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Introduction

Since the previous papers [6] and [7] were published, some related topics

[2], [3], [4] and [5] have been studied. Among them, in [5], we obtain
certain combinatorial information about a partially ordered set from a ring-
theoretical property of an affine semigroup ring which is an algebra with straighten-

ing laws on the partially ordered set.
Let k be a field, A a polynomial ring in a finite number of indeterminates

over k and H a finite partially ordered set (poset for short) with an injection p:
H^A such that p(α) is a monomial of A for any α e H. Then the couple (H , p)
is called a toroidal poset if the subring

is a homogeneous (cf. [6, (1.4)]) algebra with straightening laws (abbreviated
ASL) on the poset H9 with respect to the embedding p, over k. A toroidal poset

(//, p) is called Gorenstein if Rp is Gorenstein. Also, we say that two toroidal
posets (H, p) and (//', p') are equivalent if there exists a poset isomorphism
ψ: H^H' such that Rp and Rp>oψ are equivalent as ASL's in the sense of [6, §4].

To describe a toroidal poset (H, p) we will write the monomial p(α) near the
vertex α in the Hasse diagram of the poset H.

Now, the purpose of this paper is to classify all the Gorenstein toroidal

posets (//, p) with dim Rp = l. Our result is

THEOREM. The Gorenstein toroidal posets (H, p) with d imR p = 3 are,
up to equivalence as toroidal posets, as follows:
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Throughout this paper, we fix a field k. We shall refer to [6] for the basic
definition and terminologies on commutative algebra and combinatorics and,
unless otherwise stated, keep the notation in [6].

§ 1. A fundamental lemma of toroidal posets

Let H be a connected poset with rank(//) = 2. We denote by /0 the cardinality
If(//) of H as a set and write /j for the number of chains of length two contained
in H. Then, since H is connected, the inequality / t—/04-1 >0 holds. Also,
/t — /o + l =0 if and only if // contains no cycle (cf. [6, Fig. 14]). In general, a
rank two poset is called a tree (cf. [4]) if it is connected without cycles. Recall
that an element P of H is called an upper (resp. a lower) branch if there exists a
unique element A (resp. Λ^) such that P>A (resp. P<Ar). Also, consult [6,
p. 32] for the definition of branch sequences.

Throughout the remainder of this section, let (//, p) be a toroidal poset with
dimfl p = rank(//) = 3. Since Rp is an integral domain, H has a unique minimal
element T and H-{T} is connected by [6]. Also, thanks to [3], H-{T} has
neither lower branches nor branch sequences if H — {T} is not a tree. Moreover,
somewhat surprisingly, we can prove the following

LEMMA. H-{T} has no upper branch if H-{T} is not a tree.
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PROOF. Let P be an upper branch of H — {T} and A a unique element of
H-{T} with A<P. Note that, for any minimal element B (?M) of H-{T},
there exists X e H-{T} such that A <X and B<X by [6, Prop. A].

First, assume that for any minimal element B (^A) of H — {T} there exists
exactly one element X of H-{T} such that A<X and B<X. Then H-{T}
has at least three minimal elements since H — {T} is not a tree. Let B (^A) and
C (ϊ£A) be two minimal elements of H — {T}. Write ξ and 77 for the elements of

H-{T} with A<ξ9 B<ξ and A<η, C<η. Then, in /*„, the set [P£] (cf. [6,
(1.3)]) is contained in {Γ2, TA9 Tξ} by [6, Lemma 2]. Hence ΛJ3 = Tξ by [6,
Lemma 1]. Thus [PB]c{Γ2, 7M}. Similarly, we obtain AC=Tη, [PC]c=

{T2, TA}. Hence we may assume AB=Tξ, AC = Tη, PB=T2 and PC = 7>1.

Then we have AB = TC since (PC)β = (PB)C, a contradiction.
Secondly, assume that for some minimal element B (^A) of H — {T} there

exist at least two maximal elements X and Y of H-{T} which are greater than
both A and 5. Then, in Rp, we may assume AB=TX and [P£]c {Γ2, TA, T7}.

To begin with, if P£=TYthen PX = AY, however, this is impossible by [6,
Lemma 4]. On the other hand, if PB=TA then PX = A2. Let XY=Tα9 αe//

(resp. XY=β2, βεH-{T} with β<X and β<Y). Then PXY=TPα (resp.
PXY=Pβ2). However, TPα (resp. P/?2) cannot be equal to the standard
monomial A2Y. Finally, if PB=T2 then PX=TA, hence PXY=TAY. Let
X7=Γα, αe/f (resp. XY=β2, βeH-{T} with 0<X and j9<7). Then PXF=
ΓPα (resp. PXY=Pβ2). Hence, yl7=Pα (resp. β?M and y4Y=jβy if Pβ=Ty,
y e //), which is also impossible. Q. E. D.

