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1. Introduction

Oscillatory properties of first order differential equations with retarded

argument have been studied for a long time, beginning with the fundamental

investigations of A. D. Myshkis. The following result is due to him:

THEOREM 1 (A. D. Myshkis [1]). Ifτ(t)^t and there exist positive constants

a0 and τ 0 such that

a(t) ^ α0, t - τ(ί) ^ τ 0, aoτo > l/e,

then all solutions of the equation

(1) x'(ί) + a(t)x(τ(t)) = 0

are oscillatory, that is, every solution has a sequence of zeros tending to infinity.

Soon it has become clear that the absence of nonoscillatory solutions of

equation (1) shold be defined not so much by the behavior of the coefficient

ait) itself, but by its averaging j a{s)ds. That is why the following step
Jt(o

has been made in [2].

THEOREM 2 (G. Ladde [2]). Let the following conditions hold:

(2) fl(0^0, t ^ t l 9

(3) liminf \ a(s)ds > \/e.
ί-+oo J τ(f)

Then all solutions of equation (1) are oscillatory.

The conditions of both theorems are best possible in the sense that the

autonomous equation x'(t) + ax(t — τ) = 0 has nonoscillatory solutions if aτ^l/e.

An important question arises: Is the nonnegativity of the coefficient a(t) in

Theorem 2 essential, or does this requirement appear only in connection with

the method of proof?

The nonnegativity condition on a{t) in theorems on oscillatory properties
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of all solutions of (1) was partially discarded apparently for the first time in

[3, 4]. However, it was still necessary to demand that a{t) be nonnegative on

a sequence of intervals of length of order t — τ(i). Meanwhile it is desirable to

get conditions ensuring oscillation of all solutions of (1) in such a way that would

admit rapid oscillation of the coefficient a(t). This problem is solved at the end

of this paper.

We note that the desired result regarding the equation (1) with one retarded

argument can be obtained only after investigating oscillatory properties of the

equation with two retarded arguments, which is the basic contents of the present

paper.

Consider the equation

(4) xV) ~ *i(0*(τi(0) + a2(t)x(τ2(t)) = 0,

where a2(t)^.O, and — at(t) and a2(t) may have different signs.

In what follows we suppose that τj(ί)>0, ί = l , 2, and q£i), ί = l9 2, are the

inverse functions of τ^ί): τ^qjit)) = t, / = 1, 2, and also

REMARK 1. The condition τ2(ί) = τ i (0 is imposed without loss of generality.

Indeed, if it does not hold, then it suffices to introduce

τ^t) = max {τt(t)9 τ2(t)}9 τ2(t) = min {τt(t), τ2(t)}

and change the coefficients in the following manner:

alt) for τ^ί) <; τ2(ί),
U = l , 2 , iΦj.

for τ 1 ( 0 > τ 2 ( ί ) ,

The problem of oscillation of solutions of such equations was first considered

in [7] and [8] (for the case of constant delays τι(t) = t — τf and for the case of

almost constant coefficients alt)).

Two types of conditions for oscillation of solutions of equation (4) are given

in the present paper. They become necessary and sufficient for the autonomous

equation

(5) x'(t) - έiixίί-τ,) + a2x(t-τ2) = 0, τ 2 ^ τι > 0.

These conditions are derived from the bounds on sign preserving intervals of

the solution of equation (4), obtained below. Such bounds for solutions of

equation (4) are apparently given for the first time here.

We emphasize the important fact that it is possible to formulate conditions

for the coefficients in the integral form as well. It follows therefore that Theorems

5 and 7 of the present paper are the development of Theorem 2, while Lemma 2.1

of [8] and our Theorems 4 and 6 can be considered as the development of Theorem

1.
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The authors wish to underline the importance of the remarks dispersed
throughout the paper, and the reader is requested to pay special attention to them.

2. Sturmian comparison theorem

One of the authors gave in [4] Sturmian comparison theorems for first
and second order equations with several deviating arguments. In [9] these
theorems are given in the most general form, where the functions t — τ^t) can
change their sign. However, the nonnegativity of all those coefficients was
stipulated at least on certain intervals. That is why none of these theorems is
applicable to equation (4), if we wish to cover the case when not only a2(t)7>0
but also fljίO^O. A variant of the Sturmian comparison theorem free of this
defect is provided below.

