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Asymptotic behavior of oscillatory solutions
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1. Introduction

There is an abundance of results in the literature dealing with the oscillation
of all solutions of delay differential equations. See, for example, [l]-[6], [8]-
[10], and the references cited in [2]. To obtain oscillation results, we usually
investigate the asymptotic behavior of the nonoscillatory solutions and then we
find conditions on the coefficients and the delays which do not allow such a
behavior. By this strategy we are often lead to sufficient conditions for all

solutions of certain delay differential equations to oscillate. As a by product,
we also learn the asymptotic behavior of the nonoscillatory solutions.

The aim in this paper is to study the asymptotic behavior of the oscillatory

solutions of certain delay differential equations of the form

(1) x'(t) + p(t)x(t-τ) + q(t)x(t-σ) = 0, t ^ ί0

and of certain neutral equations of the form

(2) (<//Λ)MO-p*(f-τ)] + q(t)x(t-σ) = 0, t £ t0.

Our results, combined with known oscillation results or with known results
about the asymptotic behavior of the nonoscillatory solutions of Eqs. (1) and (2),
lead to sufficient conditions for the trivial solution of Eqs. (1) and (2) to be

asymptotically stable.
ϊn our opinion, the main contribution of this paper is that it shows how

oscillation theory may be used, as another tool, in establishing new stability results

for differential equations of diverse nature, like Eqs. (1) and (2) above.
Throughout this paper we will assume that the delays τ and σ in Eqs. (1) and

(2) are constants and that the coefficients p and q of Eq. (1) and the coefficient q

of Eq. (2) are continuous functions for ί^ί0 while the coefficient p of Eq. (2) is a
constant. With the above assumptions, it follows by the method of steps that,
if <peC[[f0 — m, ί0], /?] is a given initial function where w = max{τ, σ}, then
Eqs. (1 ) and (2) have a unique solution x valid for t ̂  ί0. By a solution x of Eq. (1)
we mean a continuous function for t^t0 — m such that x(t) = φ(t) for f 0 — m^

t^t0, xeC'COo, oo), /?], and x satisfies Eq. (1) for ί^ί0. On the other hand,
by a solution x of the neutral delay differential equation (2) we mean a continuous
function for t^t0 — m such that x(t) = φ(t) for t0 — m^t^tθ9 x(i) — px(t — τ) is
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continuously differentiable for t^t0, and x satisfies Eq. (2) for t^.t0.
As usual, a solution of Eqs. (1) or (2) is called oscillatory if it has arbitrarily

large zeros and nonoscillatory if it is eventually positive or negative.

2. Asymptotic behavior of delay equations

In this section we present sufficient conditions for all oscillatory solutions

of Eq. (1) to tend to zero as f-*oo.

THEOREM 1. Consider the delay differential equation

(1) x'(ί) + p(t)x(t-τ) + q(t)x(t-σ) = 0, t £ t0

where τ and σ are nonnegative constants and p and q are continuous functions
satisfying the conditions

XO + q(t-τ + σ) / O

for τ sufficiently large and

I f '"*
21imsup f^00 \q(s + σ)\ds

I J r-t
(3) r<+ limsup^^ \p(s) + q(s-τ + σ)\ds < 1.

J r-t

Then every oscillatory solution of Eq. (1) tends to zero as f->oo.

PROOF. First we will prove that every oscillatory solution of Eq. (1) is
bounded. Assume, for the sake of contradiction, that x(t) is an oscillatory solution
of Eq. (1) which is unbounded. We will assume τ^σ. The case τ<σ is similar.
In view of (3), there exists a positive constant Q and a ίj ^t0 + τ such that

J
\q(s + σ)\ds ^ Q < 1 for t ^ tl ,

t-τ

and

(4) 2Q

Set

(5) z(f) = x(0+ f'~'
J r-t

Then, for t^tί we find that
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As x(t) is unbounded, there is a f 2 ^Ί suςh that

Then

(6) rnax,,^, |z(s)| ^ (max,,^, Ws)D(l-e), t ̂  t2

which implies that z(i) is also unbounded. From (5) and (1) we find that

(7) z'« = - [p(0 + g(ί - τ + <τ)]x(f - τ)

which implies that z'(t) is an oscillatory function. This, together with the

unboundedness of z(ί), implies that there exists a sequence of points {ξn} such
that ξn^t2 for n = l, 2,...,

lim^^ ξn = oo, z'(ξπ) = 0 for n = 1, 2,...,

and

(8) \z(ξn)\ = max r ι g f g δ ι l |z(s)|, n = I, 2,... .

