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Introduction

This paper is exclusively concerned with the equation of Boltzmann (or
Maxwell and Boltzmann) for a gas of identical hard spheres and its caricature.
In his original derivation of the equation Boltzmann made crucial use of an
assumption of molecular chaos or so-called stosszahlansatz which, groundlessly
introduced, is acceptable for no better reason than that it is plausible or expedient
and, lacking in precision of its meaning, obscures the relations of the Boltzmann
equation to the underlying dynamics — while has been recognized its significance
in the kinetic theory of gases, the Boltzmann equation hardly rested on any solid
foundation. It therefore was (and is) highly desirable to derive the Boltzmann
equation from the Liouville equation, i.e., to derive it from particle dynamics
which is completely deterministic (causal) so that all the randomness introduced
into the derivation comes only through the initial randomness of the particle
configuration in the phase space. Through arguments (though not of mathe-
matical rigor) based on the careful analysis of the Liouville equation and its
reduced equation for the one particle correlation function H. Grad (1958) afforded
an excellent insight into the nature of "stosszahlansatz", pointing out, among
others, the crutial role played by very small parts of the phase space through which
the behavior of a correlation function is determined by that of higher order ones.
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He also emphasized that for the validity of the Boltzmann equation the number of

particles must be kept inversely proportional to the surface area of a particle
(so that the mean free pathxl), motivating the subsequent naming of the Grad
limit (or Boltzmann-Grad limit). After C. Cercignani (1972) had brought into

an explicit and exact form the BBGKY hierarchy for the hard sphere dynamics,
which, introduced in a general setting through works published around 1946
by Bogoliubov, Born & Green, Kirkwood, and Yvon, is a chain of equations to
be satisfied by a sequence of correlation functions, O. E. Lanford III (1975)

showed, with the same dynamics, that a series expansion of the correlation
function derived from the BBGKY hierarchy approaches in the Grad limit the

expansion corresponding to the Boltzmann equation for short times. Though
Lanford, in his paper [9], gave only an outline of his argument and did not prove

the BBGKY hierarchy or the series expansion, the details of the former was
provided by F. King [8], while H. Spohn, in his notes [15], proved the latter two.
(The latter problem is treated also in the appendix of [6].)

The present article primarily (i.e., except for §7) aims at giving a complete
and coherent exposition to the Lanford derivation of the Boltzmann equation,

including proofs of the BBGKY hierarchy and the series expansion which are
somewhat different from Spohn's. This, however, will be carried out first with a
model dynamics different from that of hard spheres. The model is not realistic (the
momentum is not conserved through a collision) but still possesses the essential
feature of hard sphere dynamics. In this model the modulus of the velocity of
each particle can be assumed to be unity throughout since the collision there
does not change it. This allows us to work through the all steps of the derivation

of the Boltzmann equation for our model without annoyed by the unbounded
factors of the velocity variable which in the hard sphere case appear in the series
expansion of the correlation functions. The unboundedness of the velocity
becomes essentially relevant only in the last stage of our derivation where we
argue about the convergence of the series which represents the correlation function
and must obtain a certain bound of each term of it. After finishing a full story
with the caricature we shall get a bound for the hard sphere dynamics, which
makes up the deficiency originating in our working with the caricature to ensure
that the story is valid also for it.

In §0 we make a heuristic argument to formally derive the first equation of
the BBGKY hierarchy and introduce the first two terms of the series expansion,
which together will help one to understand the mechanism how the Boltzmann
equation emerges from particle dynamics. The model dynamics mentioned
above is introduced in §1 and the fundamental facts about it are duduced in §§2
and 3. It is shown especially that the set of configurations which eventually
lead to a triple or higher order collision is Lebesgue null and the flow defined

by the dynamics in the phase space preserves the Lebesgue measure. With the
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flow being defined only up to the time when a multiple collision if any occurs, the

proofs of these two assertions are intertwined in a way. The proofs of the BBGKY
hierarchy and the series expansion are given in §4. There we impose, on the
density /„ of the initial configuration of n particles, the continuity at almost
every phase point, different from the one assumed by others ([6], [8], [9], [15]
etc.), i.e., the continuity along trajectories. In §5 we study the Boltzmann
equation and the Boltzmann hierarchy. The deduction of the Boltzmann equation
from the series expansion is made in §6. In §7 we treat our system of particles
along the idea of M. Kac [7] and H. P. McKean [12]; we shall prove that the

stochastic process of a tagged particle converges (for short times) to a Markov
process governed by the collision operator linearized about the solution of the
Boltzmann equation. In §8 we give some comments and estimates with the help

of which all the arguments made through §§1 to 7 are applied word for word or
at most with a minor modification to the hard sphere dynamics.

§0. The Boltzmann equation for the hard core potential and its heuristic derivation

In this section we introduce the Boltzmann equation for the hard core potential
and make a heuristic argument for the derivation of it. All the succeeding sections
may be read independently of the present section.

The Boltzmann equation is an integro-differential equation which is to
describe the time evolution of the single particle distribution in dynamical process
of many particles. Let q and v be elements of R3 and stand for the position and
velocity of a single particle, and let u(t, q, v) denote the density of the distribution
of them. Then the Boltzmann equation for hard core potential without the outer

force is given by

(0.1) - u(t, q, v) + v - u(t, q,v)

= Γ f [u(t, <l, v*)u(t, q, ι>?)-ιι(f, q, φ(ί, q, v ̂ (v - v ,} Ί\dldv , .
J S<2> J R3

Here dl is a surface element on the two-dimensional unit sphere S(2) and (i;*, r?)
denotes the velocities of two particles after a collision in which velocities before

the collision are v and vί and the second particle runs into the first one at a point
on the first's surface in the direction / from its center, so that for each / e S(2) there
corresponds a (linear) transformation At: (v, vJeR6-*^*, vf)eR6 (see the
beginning of §8 for details). Multiplying the both sides of (0.1) by a smooth
test function φ = φ(q, v), integrating them and making use of the measure
preserving property of the transformation Al (for each /), we get another version
of (0.1):
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(0.2) - <φ, κ(0> = υ

where <φ, u(φ = \ φ(q, υ)u(t, q, v)dqdv and
J R6

Ku{t)φ(q, r) = Γ Γ
«/ /? «/ SS' '