Sometimes for the sake of simplicity we use the notation /i/2(ί) for the
superposition f1(f2(t)) of the functions ft(t) and/2(ί).

LEMMA 1. Let

(6) τ2(t) ̂  τ^t) ̂  t, τ2(t2) > tx,

and suppose that the function x(t) is defined on (τ2^i(ίi), <h(ί2)) an^ absolutely
continuous on (<hθi), #2(ί2))? the function'y(t) is defined on (τ1(ί1), q\{t2)) and
absolutely continuous on (tu ί2), the functions a^t), d^t) and a2{t) are piecewise
continuous on (<?i(ίi), qι(t2)), and d2(t) is piecewise continuous on (q2(tx), q2it2)).

Then the following identity holds:

(7) p l ( ' 2 ) {x'(t)-aί(t)x(τ1(t)) + a2(t)x(τ2(t))}y(τι(t))dt
J βi(Ί)

+ xfai(ί2M'2) - *fai(*iM*i) + Γ xiq^W^ds
J τι(r2)

- P x(qι(s))y'(s)ds + {'2q[(s){aι(qι(s))-aι(q1(s))}x(s)y(s)ds
J τi(ί2) J ίi

+ Γ 2 q'ι(s){a2(qi(s))-a2(qi(s))}x(τ2q1(s))y(s)ds
J τιq2(tι)

+ \ l Q[(s)a2(qί(s))x(τ2qί(s))y(s)ds

Jtl<ϊ2(ί2)
qr

ί(s)d2(qί(s))x(τ2qί(s))y(s)ds.
tl

The proof is carried out by means of the following equalities:
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J qι(ti) Γti

x'{t)y{xv(t))dt = x(qi(t2))y(t2) - xiq^Mh) + x(qι(s))y'(s)ds
qι(tι) J τ i ( ί i )

P 2 / P 2

J«l(ί2) ff2

ai(0^i(0M^i(0)^ = I {̂ i

Γ ϊ l ( '2 ) a2(t)x(τ2(t))y(τί(t))dt = Γ'2 q[(s)a2(q2(s))y(τιq2(s))x(s)ds
J qi(tι) J tι

+ I 1 9 2 ' Qfι(s)a2(qί(s))x(τ2qι(s))y(s)ds

J τ\qi{t2)
qf

ί(s)a2(qι(s))x(τ2q1(s))y(s)ds

+ f2 qfi(s){a2(q1(s))-a2(qί(s))}x(τ2q1(s))y(s)ds.

We now consider the differential inequality

(8) -τiίO/ίτΛO) " 9i(03i(9i(0W0 + ̂ (0«2(^(0Wt^ 2(ί)) ^ 0

and formulate the Sturmian comparison theorem.

THEOREM 3. Let the following conditions hold:

1) (6) holds;

2) there exists y(t) with the properties

Ah) = Ah) = 0; At) > 0, te(tl912)

(9) y(t)£O9 te(t2,τiq2(t2));

satisfying (8) on (ί l 5 ί2) vv/ίft

(10) 5 2 ( 0 ^ 0 , ίeίβ.O

3) the following inequalities hold:

0, te(qι(tί),q2(t1)),
(11) α^O^βiW, ίe^jί/,),?^)); α2(ί) δ

a2(t),

4) αί /e«5ί one of the inequalities (11) becomes strict on some subinterval.

Then any solution x(i) of equation (4) has at least one zero on (τ2qι(ti),
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The proof is based on identity (7). Indeed, suppose that there exists a

solution x(ί) of equation (4), preserving the (positive) sign on (τ2<h(ίi), q\{t2)).

Then, in view of the conditions of Theorem 3, all the terms of the right-hand side

of (7) are nonnegative, and at least one is strictly positive. At the same time,

the left-hand side of (7) vanishes.

It should not present any difficulties in extending this theorem to the case

of several retarded arguments.