§ 2. Classification of troidal trees

Let (//, p) be a toroidal poset with dimKp = rank(H) = 3. Then (H, p) is
called a toroidal tree if H-{T] is a tree.

It is easy to see that if H- {T} is either

or

Fig. 14 Fig. 15

then (H9 p) is never toroidal for any embedding p. Hence, thanks to [4] and
[6, Prop. B], it is a routine work to prove the following

PROPOSITION. The troidal trees are, up to equivalence as toroidal posets,
as follows:
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§ 3. Classification of toroidal cycles

We now turn to the problem of finding the embeddings p on the cycles

C4 =

T

Fig. 25

r

Fig. 26
Fig. 27

To begin with, if (C4, p) is toroidal then, in Rp, either ΛJ3=T 2 or XY=T2

holds. In fact, assume that neither the standard monomial expression for AB

nor that for XYin Rp coincides with T2, say AB=TXand X7=T>4 (resp. X7=

Λ2). Then (AB)Y=T2A (resp. (AB)7=T/12), which is absurd since Rp is an

integral domain. Hence we can easily classify the toroidal posets (C4, p) and
obtain the toroidal posets of Fig. 6-9.

On the other hand, if (C6, p) is toroidal then, in Rp9 we may assume that

(i) AB = TX, BC = TY, CA = TZ or (ii) AB = TX9 BC = T2, CA = TZ. In case (i),

we have CX = AY=BZ, thus CX = AY=BZ=T2. Hence XY=TB, YZ=TC,

ZX=TA. This is the toroidal poset of Fig. 10. Now, in case (ii), CX = BZ= TA

and ZX = A2. The possibility of the standard monomial expression for A Y is

either TB (resp. TC) or T2. If AY=TB (resp. TC) then Xy=£2 (resp. T2) and

YZ=T2 (resp. C2). Hence we obtain the toroidal poset of Fig. 11. If AY= T2

then XY= TB and YZ= TC, which is the toroidal poset of Fig. 12.

Finally, concerning the cycle C8, we refer to [6, Example b)].
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§ 4. The Veronese subring k [jc, y, z] ( 3 }

As soon as we obtain the toroidal posets of Fig. 1-12 and Fig. 21-24, we
cannot escape the temptation to classify all the toroidal posets (//, p) with dim Rp =
rank(//) = 3 such that ρ(H) is contained in the set Λ(

3

3} of monomials of degree
three in three-indeterminates x, y and z.

(4.1) Let m and n be positive integers. Write Qn

m for the rank two poset

{<*!, α2,..., αm, βί9 β2,» > βn} with <*i<βj f°r anv * and 7. For example,

eι=
Fig. 28

Also, we denote by //£ the rank three poset Qn

m U {T}, where Tis a unique minimal
element of Hn

m. Then

LEMMA. lf(Hn

m, p) is toroidal, then m<2 and n<2.

PROOF. First, assume m>3 and, in Rp, let αια2 = Ty1, α2α3 = 7y2. Here

V ι > 72e{T, βι, β2ι -> βn} Then we have yια3=
<y2α1, which contradicts the

axiom (ASL-1).

Now, in Rp, βiβj^Xpβq for any \<p<m and l < ^ f < n by [6, Lemma 4].
On the other hand, βtβj^ Tβq for any l<q<n. In fact, let βiβj = Tβq. If
j5.j84 = α2 then Tβ2

q = a2

pβp a contradiction. Also, if βtβq=Tγ, yeHn

m, then

βl~yβj> which is impossible. Hence, any /^, !<^</ι, does not appear in
the standard monomial expression for ββj, thus we easily see that (f/J,, p) is
never toroidal if n > 3. Q. E. D.

However, it should be remarked that, for any positive integers m and n,
we can construct a homogeneous ASL domain on the poset //£, if k is infinite.

(4.2) We now prove the following effective lemma which plays an essential
role in our classification.

LEMMA. Let (//, p) be a toroidal poset with dim Rp = rank(//) = 3. Assume
that H — {T} has at least three minimal elements and at least three maximal
elements. Then, there exists no minimal element A of H — {T} such that A is
comparable with any maximal elements of H — {T}.

PROOF. On the contrary, assume that there exists a minimal element A of
H — {T} such that A is comparable with any maximal element of H —{T}. Let
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β(τM)and C (φ A) be two minimal elements of H-{T}. Then, in Rp, BC=T2.

Thus, H — {T} has no minimal element except A, B and C. Now, AB=TX and
C4 = T Y f o r some elements X and 7 of //-{T} with X^Y, J5<ΛΓand C<Y.
Thus CX = BY=TA and Xy=/l 2. In particular, β^rand C*X (the symbol
"n*" stands incomparability). Let Z (^X, 7) be another maximal element
of H-{T}. Since the set [ZX] is contained in {Ty; ye//} U {B2}, the standard
monomial expression for (ZX)Y cannot coincide with the standard monomial
((X Y)Z = )A2Z9 a contradiction. Q. E. D.