Now consider the gas of n identical hard spheres (particles) of diameter ε
moving in the 3-dimensional flat torus R3/Z3. (It is not essential to the present
problem whether the space in which particles move is a finite region (as far as
it is sorrounded by smooth elastic walls), the torus or the whole #3-space). Two
particles collide with each other elastically. The n particle phases, i.e., the
configurations (of positions and velocities) of n particles, which eventually lead

to triple or higher order collisions form a set of Lebesgue measure zero (Theorem
3.1) and may be neglected. Starting from each phase outside this set the flow of
n particles is determined for all times. Suppose that the n particle phase is

randomly distributed at time zero according to a density /„ which is symmetric
with respect to n particles. Let us choose any particle, tag it and then pursue
it. Let xt=\_qt, vt~] stand for its phase at time t; xr is then a stochastic process,
which, in our lacking in knowledge about the other particles, appears to change

its course and speed haphazardly. Assume that the distribution of xt has a
continuous density, which we denote by MM ) 1(ί, x), x = [g, v]. We would like

to compute the derivative of <wnj l(0, </>>,i.e., the derivative of the expectation
Eφ(xt). If the tagged particle does not encounter with any other particle during

a small time interval (t, t + dt), then vί+dt = vt and <?,+,/, = </, + ίW What then in
the case when a collision takes place? Let (vt — t/) />0. Then it collides at a
time t + s at a point, qt + svt + (β/2)l9 on its surface with another particle having
the velocity υ' if the latter has passed the position

(0.3) ^ = ft + s(I?|-l?') + e/

just at time /, provided their presumed courses of motion have not been intercepted
by the remaining particles. The probability of having such a particle in dq'dυ'
may be expressed by means of the density of conditional probability, w(f, x'|x),

of any remaining particle being found in its phase x' at time t given xt — χ.
Under some continuity condition on w(ί, x' | x) this probability is given by

MΛ [#f + εί> *>'] \xt}dq'dv' where qf is not a free variable but determined through
(0.3) so that dq' = ε2(vt — ί/) Idldt (ds is replaced by dt). Since there are alto-
gether n — \ particles whose phase may be in dq'dv' and the probability for a third

particle to intercept the encounter between the two particles must be of the
higher order, the difference Eφ(xt+dt) — Eφ(xt) may agree with the expectation
of vt (dφfdq)(xt)dt plus that of
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ε\n - 1) Γ (#x ) - φ(x,))w(t, [q, + εf , t/] | x,) (v, - v') Idldv'dί
J (vt-v') l>0

up to a small order term of dt, where xf = (qt, vf), vf being the first #3-component
of A{(vt, v'). If un)2(ί, x, x') denotes the density of two particle phase distribution
(two particle correlation function) at time f, then w(f, x' | x)un^(t, x) = tιπ)2(ί, x, x').
Consequently

(0.4)

= ε2(« - 1) (ψ(x*) - ψ(x)K,2«, x, [<? + ε/, »']) (t> - t/) Idldv',
J (v-v') l>0

where x = [g, v], x* = [<?, t>*], and u* is the first K3-component of At(v, v').
Now take the limit of ε->0 and n->oo in such a way that ε2n converges to 2 (the
Grad limit), assume that ur t)1 converges to a limit, w(f) say, and employ the
stosszahlansatz which may here be interpreted as

(0.5) lim 11,12(1, [g, t>], [g + el, r']) = t/(ί, q

which is claimed for (v — v') />0, then you have the Boltzmann equation (0.2)
(the contribution to the integral of the collision term from (t> — 1/) />0 equals
that from (t; — 1/) /<0 except for the minus sign). It is noted that the phase
of two particles entering in the left hand side of (0.5) is that of the "in-coming"
collision. In other words the chaos property as expressed in (0.5) is needed for
and "only for particles which are about to collide" as H. Grad put it. (See [5]
and Remark 6.3 of the present paper for further discussions.)

The equation (0.4) is the first (or last) of the chain of equations called BBGKY
hierarchy (as it has been after Bogoliubov, Born, Green, Kirkwood and Yvon).

The m-th equation (m > n) of it relates the m particle correlation function un\m(t)

with that of m-f 1 particles just as (0.4) relates Mπ)1(0 with uπ|2(0 Its integrated
form is iterated to produce a series expansion of Mπjm(0 Let T[m) denote the m
particle flow and /ΠJOT the initial correlation function tιπ|w(0). Then it expresses
Mπ|m(0 as a sum °ffn\m°Tty and a series of n — m integrals of /π|fc's, m<k^n; the
first term of the series may read

2/^^

where x is a m particle phase and Cj f denotes the operation of adding an extra
particle beside the '-th particle of a configuration on which it operates according

to Cj»'jc = (jc, [<?y + ε/, t;]), and the inner-most integral extends over those / for
which the added particle shares no spatial region with the other particles. If
the addition of a particle results in a configuration of "out-going" collision or
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equivallently (Vj — v)- /<0, the operations of Tί^ί]* makes it first instantaneouly
turn into the corresponding one of in-coming collision and then evolve backward
in time. (In §6 we shall use a slightly different notation to explicitly indicate the

types of collisions.) From this simplest case the form of the other integrals may
be guessed: in the /c-th integral the operation of the addition and the backward

motion are repeated k times succeeding to the initial operation of Γί^f. Then
it would be seen that each integral would converge to the one corresponding to
free motion of point particles, i.e., to the corresponding one in the series expansion

for the Boltzmann equation. Thus the Boltzmann equation might be derived
under some assumption about the convergence of /πjm's, if each term of the series
expansion remains within a bound such that it enables us to take the limit
term-wise. Such a bound is obtained for a short time interval whose length is
determined according to the bound for /Π|m's, but the reasoning for it apparently

fails to work for longer times. In the two dimensional case where particles (elastic
disks) move the whole R2, the initial distribution is a local perturbation from
vacuum, and the mean free path (~n xthe radius of a disk) is sufficiently small,

Illner and Pulvirenti [6] established the validity of the derivation of the Boltzmann
equation for all times. It seems however very difficult to establish it for all
times in more general situations, especially in a situation where the effect of
collisions does not fade out for large times (this is not the case treated in [6]).

§ 1. Description of the model and notations

Let S2 = R2/Z2 the two-dimensional torus. We will study an n-particle
dynamics in 52, which is described below. A particle is a circular disk of diameter
ε (0<ε« 1) whose center q ε R2 represents the position of the particle. It moves
with a constant velocity v of modulus one: |t?| = l untill it collides with the other
particles. Two particles collide and change their velocities instantaneously when
they come to touch each other. Let q and qί be positions of two particles at the

moment of the collision and let v and vί be their

respective velocities just before the collision.
Then the velocities after the collision, denoted
by v* and t f, are given by

ί;* = Vι 4- 2(vi 1)1

if (u — v^- /τ*0, where / is a unit vector pointing

in the same direction as q^—q:

/ _ 1 /~ ~\
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(see fig.). In other words, particles behave as if there is an elastic wall which is
tangent to both disks at the time of collision. For the grazing collision:

(V-ΌJ I = 0

we set ι>* = t;, vf = vl. By collision is not changed the modulus of velocities:

M = |»*l and N = k?|.