The next lemma describes a collection of inequalities (8), the coefficients of

which contain two arbitrary functions. All these inequalities admit solutions

y(t) with properties (9) and (10) of Theorem 3.

LEMMA 2. Let (6) hold. Let φ(t) and k(t) be continuous functions on

(τiOi), τ1q2qί(t1)) such that

(12) 0 < Γ φ(s)ds < π, te(tu t2); P* φ(s)ds = π;
J tι J ίi

(13) 0 < P φ(s)ds < π, te(q2τ1(tί), τγq2qi{t2))
J τi(t)

(14) k(t) S ψ(t) cosec φ(s)ds, t e (τ1τ2^f1(ί2), τx(t2)).

Further let in (8)

(15) (-lyq&ή

ex P
- f qn

J τi(ί)
EET(i) p ^p

sin φ(s)ds + sin I φ{s)ds

J τ i ( ί ) J τi(f)

ί = 1, 2,

where

2 J ί 2 J f

71
ι ( t )

s i n ^ J ^ ^(j(dj + y J ? <P (s)

and also

rt rt f ^ 0 , ί e ί τ ^ ) , ί θ ,
(16) m(ί) sin I φ(s)ds 4- φ(ί) cos I φ(s)ds \

J t ί J ί l 1 ^ 0 , te{τx{t2\ t2).

Then inequality (8) has a solution y(t) with properties (9), where (10) holds.
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The proof proceeds by directly checking that

y(t) = exp ( I m(s)ds ) sin I φ(s)ds

is a solution of inequality (8). In view of (13) all the expressions above have

meaning, in view of (14), (10) is fulfilled, and in view of (12) and (6), (9) is true.

3. Bounds for intervals between the consecutive zeros of the solutions

The following theorem, arising from Lemma 2 and Theorem 3, gives upper

bounds for the intervals of consecutive zeros of solutions of equation (4) if re-

strictions of type (11) are imposed on the coefficients at(t).

THEOREM 4. Suppose that:

1) φ(t) and k(t) satisfy the conditions of Lemma 2;

2) (11) holds, where afc), i= 1, 2, are defined in (15);

3) condition 4 of Theorem 3 holds.

Then the statement of Theorem 3 is valid.

We now consider a very important special case of Theorem 4 in which

φ(t) = 2v, k(t) EE /c, t2 = t, + ^ - .

COROLLARY 4.1. / /

(17) τ 2 > τx > 0, 0 < v < " , k ^ 2 v

2τ2 ' " = sin Ivτ, '

and

( 1 8 ) ( - l ) ^ ( ί ) ^ ι A i ( v ) , U = l , 2 , I Φ U

w h e r e

sin2vτ, p v r V _ _ 2vcos v(τt +τ2) + ksin v ( τ 2 - τ 1 )
C X p V ι sinv^Ψί{ } ~ s in2vτ 1 +sin2vτ 2

then any solution of the equation

(19) x'(f) - a.iήxit-τ,) + a2{t)x{t-τ2) = 0

/ίί?5 at least one zero on any interval (tl9 t2) with \t2 — tx\ >τ2H-π/(2v).

We omit the proof. Note that inequalities (16) and (14) reduce to restriction

(17) in the special case under consideration.
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REMARK 2. In the next section it will be shown that restrictions (18) are

asymptotically sharp, that is, the right-hand side of (18) cannot be replaced by

their limiting values as v->0.

It is possible to consider Theorem 4 as the development of Theorem 1,

because restrictions of type (11) are imposed on the coefficients. At the same

time an extension of Theorem 2 to equation (4) is also very important. This

means that one should get bounds for the distances between successive zeros of

solutions by way of imposing conditions not on at(t) themselves, but on their

a v e r a g e s I a£s)ds9 i , j = 1,2.
J τj(t)

THEOREM 5. Suppose that τ2(t)-+co as ί->αo and

(20) βiίO'^O, fl2(ί)^0,

and that there exist functions b£t), i = l, 2, such that the following conditions

hold:

1)

