing form of

g. B is nondegeneratc since g is semisimple. Let p be the orthogonal complement

of I in g. Then g = f + p is the Cartan decomposition and let Θ be the Cartan

involution, p is identified with the tangent space TO(X) at o = {K}eX. The

restriction B | p x p is positive definite, so defines an invariant Riemannian metric

g on X. Let A be the corresponding Laplacian. Fix a maximal abelian subspace

α cz p and let M be the centralizer of α in K. If α is a linear function on o and

α^O, let gα = {X e g | [77, Jf] = α(77)X for all He a}, a is called a restricted root

if g α #0. Let a' be the open subset of α where all restricted roots are ^ 0 . Fix

a Weyl chamber a+ in α, i.e., a connected component of α'. A restricted root α

is called positive (denoted by α>0) if its values on α + are positive and let 77 =

{al5..., az} be the corresponding set of simple roots. Let the linear function p

on a be defined by 2 p = Σ α > o m α α where mα = dimgα and denote by n the sub-

algebra Σ α > 0 9α a n ί * P u t n — θn- Let A, JV and JV be the analytic subgroups of G

corresponding to α, n and n respectively. Then G = KAN is an Iwasawa decom-

position. For g e G we write # = κ(g) exp H(g)n(g) with /c(g) e X, 77(#) e α and

n(g) e N. Put A+ =exp α + . Let PΓbe the Weyl group of (g, α), i.e., W=Nκ(a)/M

where Nκ denotes the normalizer in K. In order to describe the behavior at

infinity of functions on X we embed X into the Oshima compactification X.

For the detailed definition of this compactification, see [10]. In this compacti-

fication we have the map A + o-+[0, l^czX defined by (exp7/)0-»(e~αi(iϊ),...,

£-α,(ff>) a n d the G-orbit B of the point o^ corresponding to (0,..., 0) by the above

embedding is called the Martin boundary of X. The stabilizer of o^ is P = MAN

and B = G/P = K/M. The normalized Haar measure dk on K induces a K-

invariant measure on B. For h in L°°(i?) of the bounded measurable functions

on B its Poisson integral on X is given by

= Γ h(gk)dk.
J K

The Poisson transformation 0> is a bijection of U°{B) onto the space of all the

bounded solutions of Laplace equation .dw=0 on X.

Let / be a bounded continuous function on X. We consider the heat

equation on X which has the initial value / :

ί du/dt + Δu = 0 on X x (0, oo)
(1)

1 w(x, 0 ) = / ( x ) x e l .

For the existence and uniqueness of the solution, see [1], Ch. VIII, Theorems 3

and 4 or [2]. Our theorem is as follows:
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THEOREM. Suppose that the initial value f has the limit along the Martin
boundary B, i.e., there exists a bounded function f^ on B such thatf(x) converges
to /^(b) as x tends in X to a boundary point b. Then the solution u of the heat
equation (1) has the steady state which is the harmonic function given by the
Poisson integral of f^

liπv^uO, 0 = ^/ooW,

uniformly for x in every compact subset of X.

PROOF. The heat equation on a symmetric space X = G/K has the following
Gauss kernel by the Plancherel theorem (cf. [4]).

t(x)={
J a*

xeG,

where α* is the dual space of α, φv(x)= I e{iv~p)H(^xk^dk is the elementary
J K

spherical function corresponding to v in α*, c(v) is the Harish-Chandra ofunction
and w = # W the order of the Weyl group. By this kernel function the solution u
of (1) is given by

u(x, 0 = Γ gt (χ~1y)f (y)dy = Γ gt(y)f(χy)dy, xeG.
J G/K J G/K

The integral formula for the Cartan decomposition G = KAK yields that for
x = kak\ dx = D(a)dkdadk', D = ΓL>o |sinhα|w« and

u(x, t) = J^ + gt(a)(^J{xka)dk)D{a)da.

We know that (cf. [4], Prop. 3.1) gt^0 on X and

Γ gt(x)dx = Γ gt(a)D(a)da = 1 for each t > 0.
J G J A +

We shall prove the following Lemma in the next section.

LEMMA 1. For any compact set C in the closure X in X such that C Π B = 0,
we have

j, gt(x)dx • 0 when t > oo.

Taking this Lemma for granted we proceed as follows. Given ε>0, by the
assumption (2) we can take an open neighborhood U of o^ in the closure Cl (Λ + o)
£ [0, 1] such that

|/(x/cα)-/00(x/co00)| g ε for any α e 17, k e K.
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Then KU is an open set in X containing B, therefore C = X — KU is compact and

C Π B = 0. By Lemma 1, we have

oo.ί gt(x)dx = ί gt(a)D(a)da > 0 when t
J COX J A+-U

Hence we have

u(x, t) = Γ /(xkojdk + Γ gt{a)D{a)da Γ (f(xka)-f(xkoj)dk,
J K J A+ J K

Γ gt(a)D(a)da{ (f(xka)-f(xkoj)dk= Γ + Γ .