In particular the energy is preserved, but not the momentum is. For all collisions
possible in this dynamics it holds that

(t;- !>,)•/ = -(ι?*-ι>ί) •/;><).

The velocity v and the collision parameter / are understood to be elements of
the unit circle, denoted by S.

The crucial feature of the transformation

(1.1) 4:(iM>i) - >(f*,t>ϊ)

is involved in the following lemma.

LEMMA 1.1. For all bounded measurable functions F on S5

f f f F(υ, vί9 υ*9 ι>ϊ, IHv-v
J J J (v-vι) l>0

= f f f F(«Λ »ϊ, », »ι. -0(»-
J J J (υ-ι>ι) />0

PROOF. Since the transformation (1.1) preserves the measure dvdvΐ9 from
the identities A~fl = At and (t? — i^)- /= — (v* — rj) / it follows that for each /

f f F(v, vί9 v*9 ι?f, l)(v-vί)Ίdvdvl
J J (v-vι) l>0

= - Γ Γ F(Aτ\v
J J (v*-υϊ) l<0

= - ΓΓ F(v*, i??, v, vί9
J J (ι>-»ι) l<0

), β ,

The deisred equality is obtained after the integration by / where we make a change
of the variable according to /->• — /. Q. E. D.

Let us define the dynamics of n particles. We shall assume, unless the
contrary is stated, that n particles are initially located in such a way that they do
not overlap one another so that the dynamics is described as a flow in the phase
space
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υ = (ϋl9...9Όll)eS"9 \qt-qj\>s if i*j} .

(\q\ denotes the Euclidean length of q e S2 which is understood to be represented
by a point of ( — 1/2, 1/2]2.) Multiple (i.e., triple and higher order) collisions
are undefined. If the system happens to come into the multiple touch, then it is
stopped (frozen) at that time. For simplifying the arguments we also stop the
system both at the time of grazing collision and of twin collisions (where two
pairs are in touch simultaneously).

The trajectory drawn in Ω(

n

ε) by the system has discontinuity at the time of
a collision. To make things definite and clear we shall take a left continuous
version of a trajectory.

To give formal definitions let us introduce following notations.

Ω°n = Ω<<» = S2n x S«.

[4, v} e Ω[ε) (i.e. the square bracket is used to denote a phase point of one
particle) .

x = (X I,...,XΛ) = (ql9 vl9...9qn9 vn) = (q, t;)eΩ<β),

where xt = \_qi9 i J, q = (ql9...9 qn\ v = (vl9...9 vn) .

To _ 7(0.11). the flow of the n-particle free motion, i.e.,

T?x = (q + tυ9 v) = (ίq^toί, »,],..., ίqΛ + tvΛ9 i J).

SΩ(

n

ε) = {xeΩ(

n

ε): \qt — qj\ = ε for some pair i

Σ(

n

ε) = {x e dΩn : x is in a multiple touch, (at least) two pairs from x are in
collision, or a pair from x is in grazing collision} .

Let x e dΩ(

n

ε}\Σ(

n

ε} . Then there is just one pair l<i<j<n for which
and

(v*9 v*) = At(vi9 Vj

(entries other than i;f and t;y are unchanged). We say x (or (xi9 x,-)) is in in-coming
collision or out-going collision according as

(Vi-Vj) - 1 > 0 or (vi — Vj) - 1 < 0.

If jc is in in-coming [out-going] collision, then x* is in out-going [resp. in-coming]
collision.

The n-particle flow T f=T f

( π ' ε ) (ί>0) is now defined as follows. Let σ(x)
be the first time when the free motion starting at x arrives at dΩ(

n

ε) after time zero,
i.e.,



Derivation of the Boltzmann equation from particle dynamics 253

σ(jc) = inf {t > 0 : T?JC e dΩ(

n

ε)} .

Then in the first step set

if xeΣ(

n

ε\ Ttx = x for all t > 0;

if x e Ω<ε) VΩ<ε)jt, Tt = T?JC for 0 < t < σ(x)

if x e dΩ(

n

ε)\Σ(

n

ε) and x is in out-going collision, then

(1.2) T0x = jc* and Tfjc = T?x for 0 < t < σ(x)

if x 6 dΩ(

n

ε}\Σ(

n

ε) and jc is in in-coming collision, then

(1.3) T0x = jc and Ttx = T?JC* for 0 < t < σ(x)

and in the succeeding steps repeat the same procedure.
Let σn = σn(x), n = l, 2,..., be the successive times of the collisions in the

above repeated procedures. If {σn} is unbounded, then is determined Ttx for all
t > 0, which satisfies the semi-group property

Tt+sx = TtTsx, s > 0, ί > 0,

and whose position component the Lipshitz coutinuity

(1-4) \Q(Ttx)-Q(Tsx)\ < VϊΓ|f-s|,

where

Q(x) = q for x = (^,v).

If the sequence {σn} is bounded, then either the system hits Σ(

n

ε} at some σπ,

being stopped there for ever since then, or it increasingly approaches a constant,
t0 say. In the latter case the Lipshitz continuity (1.4) is valid for 0<s<f<ί0,
showing that there exists lim ί ί f oβ(T fjc) which must be a spatial configuration
for a multiple touch, so that the system is frozen at the time ί0 (any velocity
configuration may be assigned). Thus Ttx is defined for all f>0. Clearly the
semi-group property and the Lipshitz continuity (1.4) valid for all ί, s>0.

Our dynamics is time-reversible in an obvious way so that {Tr, ί<0} is defined
in the same manner as above. Note that if x e dΩ(

n

ε)\Σ(

n

ε\ T0x is always in
in-coming collision and does not always agree with x.

Set

= inf{f>0:

τ<-> = τ(-)(jc) = sup{f<0: TtxeΣ(

n

ε)}.

Here (and below) the infimum [supremum] of the empty set is understood to be
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oo [resp. — oo]. As incorporated in the discussion above the number of collisions

experienced by the flow Ttx in the finite interval [ίl9 72] is finite if τ(~} < tl < t2 <τ.