(21) ^ ( 0 = ^ ( 0 ^ 0 , ί = ί0;

(22) 0 = &2(ί) ^ βi(0, t^t0;

2) there exist the finite limits

(23) lim Γ bj(s)ds = cij9 ij = 1,2;
*-><» J T f ( ί )

3) the system

' ( c i i C 2 2 - c 1 2 c 2 1 ) x i X 2 - c ί ί x ί + c 2 2 x 2 - 1 = 0

( 2 4 ) -CnXi + cl2x2 - log*! < 0

» ~ C 2 1 X 1 + C22X2 - lθgX 2 > 0

has a solution {xl9 x2} with x 1 >0, x2>0;

4)

π(25) α 2x 2 b2(s)ds - a1x1 b

J q2qι(tι) J qιqι(tι)

Here 0<v<v o satisfies the inequalities

(26) <Pi(y)>h Ψiiy)<h

where

^ ί V f sin v - c o s v(α2 —αj) F \ tan v sin v v ι ι l 2 ιzw
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and {cc1, oc2} is a solution of the system

l + xίcίί)aί — x2c12oc2 = 0

(27) Xl<?2lαl + ( 1 ~ ̂ 2C22)α2 = 0

1 + «2 = 1

which is solvable in view of (24^.

Then any solution of equation (4) has a zero on the interval (τ2(ίj), t2)

provided tt is sufficiently large.

PROOF. Put in (15)

(28) k(t) = - xrfίWq'άqWbά

~ X2q2{t)qf

2(q2(t))b2(q2q,(t)).

This is admissible because of the imposed condition 4, since the restrictions on

φ(t) and k(t) of Lemma 2 are satisfied. Then, taking into account the fact that

τi(t) J qjqiτίit)

we have in view of (27)

(29) lim I φ(s)ds = 2v(x2x2cί2 — 2vα1x1c ί l = 2vαί9

r->oo J nit)

(30) lim k(s)ds = - x1cn - x2ci2, i = 1, 2.
f->oo J n(t)

From (28) we obtain

{ 1 2 (
(31)

(0{ = 2vx2q'2(t)b2(q2(t)).

Inequalities (242) and (243) are equivalent, respectively, to the inequalities

x2exp(c21x1-c22x2)

It is not difficult to calculate that

lim φτ{v) = x( exp (cnx1 - cί2x2), ί = 1, 2.
v-K)
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Therefore, we see that (26) holds for 0<v<v o , provided v0 is sufficiently small,

which shows in particular the consistency of the conditions of the theorem.

With consideration of (21), from (26) we have for i= 1, 2

(32)

v f sin v cos v(oc2-oc1)
 F \ tanv smv

On the other hand,

sinv(α2-αt) ( + Λ
smv v i n 2 12/y

expί — I m(s)d
\ J τ i ( f )

1 1 1 1 1 7v Γτiβ2(O
ί~*G0 sin I φ(s)ds+sin I φ(s)ds

J t i ( f ) J t i ( f )

Therefore, it follows from (31), (32), (15) that (11) holds for t sufficiently large,

and this completes the proof.

REMARK 3. In fact, a stronger statement holds. It is possible to impose

conditions (21) and (22) not on the whole semi-axis, but on the set G =

W ^ ! (τ2(t[k))9 q2(t(

2

k))), where (t[k\ t(

2

k)) are intervals of type (25). In this case,

lim^oo should be replaced by lim,..^ teG in (23); outside G no limitation is imposed

on the coefficients α f(0 The details will be omitted.

4. Theorems on oscillation of all solutions

It turns out that theorems on oscillation of all solutions can be obtained

from the bounds for intervals of consecutive zeros of solutions, which are derived

in Theorems 4 and 5. They are obtained as the limiting one for v->0 from

Theorems 4 and 5.

THEOREM 6. Suppose that

(33) τ 2 > τ± > 0, m ^ l/τί,

(34) ax(t) ^ α? < 1 - m τ 2 g -mτ s t > t Q 9
τ2~τί

(35) a2it) ^a°2>
 1 - m T i e~mτ\ t> t0.