As z'(£π) = 0 and /?(ξπ) 4- q(ξn — τ 4- σ) 7^ 0 for « large, say n^n 0 it follows, from (7),

that x(ξn — τ) = 0 for n^/ι0 Hence, from (5), we find that

(9) z(ξn - τ) = Γ""τ

J «n-2t

Integrating (7) from ξn — τ to ξn and using (9) we obtain, for π^«0,

(10) z(O= Γn"T"\(s + σ)x(5)rf5- Γ"
J ξn~2τ J ξn-τ

Using (6) and (8) we find, from (10),

(11) Mξ,)\ ^

or

This, for n large, contradicts (4) and proves our claim that every oscillatory
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solution of Eq. (1) is bounded. Next, it remains to show that every bounded
and oscillatory solution x(t) of Eq. (1) tends to zero as t-+ao. Otherwise x(t)

does not tend to zero as ί->oo. Set // = limsup f_ 0 0 \x(t)\. Then μ>0 and for

any ε>0, there exists a t3^t2 such that

|x(OI < μ

From (5) we get

Thus,

lim sup,^ I z(ί)l ^ μ -

and because ε is arbitrary,

Set /C = limsup ί_ 0 0 |z(0|. Then K^μ(l-Q)>Q. From (7), we see that z'(t)
oscillates and so there exists a sequence {ξn} such that

Imv^^oo, z'(ίB) = 0 for n = 1, 2,... and lim^ |z(OI = «•

As before, (9) and (10) are also valid and so

Hence

which implies that

Γ
J t-τ

Γ
J ί-t

Γ
J ί

This contradicts (4) and the proof is complete.

REMARK 1. The conclusion of Theorem 1 remains true if we reverse the

roles of p and q in the hypotheses of the theorem. This idea is sometimes useful
as can be seen from the following example.

EXAMPLE 1 . Consider the delay differential equation

(12) x\t) - e-"x(t-π) + e~π/2x(t-π/2) = 0.

If we take
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p = — £~π, q = e~*l2, τ = π, and σ = π/2

then condition (3) of Theorem 1 is not satisfied. On the other hand, if we take

p = e~π/2

9 q = — e~π, τ = π/2, and σ = π

then the hypotheses of Theorem 1 are satisfied and so every oscillatory solution

of Eq. (12) tends to zero as f-»oo. For example, x(t) = e~t sin t is such a solution.

Consider the delay differential equation

(13) x'(t) + px(t-τ)-qx(t-σ) = Q

where p, q, τ, and σ are positive constants. In [2], Arino, Ladas and Sficas

have shown that under the hypothesis

(Hj) 0 < q < p, 0 < σ <; τ, and q(τ-σ) ^ 1

every nonoscillatory solution of Eq. (13) tends to zero as f->oo. On the other

hand, Condition (3), applied to Eq. (13) becomes

(H2) 2q\τ-σ\ + \p-q\τ < 1.

On the basis of the above discussion and Theorem 1 we obtain the following

stability result.

COROLLARY 1. Assume that p, q, τ, and σ are constants and that Hypotheses

(Ht) and (H2) are satisfied. Then the trivial solution of Eq. (13) is globally

uniformly asymptotically stable.

Assume that the coefficients p and q of Eq. (1) are positive continuous

functions satisfying the condition

(H3) lim inf,^ (τp(t) + σq(t)) > l/e.

Then, it follows by a result of Hunt and Yorke [4] that every solution of Eq. (1)

oscillates. On the basis of this and Theorem 1 we have the following stability

result.

COROLLARY 2. Assume that the coefficients p and q of Eq. (1) are positive

continuous functions satisfying (H3) and

I £*~° Ct

21imsup f_0 0 I q(s + σ)ds + lim sup,^ I \
I J t-τ J t-τ

Then the trivial solution of Eq. (1) is globally asymptotically stable.

REMARK 2. Corollaries 1 and 2, above, are examples of the two typical
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applications of Theorem 1 in establishing stability results about the solutions of
Eq. (1). In general, when we know the asymptotic behavior of the nonoscillatory
solutions of Eq. (1) or when we know that every solution of Eq. (1) oscillates,
then Theorem 1 may be used to obtain the stability nature of the trivial solution

of Eq. (1).

3. Asymptotic behavior of neutral equations

In this section we present sufficient conditions for all oscillatory solutions
of the neutral delay differential equation (2) to tend to zero as f-»oo. Thus, as
we explained in Remark 2, when we know that every solution of Eq. (2) oscillates

or when we know the asymptotic behavior of the nonoscillatory solutions of
Eq. (2), then we will have a stability result for all solutions of Eq. (2).

THEOREM 2. Consider the neutral delay differential equation

(2) (d/dt) [x(0-p*(f-τ)] + q(t)x(t-σ) = 0, t ^ t0

where the delays τ and a are nonnegative constants, p is a constant, q is a
continuous function such that q(t)^Qfor t sufficiently large, and

(14) 2|p| + limsup,.00 Γ \q(s)\ds < 1.
J ί-σ

Then every oscillatory solution of Eq. (2) tends to zero as ί->oo.