LEMMA 1.2. G = {(ί, *) e K x ί2j,ε) : Ttxξ dΩ(ε}} is an open subset of RxΩ(

n

ε}

and the map: (ί, x)-+Ttx from G into Ω(

n

ε} is continuous.

PROOF. Let (f, x)eG and ί>0. Since xe{τ>f} , the flow starting at x

experiences at most a finite number of collisions in the interval [0, ί], all of

which must be pairwise and proper (i.e., not grazing). Therefore we can choose

a finite sequence Q = t0<tί<-'<tm = t such that there is at most one collision

between ίf and ti+ί and Tt.x^dΩ(ε\ /=!,..., m. It is easy to show that the map

Tti + l-ti is continuous at Tt.x for i = l , 2,..., m — 1 and the map: (s, y)-*Ttl+sy

is continuous at (0, jc). These together with the semigroup property of Tt , t ̂  0

implies that the map (t', x')-*Tt.χ' is continuous at (ί, jc). One can similarly

proceed in case when t<0. In particular G is open. Q. E. D.

NOTATIONS. Throughout the paper we shall use the following notations

and conventions in addition to those introduced above.

U(

n

ε\t)φ(x): = φ(T(_"t>
ε}x) for φ a function on Ω(

n

ε}.

βί" β)(f) = β["'ε)(f, Jc): the i-th position component of T\n^x.

V\n>ε\t) = F[π'ε)(ί, jc): the ί-th velocity component of T|"'ε)x.

Xί" «>(0: = [β{" β)(0, V\«>*\t)-\.

β(" β>(ί): = (β{" β)(0,-ϊβi" lί)(0) and similarly for V<a *>(t) and ΛΓ<" e>(0.

F[JC, /] (xeΩ(

n

ε\ I is an interval of R) denotes a trajectory in Ω(

n

ε) of the

flow Ttx during the time interval /, i.e. the history of the function

t<=I->TtxeΩ(

n

ε\

Dn = D<n

ε}: = {qeS»2: |^.-^|>ε, for all i

</, 0>: = I /0ί/JC for /, </> bounded measurable functions on Ω'dx\ =
J Ωn

dxί "dxn (dx^dqidvi is the Lebesgue measure of S2 x S) .

It is convenient to introduce an extra point d in the following way. When

we are concerned with the flow T(

t">ε\ all the points of S% x Sn \ Ω(

n

ε) are identi-

fied with d (a single point) and d is added to Ω(

n

ε} as an isolated point; then set

(1.5) T(

t

n>ε}x = T(

t">ε)d = d for xeS"2 x S" \ ί̂ ε)

for all ί. Any function / on Ω(

n

ε} will be automatically extended to the function

on S$xSn^Ω(

n

ε} U {d} by setting /(3) = 0 so that if / is a continuous function
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on ί2j;ε), then it is considered to be a function on Sj x Sπ, which is still continuous
though it is identically zero outside Ω(

n

ε\
The super- or sub-scripts n and ε in T{w'ε), Ω(

n

ε\ X\n>ε} etc. will often be
omitted if doing this gives rise to no fear of misunderstanding.

REMARK 1.1. i) In the model introduced above t?*[u*] does not depend on
vι [fesp. i;]. This fact however will not be used at all in this paper.

ii) It is emphasized that Lemmas 1.1 and 1.2 together with their proofs
and all the arguments in Sections 2 to 4, where the BBGKY hierarchy for
correlation functions will be derived, are applicable to the dynamics of the hard
sphere model with little modification. This is because the conservation of
energy allows us to assume that the velocities are bounded as far as the number
of particles are fixed. Even when the number of particles goes to infinity so
that such boundedness of velocities can not be assumed, it is justified by using
Lemma 8.1 of this paper that we may formally apply the arguments for the
present model given in §§5 to 7 (with minor modifications) to deduce corresponding
results for the hand sphere case.

iii) It is only to make the situation simple and transparent and to focus
our attention on the essential part of the problem treated in this paper that we
adopt the two dimensional torus 52 as the space on which particles move. In
fact it is easy to extend the present arguments to the case where S2 is replaced
by a d-dimensional vessel which is surrounded by smooth elastic walls.

§ 2. The two-particle system

In this section we are concerned with the dynamics of two particles. We
denote the phases of the first and second particle by x = [g, υ] and by xl = [qί9 ι>ι],
respectively, and write jc = (x, Xj).

Let ί>0 and Et denote the set of all configurations j teΩ 2 — Ω(2ε) such that
the flow starting from x at least once experiences a collision in the time interval
[0, ί). By introducing the parameter s which stands for the time of the first
collision, we see

Et = {xeΩ2: q1-q = εl + s(v-vί) and (v-v^ />0 for some

0<s<ί and leS}.

For points of £„ fixing q, v and vi9 we can consider q{ as a function of 5 and /
by the equality in the braces above, having

(2.1) dq1 ^efr-v

and
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(2.2) f φ(T,x)f(x)dx = f dx f A>, Γ ds f
J Et J Ωι J S J 0 J (v-vί)Ί>0

t-s)v*> I?*], [g +

-Uj)- Wί

for any bounded measurable functions </> and /on ί22, provided that t is small

enough to the size of the torus (it suffices that t <ε+ 1/2).

LEMMA 2.1. The Lebesgue measure on ί22

==^2ε) ί5 preserved by the flow

PROOF. In the integral on the right-hand side of (2.2) with /= 1 we first

carry out the integration w.r.t. q by changing the variable according to

q - > q -f tv* + s(v — v*)

to see

Γ φ(Ttx)dx = [dv (dvv Γ ds Γ έ// Γε(ι? -»,)•/
J Et J J JO J (ϋ-t;t) />0 J

Then by applying Lemma 1.1 and using an analogue of (2.2) we get

(2.3) Γ φ(T,x)dx= Γ φ(x)dx.
J Et J E-t

Here £_ f is defined in the same way as Et but for the time-reversed flow. Since

(2.3) yields

Γ φ(Γ rJc)rfjc= Γ φ(T»X)dx+{ 0 (Γ f j c )d jc=Γ φ(x)dx.
J Ω2 J Ω2\Et J Et J Ω2

Q.E.D.

§ 3. The /i-particle system

The purpose of this section is to prove Theorem 3.1 below and to prepare

Lemma 3.4 which will play crucial role in the next section. In the course of

proofs of these results we shall define certain sets and functions by means of Tr,

and one may raise questions of whether they are measurable. We shall not
discuss such questions untill Appendix I where will be proved the measurability

of Tt as well as that of sets and functions appearing in this section.
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Let τ and τ(~} be the arrival time at Σ(

n

ε) as defined in Section 1. The

parameter ε will be suppressed from the notations in below. The Lebesgue
measure on Ωn (as a subspace of [0, I)2" x [0, 2π]w) is denoted by | |.