τ2~ τl

Then all solutions of equation (19) are oscillatory.

PROOF. The validity of this statement follows from Corollary 4.1. Indeed,

letting m = [_2 + k(τ2 — τ1)]/(τ1 + τ 2), we have
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= _ l-mτ2 emτι

τ2-τι

(36)

= _ l-mτλ e_mX2

τ2-τ1

The restriction kSl/τ1 implies m^l/τί. But if (34) and (35) are valid, then

(18) holds for sufficiently small v>0.

REMARK 4. It is possible to impose restrictions (34) and (35) not on the

whole of the semi-axis, but on G = \jf=ί(tk — τ2i tk + τ 2 + (π/2v)) if α?<— I/Ί(V),

a°2 > φ2(v). Then there are no restrictions imposed on a^t) outside G.

COROLLARY 6.1. Let

(37) τ 2 > τj > 0; at(t) ^ a°l9 a2(t) ^ a°2 ^ 0, ί > t0

and suppose that the characteristic quasi-polynomial

(38) F(λ) = λ — a®e~λτι + a\e~λτi

has no real roots. Then all solutions of equation (10) are oscillatory.

PROOF. Consider the boundary of the "oscillation zone" on the plane {α?,

(39) ax = ^e~mτ\ a2 = ι- e~mτ2, m ^ 1/TJ.
τ2 — τί ^2~τ\

It is not difficult to see that it coincides with the boundary of the zone F(λ)>0,

F\λ) = 0, which is equivalent to the absence of real roots of F(λ). Indeed, we have

λ - axe~λτ" + a2e~λxi = 0, 1 + axτ^e~λx^ - ά2τ2e~λτi = 0

if and only if

l+λτ2 jr. - 1 + Λ.τ, i t,a{ = ^eλτι, a2 = eλτ2,

and further we assume that m = — λ.

COROLLARY 6.2. For all solutions of the autonomous equation (5) to be

oscillatory, it is necessary and sufficient that its characteristic quasi-polynomial

(38) should have no real roots.
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PROOF. Sufficiency follows from Corollary 4.1. Conversely, if F(λί) = 0,
Imλ 1 =0, then x(t) = exp(λ1t) is a solution of (5).

REMARK 5. This statement solves completely the problem of oscillation of
all solutions of equation (19) in terms of restrictions of type (11). It is not possible
to improve the statement of Corollary 6.2 in these frames. The matter is that
no restrictions are placed a priori on the sign of the coefficients al9 a2 in Corollary
6.2. From the conditions it follows immediately that a2^.O. Indeed, if # 2 <0,
then limλ_^_00 F(A)=oo, l im^^ F(λ)= — oo, and therefore F(λ) has a real root.
As for aί9 it may be either positive or negative.

THEOREM 7. Suppose that

τ 2 (0 = τx(t) = t, τ2(ί) -> oo, a Jit) = 0, ί = 1, 2,

and conditions 1, 2, 3 of Theorem 5 hold. Then all solutions of equation (4)
are oscillatory.

We will show that for equation (19) this theorem turns into the statement of
Corollary 6.1 with the additional restriction α?>0 (Note that the case — α? = 0,
flξ^O is simpler and has been considered in [10]). Indeed, let τf(ί) = ί — τi9 τ2>
τ ^ O , and (37) hold with α?>0. Then c^ ̂ τ^J, ί, ./=1, 2. Therefore the
system (24) takes the form

τ
1
a°

1
x
ί
 - τ

2
a\x

2
 + 1 = 0

2(-fl?x1 + α§x2) - logx2 > 0.