(4.3) Thanks to (4.1) and (4.2), if (//, p) is a toroidal poset with dim Rp =
rank(f/) = 3, p(//)c=^3) and #(//)<?, then (//, p) is equivalent to one of the
toroidal posets of Fig. 1-12 and Fig. 21-24. On the other hand, (//, p) is never

toroidal if p(H) = ̂ 3) (cf. [6, Example c)]).
(4.4) Before studying the problem of finding the toroidal posets (//, p) with

d imK p = rank(//) = 3, p(tf)c=^3) and 8 <#(//)< 9, we had better show the

following

LEMMA. Let (//, p) be a toroidal poset with dim Rp = rank(H) = 3. Assume
that there exists a minimal element A of H — {T} such that #{αe H — {T}; α>/4} >
3. Then, for any two minimal elements C (^A) ofH — {T}> in Rp, the
standard monomial expression for BC does not coincide with T2.

PROOF. Suppose that, in Rp, BC=T2. Then AB=Ta9 CA = Tβfoτ some
elements α, βeH-{T] with α>Λ andβ>Λ. Hence Ca = Bβ=TA, thus uβ = A2.

Now, let y (τ^α, β) be another element of H — {T} with y>A. Then the standard
monomial expression for (aγ)β coincides with A2y, however, this is impossible
because the standard monomial expression for oq> is of the form either 73 (δ e H)
or D2(DεH-{T} with D<α, D<y). Q. E. D.

(4.5) Let (//, p) be a toroidal poset with dim Kp-rank(f/) = 3 and #(//) = 8.
n, thanks to (4.1) and (4.2), the poset H is among the followings:

w

Fig. 30

Fig. 32
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LEMMA. Any poset among Fig. 29-32 is never toroidal for any embedding

P

PROOF. Let H be the poset of Fig. 29 and assume that (H9 p) is toroidal.
Then, by (4.4), in Rp9 A5=Γα, BC=Tβ9 CA = Ty, where α, β9 γe{X9 7, Z, W}.
Hence Cα = ylj8 = βy, thus α~C, β^A9 y~B. So, α = X, 0=y, y = Z. If CX =
AY=BZ= TWthen XY=BW9 which contradicts [6, Lemma 4]. Thus CX = A Y=
BZ=T2

9 hence XY=TB9 YZ=TC9 ZX = TA. Now, let XW=A* (resp. B2).
Then A2Y=TBW9 i.e., ΓM = ΓW(resp. B2Y=TBW), a contradiction. On the
other hand, if XW=Tδ, δeH9 then δY=BW, however, there exists no δeH
which satisfies δY=BWin Rp.

Let H be the poset of Fig. 30 and assume that (H, p) is toroidal. Then, in
Rp9 AB=TX and BC=TW. Let BY=T<*9 BZ = Γj3 (α, βεH). Then,
X, 7, Wand β^B,X, Z, W. Also, since αZ = 07, we have α^M, C, Z and
C, 7, thus α = /?=T, a contradiction.

Let // be the poset of Fig. 31 and suppose that (//, p) is toroidal. Then,
in Rp9 we may assume AB= TX, AC=T2, AD=TY, BC=TY, BD=T2 and CD =
TZ. Hence AY=CX9 a contradiction. A similar technique is also valid for
the poset of Fig. 32. Q. E. D.

(4.6) We now try to find the toroidal posets (H9 p) with dim JRp = rank(//)
= 3, p(H)c^3> and #(#) = 9.

To begin with, let ^Γ be an arbitrary subset of Λ^ with #pΓ) = 9 and
jR=φn^ 0RΛ, R0 = k and Λ^cβj, the subring of fc[x, >>, z]<3) generated by all

monomials contained in ΛΛ Then, 25 < dim^ R2 < 28 and dimfc R2¥
:26.

On the other hand, let (H9 p) be a toroidal poset with dim Rp = rank(//) = 3
and #(#) = 9. Write /j for the number of chains of length two contained in

H-{T}. Then dim, (Rp)2 =Λ + 17. Here, Rp=®n>o(Rp)n with (Kp)0 = /c and

Hence, if (//, p) is a toroidal poset with dimK p = rank(//) = 3
and tf(//) = 9, then 8</!<ll and/^9.

(4.7) let (H9 p) be a toroidal poset with dimKp = rank(//) = 3
and #(#) = 9. Write ct (resp. c2) for the number of minimal (resp. maximal)
elements of H — {T}. Also, as in (4.6), we denote by /\ the number of chians of
length two contained in // — {T}.

LEMMA. I f ( c i 9 c2)=(4, 4) then ̂  = 8.