THEOREM 3.1. i) τ=—τ(~) = ao a.e. on Ωn. ii) For each t the trans-
formation Tt preserves the Lebesgue measure on Ωn.

For the proof of Theorem 3.1 we first prove

LEMMA 3.1. For f >0 and a bounded Borel function φ on Ωn

Γ φ(Ttx)dx = Γ φ(x)dx.
J τ>t J - t<~)>ί

REMARK 3.1. As a corollary of Lemma 3.1 we have that if Ac{ —τ(-)>ί}
is a Borel set, then |T7M| = |4|, because the premiss of this statement implies
that T^1Ac:{τ>t} and one can take φ = χA (the indicator function of A) in

Lemma 3.1.

For the proof of Lemma 3.1 we prepare

LEMMA 3.2. Let A be a Borel set contained in {τ>t} (t>0) and φ a Borel
measurable function defined on TtA. If the number of collisions in F[jc, [0, *]]
is at most one for every xeA, then

Γ φ(Ttx)dx= Γ φ(x)dx.
J A J TtA

PROOF. Let

Al*J = {xe A: there occurs a (unique) collision between the i-th and
the j-th particle in F[x, [0, ί]]}

A0 = {xeA: there is no collision in F[JC, [0, ί]]} .

Then

A = Σί<y^ ί > J + ^o (disjoint union).

Let Tγ J) denote the flow in which the particles other than the ί-th and the j-th
make free motion. Since \dΩn\ =0 and

we then have

Φ(Ttx)dx = φ(T\* flχ)dx = g(T\* »x)dx9 g =



258 Kόhei UCHIYAMA

the last integral, by Lemma 2.1, equals

Γ0(jc)c/x= Γ φ(x)dx.
J J TtAi'J

Thus

Γ φ(Ttx)dx=Σκj( Φ(Ttx)dx + Γ φ(Ttx)dx= Γ φ(x)dx.
J A J A^J J AO J TtA

Q.E.D.

PROOF OF LEMMA 3.1. If τ(x)>t and f>0, the number of collisions in

F[JC, [0, /]] is finite. Therefore if we set

(3.1) Am = {x: τ(x)>t and the flow starting at x experiences at most one
collision in each time interval [/cf/2m, (k+ l)ί/2m], /c = 0,..., 2m-1},

then Ax c A2 c and

(3.2) (τ>t} = VS.lAm,

so that

Γ φ(T,x)dx = limm^00 Γ φ(T,x)dx
J t>r J Λm

By Lemma 3.2 and the group property of T, the integral under the limit equals

φ(T,.,x)dx, δ = tl2"
TόAn

and, transformed step by step, finally becomes

J, φ(x)dx.

This proves Lemma 3.1, because \jm TtAm=Tt{τ>t} = {-τ(~> > ί}. Q. E. D.

PROOF OF THEOREM 3.1. On account of Lemma 3.1 it suffices to prove the
first half of the theorem. For t >0 set

B(t) = {xeΩn: either there are at least two collisions in F[JC, [0, ί]];
or τ(x)<t and there is no collision before τ(jc)}.

To have two collisions in the time interval [0, ί] there must be either three particles
which are located within the distance ε + 2ί of each other or two pairs of particles
such that two particles of each pair are located within the distance ε + 2t. The
Lebesgue measure of all such configurations from Ωn is of the order O(t2) as t
goes to zero. Since the set of x such that in the flow starting at x the first collision
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takes place in Σn is a Lebesgue null set, we accordingly have

(3.3) \B(t)\ = 0(t2) as t I 0.

On the other hand

ΩπMm c VJ^o1 (x€Ωm: TkδxeB(δ) and τ>kδ}

where δ = t/2m and Am is defined by (3.1). Applying Lemma 3.1,

\Ωn\Am\<2>»\B(t/2»>)\ = 0(2->»).

Hence (3.2) proves |{τ<f}| =0 as desired. Q. E. D.

REMARK 3.2. An analogue of the first half of Theorem 3.1 is proved by
Alexander [2] for the hard sphere dynamics, and by Aizenman [1] under a more
general setting. The proof given above is simialr to that of [2].

For convenience of later applications we here state a lemma which slightly
generalizes (3.3). Two particles, with labels i and y, are said to make a shadow
collision in F[x, [0, ί]], if there exists an interval [r, s]c[0, ί] such that (X"(r),
Xnj(r))eEs.r (i.e. there is a collision in F[(X?(r), X%r)\ [0, s-r]], but there is
no collision between them in F[JC, [r, s]].

LEMMA 3.3. Let B(t) be the set of such configurations xeΩn that either the
total number of collisions and shadow collisions in F[jc, [0, tj] is greater than or
equal to two; or τ(x)<t. Then \B(t)\ = O(t2) as f-»0. (O(t2) may depend on n
and ε.)

The proof of Lemma 3.3 is the same as that of (3.3) on account of Theorem
3.1.

LEMMA 3.4. IfA<=:Ωn and |Λ|=0, then

(3.4) TtxξA for a.a. (almost all) (jc, t)edΩn x R,

where a set ofx is measured by the induced Lebesgue measure on the hypersurface
dΩn = dDnxSn.

COROLLARY, i) The map (x, t)eΩnxR^TtxeΩn is continuous at a.a.
points of 3ΩnxR. ii) -τ(~) = τ = oo a.e. on dΩn = dDnxSn.

DEDUCTION OF COROLLARY FROM LEMMA 3.4. i) is immediate from Lemma
3.4 and Lemma 1.2 (take A = dΩn). As for ii) one has only to note that the set
y4 = {τ<oo or τ^> —00} is invariant under Tt.

We continue to consider the n-particle system with n and ε fixed, and before
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proceeding to the proof of Lemma 3.4 we introduce the following notations:

z = z<ε)(x', /, t;) = (*!,.. .,*„_!, [^_!+ε/, υ])

for x/ = (x1,...,xM_1)eΩiε_ )

1, /eS, υeS,

N* = ΛΓί U N-.

JVJ[N~] consists of triples (*', /, v) for which the n-th and (n — l)-th particles
from z(x', /, v) are in in-coming [resp. out-going] collision. It is noted that if
z(jt', /, v) is in in-coming [out-going] collision, then z(x', — /, v) is in out-going
[resp. in-coming] collision. By the symmetry of the role of particles (3.4) is

equivalently expressed as

(3.4') Ttz(x'9l,Ό)$A for a.a. (*', /, ι>, t) e Nn x R.