Setting a^x^Zi, we have an equivalent system

τ1zί - τ2z2 + 1 = 0

(40) τ^-z^zj - logZi + logfl? < 0

, τ 2 ( - z 1 + z2) - logz2 + logα^ > °

Evidently, if the system (40) is solved for some pair {#?, a^}y then it is also solved
for the pair {aί9 a2} such that 0<a 1 <«?, a2>a\. Therefore, the set M of pairs
{aί9 a2} for which (40) is solvable is a part of the first quadrant of the plane
{aί9 a2} and as its boundary has the set of such points {aί9 ά2} for which the
following system is solvable

τ1z1 - τ2z2 + 1 = 0

(41) -z1 + z2) - logz1 + \ogaγ = 0

( - zi + zi) ~ log z2 + log a2 = 0.
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It is not difficult to see that if λ0 is a solution of the equation

F'(λ0) = 1 + a\τγe-χ^ - ao

2τ2e-λoτ2 = 0,

then z i = α?e~yloτί, ΐ = l, 2, is a solution of system (40), with its second and third

equations coinciding with F(λo) = 0. Thus, the set M coincides with the set

of those pairs {aί9 a2) for which the quasi-polynomial F(λ) has no real roots.

This completes the proof.

EXAMPLE 1. Consider the equation

(42) x'(t) - cx(t-τ(ή) + dx(t-\) = 0,

where c>0, d>0, τ(ί)^l, τ(ί)^0and τ(t)-^0 as ί->oo.

Setting b^ή-a^ή^c, b2(ή==a2(t) = d, we have

c n = lim I cds = 0, c12 = 0, c 2 1 = c, c 2 2 = d.
ί-*oo J r-τ(f)

System (24) turns into

— dx2 + 1 = 0 , — logx 2 < 0, — cxι + dx2 — logx 2 > 0,

which is solved if and only if

(43) de~c > \\e.

Thus, as one should have expected, the condition of oscillation of all solutions

of (42) is the same as for the equation

/(t)-cy(ή + dy(t-l) = 0.

EXAMPLE 2. Consider the case τ2 = 2τ1>0, for which the solvablity criterion

of the system (24) could be written in a convenient form. Without loss of gener-

ality, we assume that τί = l, and consider the equation

(44) x'(ί) - q(t)x(t - 1 ) + p(t)x(t - 2) = 0,

where /?(0 = 0, <?(0 = 0 Suppose that qo(t)^q(t), 0<.po(t)^p(t), and there exist

the finite limits

lim I qo(s)ds = q, lim I po(s)ds = p.
f->oo J t—ί f->oo J ί-1

Then, c 2 1 = 2 c u = 2 ^ , c 2 2 = 2 c 1 2 = 2^. If p = 0, then system (24) is incompatible.

If p > 0, then it will take the form
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qxx — 2px2 + 1 = 0

— qxi + px2 — logXi < 0

-2qxί + 2px2 - logx2 > 0,

which is equivalent to

(45) -qXl + 1 - 2108*! < 0, -qχx + 1 -2 log qx* + l > 0.
2/7

It is possible to show (we omit the proof) that a necessary and sufficient

condition for the system (45) to be solvable is

(46) ^ H -<£\H τ°F> _ l o g ^ v #

8/7 4/7

Therefore, if (46) holds, then all solutions of (44) are oscillatory.

This condition cannot be improved, because it is necessary and sufficient

for the characteristic quasi-polynomial of the corresponding equation

x'(t) - qx(t-l) + px(t-2) = 0

to have no real roots.

5. Equations with one delay argument and quick-oscillating coefficients

Theorems 5 and 7 and their corollaries could be applied to the investigation

of oscillatory properties of equation (1), when the condition (2) is not imposed a

priori.

Consider equation (1), and represent a(t) in the form

(47) a(t) = a+(t)- a-(t), a+(t)^0, a_(ί) ^ 0.

For example,

a+(t) = y {\a(t)\ + a(t)}9 a.(t) = \ {\a{t)\ - a(t)} .

Then equation (1) can be rewritten in the form

(48) x'(t) - a.(t)x(τ(t)) + a+(t)x(τ(t)) = 0,

that is, in the form (4) with τ1(ί) = τ 2 (0, and Theorems 5 and 7 can be applied to

this special case.

THEOREM 8. Suppose that τ(i)-> oo as t-> oo and that for some representation

of a{t) in the form (47), there are continuous functions a°(t), α$(ί) such that
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(49) fl?(ί)^M0, 0£α?(ί)

and the exist the finite limits

lim f αθ( s) d s = β_9 ] i m Γ flo(s)ds = β +

ί->oo J τ ( ί ) f->oo J r ( f )

(50) β+~β-> 1/e.