PROOF. First, we will prove that every oscillatory solution of Eq. (2) is
bounded. Otherwise, there exists an oscillatory solution x(t) of Eq. (2) which
is unbounded. Set tl = t0 + τ and

z(f) = x(t) ~ px(t-τ), t^ti.

Let f 2 ^ Ί t>e sucίl

|x(f2)| ^ max l os,sf 2 WOI

This is possible because x(t) is unbounded. Then for t^t2 we have

|z(ί)| ^ |x(OI - IpKmax,,^, |*(s-τ)|) ^ |x(OI -

and so

(15) max f |^ f |z(s) |έ(max f l^ f |x(s) |)(1

In particular, (15) implies that z(t) is unbounded. Since

(16) z '(f)= -
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and x(ί) is oscillatory, it follows that z'(t) is also oscillatory. This, together with
the fact that z(ί) is unbounded, implies that there exists a sequence of points
{ξn} such that

lim,,.̂  ξn = oo, z'(ξn) = 0 for n = 1, 2,..., lim,^ \z(ξH)\ = oo,

and

(17) \z(ξn)\ = maXίl^^n |z(s)| for n = 1, 2,... .

From (16) and the fact that q(t)^0 for t large we see that x(ξn — σ)=Q for n large,
say n^n0. Thus z(ξn — σ)= —px(ξn — σ — τ) for n^n0. Integrating both sides
of (16) from ξn — σ to ξn we obtain

(18) z(ξn) = - px(ξn-σ-τ) -

and using (17) and (15) we see that for n^

\z(ξm)\ ^ \P\ -γ±\fi \*(ξm)\ + jz k«.)l lϊ

Simplifying this inequality we get, for n large,

Γn

J ξn-σ

which contradicts (14) and proves our claim that every oscillatory solution of
Eq. (2) is bounded. Next, it remains to show that every bounded and oscillatory
solution of Eq. (2) tends to zero as ί-*oo. Assume, for the sake of contradiction,
that x(t) does not tend to zero as f->oo. Set μ = limsup f^00 \x(t)\. Then μ>0
and for any ε > 0, there exists a f 3 ̂  t2 such that

(19) M O I < μ + β, t^t3.

Then

and

As ε is arbitrary, it follows that

(20) K EE lim sup,., |z(ί)| ^ Ml - Ipl) > 0.

From (16), we see that z'(i) oscillates and so there exists a sequence {ξn} such that
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lim^oo ξn = oo, z'(ξn) = 0 for n = 1, 2,... and lim,,^ \z(ξn)\ = K.

As before, (18) is also true and so using (19) we obtain

|z(4)|^|p|(μ + ε) + (μ + ε)Pn \q(s)\ds.
J ξn-σ

Using (20), we find

μ(l -\p\) ^ (μ + ε)[\p\ + lim sup,^ P
L J ί-σ

and since ε is arbitrary we get

\q(s)\ds^βo Γ
J t

which contradicts (14) and completes the proof of the theorem.
In [6], Ladas and Sficas studied the asymptotic behavior of the nonoscillatory

solutions of Eq. (2) and found sufficient conditions for all solutions to oscillate
when 0<p<l and the coefficient q is a positive function. In [3], Grammati-
kopoulos, Grove and Ladas examined the same questions for all other values of
the real parameter p. Combining Theorem 5 of [6] and Theorem 9 of [3] we
obtain the following result about the asymptotic behavior of the nonoscillatory
solutions of Eq. (2).

LEMMA 1. Consider the neutral delay differential equation (2) where
the delays τ and σ are nonnegatiυe constants, p is a real number and q is a
nonnegatiυe continuous function. Assume that one of the following conditions

hold.

(H4) p ̂  0

or

Joo
q(s)ds = oo.

to

Then every nonoscillatory solution of Eq. (2) tends to zero as f-»oo.

Finally, from Theorem 2 and Lemma 1 we have the following.

COROLLARY 3. Assume that the hypotheses of Lemma 1 are satisfied, that
q(t)ϊ£Qfor t sufficiently large, and that

2\p\ + limsup^^ q(s)ds < 1.
J t-σ

Then the trivial solution of Eq. (2) is globally asymptotically stable.

REMARK 3. The case p==0 of Corollary 3 reduces to Theorem 3 in [7].
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EXAMPLE 2. Consider the neutral delay differential equation

(21) W/Λ) W0-px(ί-π)] + (K2 + cosf)x(f-π) = 0, t ̂  0

where p and Q are constants such that

(?>0 and 2|p| + Q(π + 1) < 1.

Then

Γ° <?(s) = oo, Γ q(s)ds = 2ρ(π + sin t)
JO J t-n

and limsup^^ (' q(s)ds = 2Q(π + 1).
J t-n

It follows that the hypotheses of Corollary 3 are satisfied and therefore every
solution of Eq. (21) tends to zero at f->oo.
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