PROOF OF LEMMA 3.4. Let |A|=0. First we shall prove

(3.5) Γsz(x', /, υ) $ A for a.a. (*', /, y, s)eN; x (0, oo).

Put

B = {xeΩn\dΩn: the first collision in the time reversed flow T_,jt, ί>0,
is pair-wise and occurs between the n-ih and the (n — l)-th particle}

and

B = {(jc', /, υ, 5): (*', /, v)eN-9 0<s<σ1(z(jc', /, »))}

where σ{(x) is the first collision time after time 0:

σ,(jc) = inf{ί>0: TtxedΩn}.

Clearly B is a Borel set and β = {T?z(x', /, t?): (*', /, ϋ, s)eβ}. Making use of
(2.1) we then have that for a bounded Lebesgue measurable function φ on Ωn

(3.6) Γ φ(x)dx= Γ eίu-i^-O lφCTXx', /, v))dsdx'dldv.
J B J β

Applying this relation to φ(x) = χA(Ttx)9 which is Lebesgue measurable for each
ί, we see that if |/4| =0, then for each t >0

Tt+sz(x', /, v) ξ A for a.a. (xr, /, i;, s)e5.

Since σ^O a.e. on N~, this implies (3.5). In view of Lemma 3.5 below (3.5)
implies the corresponding relation for N+ x (0, oo). The relation for Nn x ( — oo, 0)

is proved in the same way. Thus we have (3.4'). The proof of Lemma 3.4
is complete. Q. E. D.
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LEMMA 3.5. For every bounded Borel function φ on Ωn

Γ φ(z(x'9 /, v))dx'dldv = Γ φ(z*(x', /, v))dx'dldv,
J Nn J Nn

where z* is a configuration in Ωn obtained from z by ^-operation.

PROOF. Immediate from Lemma 1.1.

§ 4. The BBGKY hierarchy and the series expansion of correlation functions

Throughout this section we fix 0<ε«l and n. Let /„ =/„(*) be a bounded
Borel function of Ωn = Ω(

n

ε\ and un(t) = un(t, dx) (teR) be the image measure
offn(x)dx under Tt. Since Tt preserves the Lebesgue measure, un(i) has a density
which is given by

un(t, x) = fn(T_tx) xεΩn.

Though un(t, jc) is not continuous in x (nor in f) even if /„ is continuous, we
shall need some continuity property of un(t, x) in the following discussions.
What we impose on/π is the continuity at almost all x e Ωn:

(4.1) There is a subset B of Ωn of full measure such that fn(x) is
continuous at every point of B.

(This condition will be removed later.) To make our arguments clear and
simple we shall assume also the condition that/n = 0 on Σ(

n

ε\ which together with
the Theorem in Appendix I guarantees that un(t, x) is Borel measurable in (ί, jc).
By Lemma 1.2 the property (4.1) is inherited by un(t, •) for all t. Moreover, by
applying Lemma 3.4 in addition, the condition (4.1) implies

(4.2) the function un(t, x) on R x Ωn is continuous at a.a. (almost
all) points (f, jc) e R x dΩn

in particular, for a.a. ί, the function un(t, ) on Ωn satisfies

(4.2') un(t9 x) (as a function on Ωn) is continuous at a.a. x e dΩn.

Throughout this section we shall assume the condition (4.1) to hold.
The purpose of this section is to derive a system of equations (BBGKY

hierarchy) for correlation functions un]m(t) = unlm(t, *!,..., xm), l<m<n, which
is defined by uφ = un and for m<n

H«|m(f» *1» —» *m) = UΛ(t, x)dxm+l—dxn

J Ωn-m

if (x1,...,xw)^I^) and uπ|m = 0 otherwise. (Recall that un(t, jc) = 0 if JteΩ<>\
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Ω(

n

ε) by our convention (1.5).) From our definition of Tt (especially (1.2) and
(1.3)) it trivially follows that for all t and m = l, 2,..., n

(43} u , (t x} = u , (t jc*)VT—V Un\m\l9 Λ/ — "n lmV^ϊ Λ )ι

(Don't confuse this with the continuity of un\m along the trajectories.)
We define an operator Kmttn+ί = K^m+l which transforms a bounded

measurable function g on Ω(^} into a bounded measurable function on ί2j,ε) by

= Σ?=ι ί dldv(vj-v) l
J (ι j-v)Ί>0(ι j-v)Ί>0

x {#(..., Xj.l9 [<?,., i J], x;+

where (vj, v*) = Al(vj, v). Though the right-hand side above is determined
only by the values of g on the boundary dΩm+1, for g and h equal to each other
a.e. on Ωm+l we have Kmm+lg = Kmm+lh a.e. on Ωm if the both of them are
continuous at a.a. points of dΩm+ί. On account of Lemma 4.1, which will
come after Theorems 4.1 and 4.2 below, (4.2') implies that the continuity condition

of g above is satisfied by wn ( m + 1(0 for a.a. t.
Now we can describe the BBGKY hierarchy. One might heuristically derives

its original form

(4.4) -JΓUn\m(t} = ̂ "U»\M + Φ-m)Km,m+lM,, |m+1(0

where J^m is the Liouville operator of m-particle dynamics. However J^mwn)m(0
has no meaning as a usual function (see Remark 4.2 i given at the end of this
section) and one seeks the integrated version of (4.4):

THEOREM 4.1 (BBGKY hierarchy). Let \<m<n and let fn satisfy the
condition (4.1) and be symmetric in xm+l9...,xn (i.e., invariant under any

permutation of these variables). Then for all teR

(4.5) «n|m(ί) = l/ί W,,,,,, + ε(n-m) Γ U^(t-s)Km<m+lUn[m+1(s)ds
«y 0

a.e. on Ω%\

The relation (4.5) can be iterated, as will be proved later, to yield a series
expansion of un\m(i). To state the result let us introduce an operator ^^ε)

which transforms a function /(ί, jc), teR, xeΩ(^\ which is Borel measurable
and locally bounded and vanishes on Σm into a function of the same kind defined by
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THEOREM 4.2. Let m and fn be as in Theorem 4.1. Then for each teR
it holds that for a.a. xeΩ^

(4.6) unlm(t, x) = Σn

k^(n-m)kε^K)k{Um+k(^m+k}(t9 x)

where (n)0 = l, (W)Λ = Λ(Λ — l) (n — fc+1), fc>l and (<%K)k is an abbreviation
for the k-time iteration ofΦ^Kfy+t (m<j<m + k-l):