Then any solution of equation (1) has at least one zero on ( τ ^ ) , t2) for

sufficiently large tί9 provided:

a) in the case of β_ =0

(51) fM(ω I J - 4 ( 0 - (e + δ)a°(t)\ dt>^-9 0 < v < v0,
J q q ( t ι ) ( P + J V

where

(52) β+ > -Λ-exp(-vcotv) = Dv, <S > 0;v / ^ + sin v

b) in ί/zβ c«5β of β_>0

J aaίty)

{x2 f l?(0-
99(ίi)

where xl9 x2>0 are such that

(54) β+x2-β_x1 = h x2<l/Dv.

PROOF. It is not difficult to see that

Cn = c 2 1 = j8_, c 1 2 = c 2 2 = β+.

Therefore the system (24) turns into

β.x, - β+x2 + 1 = 0

-β-Xi + i5+x2 - log*! < 0

-β-Xι + ^+x2 ~ logx2 > 0,

which is equivalent to

(55) -β-xi + β+*2 = 1, 0<x2<e<xί.

The latter is solvable if and only if (50) holds. This is evident for β_=0. One

can verify this for β_>0 by noticing that all solutions of the system (55) are

written in the form
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Furthermore, φ^ΞXjDy, ί = l, 2, and system (27) has the only solution αx =

α2 = 1/2 both in the case of β_ = 0 and of /?_ >0. The requirement (26) is satisfied

in view of (52) for /?_ = 0 and in view of (54) for β_ >0, and (25) turns into (51)

and (53), respectively. This proves the theorem.

Note that, for the special case of a_(t) = a%t) = 0, the assertion of Theorem 8

can be found in [4].

COROLLARY 8.1. Under the conditions of Theorem 8 all solutions of

equation (1) are oscillatory.

EXAMPLE 3. Consider the equation

(56) x'(ί) + {2A sin2 nπt - Bra sin2 ωπt}x(t -1) = 0,

where A, B and α are positive constants and n is a positive integer.

Setting a+(t)==a(i(t) = 2A sin2 nπt, a.(t) = a^(t) = Bra sin2 ωπt, we have

β+=A, β-=0; consequently, if A>l/e9 then all solutions of (56) are oscillatory

on the basis of Corollary 8.1.

Note that if ω is irrational, then a(t) is necessarily oscillating. Since n

and ω may be arbitrarily large, oscillation rapidity may be arbitrarily high.

It is not difficult to give an example with limίnf^^ a(t)<0 and even

lim inf^ ^ a(t) = — oo.

It would be appropriate to state here the hypotheses which the authors

believe are valid.

Hypothesis 1. The condition (2) of Theorem 2 could be neglected wihout

any offset.

The statement of Corollary 8.1 is a good approximation to this hypothesis.

It seems however that even a more general hypothesis is valid.

Hypothesis 2. Suppose that τ2(t)<Lτί(t)-ζt, τ2(t)^co as ί->oo, and α f(0^0>

ι = l, 2. Denote Aij(t)= I aj(s)ds, i,j = l, 2. If for any t^t0 and for some
J τ f ( ί )

<5>0, the following system is solvable

(AίίA22-Aί2A2l)xίx2 - Aίlx1 + A22x2 - 1 = 0

-Aίίxί + A12x2 - logXi < - δ

-A2ίxί + ^22*2 - logx 2 > δ,
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then all solutions of equation (4) are oscillatory.

REMARK 6. It is obvious that the expression of equation (1) in the form

of (48) (with a view to involve oscillating a(t)) is meaningful only when Theorems 5

and 7 are used. At the same time, Theorem 4, Theorem 6, Corollary 4.1 and,

what is more, Lemma 2.1 from the paper by Kreith and Ladas [8] do not

accomplish this end. Indeed it follows from (15) or from (18) that if τί(t) = τ2(t)9

then ά2(t)'^d1(t), which, in turn, implies a+(t)^ia_(t).
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