PROOF. Obviously, /x> 8. Suppose/^ 8. Let X, B, C, D (resp. X, y,
Z, W) be minimal (resp. maximal) elements of H — {T}. We may assume #{αe
#-{T}; D<α}>3. Let AB=TX9 BC=TY and CA = TZ by (4.4). Since the

sets [AD], [BD], [CD] are contained in {T2, Ώf, Ty, ΓZ, TW}9 we may assume
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2, TW, thus AD = TY, hence BY=DX, in particular, B*Y, however, this
contradicts BC=TY, i.e., B< Y. Q. E. D.

Hence, if (c l 5 c2) = (4, 4) then the poset H looks like

Γ

Fig. 33

Now, let (c1? c2,/,) = (3, 5, 10). Then, thanks to (4.2), the poset H is
either

or

Fig. 34 Fig. 35

Also, if (cj, c2,/!) = (3, 5, 11) then the poset // looks like

Fig. 36

On the other hand, if (c l9 c2,/ι) = (5, 3, 10) then the poset H is one of the follow-
ings:

Fig. 37 Fig. 38
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Finally, if (cl9 c2,/ι)=(5, 3, 11) then the poset H is one of the followings:

307

Fig. 41

Fig. 42

LEMMA. Any poset among Fig. 34-42 is never toroidal for any embedding

PROOF. Our standard technique enables us to see that any poset of Fig. 34-36

is never toroidal. The routine details are omitted.

Let H be the poset of Fig. 39 and assume that (//, p) is toroidal. Then, in

Rp, the three dimensional vector space spanned by AC, AD and AE over k is

contained in the two dimensional vector space spanned by T2 and TY over /c,

which is absurd. The similar technique is valid for the posets of Fig. 37-38.

On the other hand, let H be the poset of Fig. 40. If (H, p) is toroidal then,

in Rp, thanks to (4.4), the three dimensional vector space spanned by AB9 AC and

AE over k is contained in the two dimensional vector space spanned by TX and

TY over /c, a contradiction. The same argument is also applied to the posets of

Fig. 41-42. Q. E. D.

Our final work is to examine whether the poset C8 of Fig. 33 can be embedded

into *^33) as toroidal posets. Assume that (C8, p) is toroidal with p(C8)c:uί^3).

Since Λ = 8, by (4.6), we may assume p(C8) = ̂ (

3

3)-{x3}. Thanks to [6,

Example b)], in Rp9 AB = TX, BC = T7, CD = TZ, DA = TW and (*) CA = BD = T2.

Then, by (*), p(T) = xyz. Hence y\ z3 ξ {p(A\ p(B\ p(C), p(D)}. Let p(X) =

y3 and p(A) = xy2, p(B) — y2z. Thus p(C) = xz2, p(D) = x2z by (*). However,

p(C) p(D) = x3z3 cannot be divided by ρ(T) = xyz. So, (C8, p) is never toroidal

(4.8) Summarizing our discussion we obtain the following

SUMMARY. Assume that (H, p) is a toroidal poset with dim Rp = rank(H) = 3

and ρ(H)cuf3

3). Then (H, p) is equivalent to one of the toroidal posets of
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Fig. 1-12 and Fig. 21-24. In particular, if H — {T} is not a tree then Rp is
Gorenstein.

References

[ 1 ] D. Eisenbud, Introduction to algebras with straightneing laws, Ring Theory and Algebra
III, Proc. of the third Oklahoma Conf. (B. R. McDonald, ed.), Lect. Notes in Pure and
Appl. Math. No. 55, Dekker, New York, 1980, 243-268.

[ 2 ] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening
laws, Proc. of USA-Japan Workshop on Commutative Algebra and Combinatorics
(M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Math., Vol. 11, North-
Holland, Amsterdam, 1987, 93-109.

[ 3 ] T. Hibi, Level rings and algebras with straightening laws, J. of Algebra, in press.
[ 4 ] T. Hibi, Classification of integral trees, Order 3 (1987), 383-389.
[ 5 ] T. Hibi, Canonical ideals of Cohen-Macau lay partially ordered sets, to appear in Nagoya

Math. J. 112 (1988).
[ 6 ] T. Hibi and K.-i. Watanabe, Study of three-dimensional algebras with straightening laws

which are Gorenstein domains I, Hiroshima Math. J. 15 (1985), 27-54.
[ 7 ] T. Hibi and K.-i. Watanabe, Study of three-dimensional algebras with straightening laws

which are Gorenstein domains II, Hiroshima Math. J. 15 (1985), 321-340.
[ 8 ] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials,

and polytopes, Ann. of Math. 96 (1972), 318-337.
[ 9 ] R. Stanley, Hubert functions of graded algebras, Advances in Math. 28 (1978), 57-83.

Department of Mathematics,
Faculty of Science,
Nagoya University