Moreover the equality (4.6) holds for a.a. (ί, jc)eΛ

REMARK 4.1. Applying Lemma 1.1 and the relations (4.3) and Al — A_i

we see that in Theorems 4.1 and 4.2 Kmttn+ί can be replaced by K'mtm+ί where

REMARK 4.2. Spohn [15] gave proofs of the BBGKY hierarchy (4.5) and
the series expansion for the hard sphere dynamics, assuming that /„ = wπ(0) is
continuous along trajectories. As for the BBGKY the starting point of his
proof is the expression like (4.10) which follows and what is carried out is to
justify the procedure of formally taking limit in it to obtain an equation which
is expected, as we shall do in our proof of (4.8) below but in a different way.
Another approach is made by Illner and Pulvirenti [6] : making use of the special
flow representation, which is employed also by Takahashi [13] in the same
context without details and will be incorporated in our second proof of (4.8), and
arguments of Remark 4.4 that follow they deduced the BBGKY hierarchy in a
differential form similar to (4.27) with fn and φ (a test function) both smooth
along trajectories, and for getting the series expansion resorted to the uniqueness
of the solution to it.

Put Ω'n = QnΓ\ {τ = - τ<-> = 00} . Then the "continuity-along-trajectory "

means the continity o f f n ( T (

t

n ) x ) as a function of t for each xεΩ'n9 which is implied

by both of the boundary condition /„(**) =/„(*) for xedΩn and the continuity of
fn with respect to the space variable q. This continuity property lightens our task
not so much as it appears to do, because it may be deteriorated by operating

Km,m+ί (repeatedly). Corollary ii) of Lemma 3.4 assures that z(jc', v, I) e Ω'n
for a.a. (x', ί, t;) e NΛ9 while though plausible it is not clear whether this holds for
a.a. (/, t;) for each xr eΩ^^ (The latter fails to hold for a discrete velocity
model as treated in [16].) In Spohn [15] this kind of troublesome things are
disposed of by proving that the correlation functions un\m(i) inherit the continuity-
along-trajectory property and are also continuous in t for each x e Ω'm, and that

J ^m(i~~s)^mm+itf(s)^s satisfies these two continuity properties if ύ(t) does.
o
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LEMMA 4.1. Let X and Y be measurable spaces, μ and v finite measures on
X and Y respectively, and μ®v the direct product measure of μ and v. Suppose

that X is a subset of a topological space X'. Let f be a bounded function on X' xY
such that for every x'eX' the function /(x', •) of Y is v-measurable (i.e.,
measurable with respect to the completion of σ-field of Y). If

(4.7) lim /(x', y) = /(x, y) for μ ® v-a.a. (x, y) e X x Y,
x'-+x
x'eX'

then g(x')= I /(x', y)v(dy), x'eX', is continuous at μ-a.a. xeX.
J y

PROOF. The proof may be a standard exercise from the measure theory.
Let A be a set of all points (x, y) e X x Y at which the equality in (4.7) holds, and
denote by A(x) an x-section of A. Then by FubinΓs theorem together with the
assumption of the lemma 7\A(x) is v-null set for μ-a.a. x; hence for μ-a.a. x

*(*')= f f(x',yWdy) for all x'eX'.
J A(x)

Since / is continuous in x' at (x, y) if y e /4(x), an application of the bounded

convergence theorem shows that g is continuous at x for which the above equality
holds. Thus g is continuous at a.a. x. Q. E. D.

REMARK 4.3. A simple application of Lemma 4.1 shows that the condition
(4.1) on/n implies the same one on un\m(i) for all t (in the latter Ωn of course must

be replaced by Ωm). By taking X = (0, oo)xdί2m, X' = (0, oo)xOm and Y=Ωn-m

in Lemma 4.1 one sees a similar implication of the condition (4.2).

PROOF OF THEOREM 4.1. It suffices to prove that for all t and for all φe

C(ΩJ) the function

seR

is absolutely continuous and its Radon-Nikodim derivative is given by

(4.8) ,*-y(s) = - β(n-m)<Xm,m+lWn|m+1(ί-s), Um(-s)φ>.

In fact by integrating (4.8) we have

(4.9) <Wπ|m(0, ψ> = <£/„,«/„,„„ Φ>

+ e(n-ro) Γ <C/m(ί-s)Km,m+lM/l|m+1(s), φ^ds.
Jo

Since the function Um(t — s)Kmtm+ ι W π j m + ι(s)(jc) is measurable in (s, jc), Fubini's
theorem is applied to ensure that (4.9) implies (4.5) of Theorem 4.1. The two
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proofs of (4.8) will be given below. The first one is rather faithful to the heurstic
argument made in §0 to derive the first equation of the BBGKY hierarchy. The
idea of the second proof is to make use of the formula (3.6) which is used in the
proof of Lemma 3.4. The continuity-along-trajectory condition on /„ even if
assumed is hardly helpful in the first proof, while in the second one it is a little
helpful (yet dispensable).

THE FIRST PROOF OF (4.8). Let us write *=(*', x") with x'eΩmand x" e
Ωn_m, and put

φs(x) = φ(T^x'\ xeΩmxΩn_m.

Then, by recalling the convention un(t, d) = 0, we get y(s) = (un(t — s), φs> and for
heR

Xs + fc) - Xs) = Γ {un(t-s9 Thx)-un(t-s, 7X, Thx")}φs+h(x)dx
J Ωn

+ Γ {un(t-s, Tkx', Thx")φs+h(x)-un(t-s, x)φs(x)}dx
J Ωn

(say),

where Thx' = T^x' and Thx" = T(

h

n-m)x".
In order to compute these integrals we shall divide the range of integration

into appropriate sets on each of which they will have expressions like (2.2), and
thereby find out the limits of I(h)/h and II(h)/h as /ι-»0. Heuristic procedure
for this is rather simple but we must be careful in taking limit, since the integrals
on Ωn are reduced to that on the boundary dΩn in the limit and the functions
involved are not continuous on dΩn.