As for the first term put M = supx | / | , then supβ I/^I^M and

Γ gt{a)D(a)da\ \f(xka)-fjxko)jdk
JA+-U JK

<; 2M Γ gt(a)D(a)da • 0 when ί • oo.

And for the second term,

Γ gt(a)D(a)da Γ |/(x^)-/00(x/co00)|^/c ̂  ε Γ gt(a)D(a)da Γ J/c = ε.

Since we can take ε > 0 arbitrarily small we obtain that

Γ gt(a)D(a)da( |/(x/cα)-/oo(x/cooo)|ί//c >0 when t > oo.

§ 3. Proof of Lemma 1

By the compactness of C it suffices to prove for any xoeX — B there exists

a neighborhood V of x0 in Z such that VΓiB = φ and I <7,(;c)dx->0 when
J vnx

ί—•oo. First for xoeJf, take any compact neighborhood V of x0 in X. Then
the inequality

<7 f(x)^ Γ ^ ^ I V I 2 + I P I 2 ) | ( / > V ( X ) | | C
J o*

^ ΨoW Γ ^ - ί ( | v | 2 + | p | 2 ) | φ )
J α*

and the Lebesgue convergence theorem yield that when ί->oo,

Γ gt{x)dx^[ φo(x)dx[ e-'^^^lφ^dv/w > 0 ,
J F J K J α*
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since |c(v)|~2 is at most polynomial growth. Next as for xoeX — (X U B), there

exist geG and / / e C l ( α + ) , ^ 0 such that xQ = \ims^aϋ g Qxp sHo in X. We shall

fix such g and H for the rest of this section. Since x0 e B, there exists a simple

root αe/7 such that α(H) = 0. Note in this case that rankG/lC^2. Here we

recall some of the basic facts on parabolic subalgebras and establish the notation.

For more details refer to [11], 1.2. Now let ΘH be the set of simple roots vanish-

ing at H. ΘH (or H) defines a parabolic subalgebra VH = QH + nH where gH is

the centralizer of H in g and nH = Σα(//)>o 9α We have the direct decomposition

)=o9α where m ί / = ΰ H + m + α// + n / / , n H = Σα(H)=o,α>o

oceΘH}, aH = {X e a \ B(X, αH) = 0}, nH = θnH and

m = the centralizer of α in ί). Note that H e α H ^ { 0 } , ^H^W a n ( i α = αH + αH

(direct sum). Put VH — ^VH a n ( i ^H = θnH. Let P H , M H , iV^, NH, AH, AH, PH

NH be the analytic subgroups of G with the corresponding Lie algebras. Then

PH = MHAHNH is the Langlands decomposition and PH is the stabilizer of

x 0 in G and also PH = MHAHNH. Every ae ΘH has restriction zero on aH and

restrictions of ΘH to aH precisely form the roots of the pair (mH, αH). Put KH

= MH Π K. Then we have the analytic diffeomorphism φ: NH x AH x MHjKH^>

G/X defined by \j/{n, a, yKH) = nayK and for a suitable normalization of the

measures, the invariant measure on G/K is written by dx = a2pHdh dady where

x = nayK and 2pH = Σ*(H)>o<* (see [9], §9 or [11], Theorem 1.2.4.11). The

following Lemma holds.

LEMMA 2. Let neNH, α, α' eAH and v, y' eMH. We have the formula:

a2βH J Jt{y~xd-χna'y')dn

where lH = ά\m AΉ, g't is the Gauss kernel for the symmetric space MH/KH and

HoeaH is such that B(H0, X) = pH(X)forXeaH.

For a proof, see [9] Theorem 16.4.1.

Under these preparation we proceed as follows: Recall xo = lim s^oo g exp sHo.

Let g~ι G nayK where n e NH, a e AH and y e MH. Take any compact neighbor-

hood U of {KH} in MHjKH. Then the set V= the closure of iKΪV" *AHxU) in

X contains the geodesic (expsH)o and gV forms a neighborhood of x0 in X.

We have by Lemma 2,

0f(χ)dχ =
J gVΠX J VO

= f f f gt(y~1a'1ήafv')a2PH dn da' dy'
JNHJAHJU
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= {4nt)~lHl2 Γ e-\x-\o*a-itHo\*ntd

= (4πt)-ιHι2 Γ e-^i^dX Γ g't(y')dy'
J aH J y~iU

= I g't(y') dy' > 0 when t > oo

since y"1^/ is compact in MHjKH. This completes the proof of Lemma 1.
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