Let El

h'
j for Λ > 0 [resp. /ι<0] denote the set of configurations xeΩn such

that there is a collision between the z'-th and j-th particle in F[JC, (0, h)~] [resp.
F[JC, (/i, 0)]]. Clearly the range of integration for I(h) can be reduced to the
union of Ej^ over such pairs (i, 7') that i<m<j. Observing that \El

h

 j Π ££''1 =
O(h2) if (i,7')^(fc, /) (see (3.3)) and noting the assumed symmetry of /„, we see
that I(h) equals

(4.10) (π-m) Σ7-ι f ,,m+1 &£-*> Thx)-un(t-s9 Thx\ Thx")}φs+h(x}dx
\) Efr

plus an 0(h2) term. If h is very small as compared with ε, then (TΛx', Thx") ^ Ωn

for (jc', x")eEJ

h>
m+l\Bh where Bh is a certain set with \Bh\=o(h) (this magnitude

depends only on ε). Let /ι>0. Recalling un(t, 5) = 0 again, we consequently
observe that the m-th summand (as a typical one among the m terms) of (4.10)
equals
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(4.11) Γ dx'Γdrξ dldvε(vm-v) lφ(Ts+hx')
J Ωm JO J (vm-v) l>0

X Un\m+l(t-S, THX, \_qm + ΓVm + (h - φ*, 17*], [0M + fi/+ Γ^ + (A - r)v*9 ϋ*

plus an 0(/ι) term, where i = (x1,..., xm_ι). Since wπ ) m + 1 satisfies the condition
(4.2') with ί2m+1 in place of Ωn, for a.a. s the ratio of this integral to h converges to

Γ dx' Γ dldvs(vm-v) lφ(Ts,x')
J Ωm J (Vm-V) l>0

x "πim+iO-s, ί, [<?„,, i;*], [gw + ε/, i?*])

as h I 0. The limit as h t 0 is similarly taken, resulting in the same limiting
expression. Clearly we have I(h) = O(h) as /ι-»0 (uniformly in 5). Therefore
the relation (4.8) follows if we show H(h) = O(h) and for a.a. s

(4.12) limΛ_0//(/ι)//ι= -ε(n-m)Γ {Z7=i Γ dldv(υj-v)Ί
J Ωm ( J (Vj~v) l>0

(Apply (4.3) to identify the limit of (7(fo) + //(/ι))//ί thus obtained as the right hand
side of (4.8): note that the configurations appearing in unlm+l(t — s) above are
in out-going collision.)

For the proof of (4.12) put Bh = {(x',x")eΩmxΩn_m\Ωn:(Thx', Thx")eΩn)}.

Then the integral defining II(i) equals the same integral over Ω m x Ω π _ m minus
that over Bh, of which the former one vanishes since φs+h(Tllx', T^lx") = φs(x).
Hence

Π(h) = - Γ ιι(ί-s, x',
J B'H

where B'h = {(x', x")eΩn: (T.hx\ T_hx")εΩmxΩn_m\Ωn}. The last integral

agrees with (n — m) times the integral over \JJ=lEL^+l up to an o(h) term.
In the same way as above we deduce (4.12) from this expression. The first proof
of (4.8) is complete.

THE SECOND PROOF OF (4.8). Let φs be as in the first proof. First of all
we seek for another expression of the right-hand side of (4.8): the one by the
surface integral over dΩn. Let n = n(q) be a unit normal vector of dDn pointing
inward of Z)n, whcih, at q e dDn where a unique pair particles, the /c-th and the

j-th say, are in touch, has entries given by ^ = 0 for iφk, j and

nj = ε - q j - q k , nk =

Put Fs(x) = un(t-s9 x)φs(x). If xedΩ and it is only a pair of particles either



Derivation of the Boltzmann equation from particle dynamics 267

both from those labeled 1 to m or both from those labeled m + 1 to n that are in
touch, then Fs(x*) = Fs(x) for all s. This (together with Remark 4.1) shows the
following identity, in the right-hand side integral of which the range of integration
is enlarged but the added part cancels within itself:

(4.13) ε(n-

un(t-s,y)φs(y)dπ(y),Γ
J d

where for y = (q, v)e dΩn = Snx dDn

dπ(y) ' = n(q) v x surface element of dDn .

Let σv =σ1(x) be the first collision time as in the proof of Lemma 3.4. One
can easily see that σ t < oo a.e. (In some other models this is not true. A modifi-
cation of the following argument which may be needed for such models will
be indicated in Remark 4.5 at the end of this section.) Let us write the relation
(3.6) in the following form: for a bounded measurable function F on Ωn

(4.14) Γ F(x)dx = j2ε Γ t dπ(y) f"(y) F( Try)dr
J Ωn J dΩT J 0

where dΩ°n

ut = {y = (q, v)edΩn: n-v>Q} (the set of configurations in out-going

J<TI
F(T,h+ty)dt =

J oF(Tty)dt and taking the right derivative at /ι = 0, one sees that if F(Tty) is
— h

left-continuous in ί both at ί =0 and t=σt for a.a. y e dΩ£ut, then

Γ (F(Γ0jO - F(Tσ,y»dπ(y) = 0;
J dΩn

or, by applying Lemma 1.1,

(4.15) out F( Tσιy)dπ(y) = - F(y)dπ(y)

where dΩ™ is the set of configurations in the in-coming collision. The relation
is true for every F that is continuous near the boundary dΩn. Therefore it shows
that Tσi as a mapping from dΩ™ into itself preserves the (negative) measure dπ(y)
(note that in the left-hand side of (4.15) replacing dΩ°n

ut by dΩl

n

n amounts to
multiplying —1).

Let us apply (4.14) to Fs(x) = un(t-s, x)φs(x). Since T<mV = (T<"V)' for
^(τ1(^) (recall that y = (y'9 y") with y' ε Ωm9 y" e Ω;l_m), it gives

(4.16) y(s) = j2ε Γ ^dπ(y) Γ*1

J δΩn J s
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By Lemma 3.4 and the assumption (4.1), un(t, Tsy) and φ(T(

s

m}y') are continuous

at a.a. (s, y) e (0, f) x dΩ°n

ut. The smae is true also with Tσιy in place of y, since
Tσι preserves the (negative) measure dπ as already noted. Clearly from (4.16)
y(s) is absolutely continuous, and, by Ts+σιy' = Ts(Tσιy)f (for yedΩ°n

ui), its
Radon-Nikodym derivative equals

-

Finally, applying (4.15), we see that this agrees with — 1 times the expression on the
right-hand side of (4.13). Thus (4.8) has been proved. Q. E. D.

The equality in (4.5), if it to be iterated to yield the series expansion (4.6),
would have at least to hold a.e. on dΩm for a.a. t. The next lemma is somewhat
stronger than what we need. (We shall not apply the continuity with repsect
to the time variable.)

LEMMA 4.2. Let m and fn be as in Theorem 4.1. Then for each 0</c<
m + 1 the function of (t0, tl9..., tk, x)e[0, oo)*+1 xΩm+1_k defined by

(4.17) ym+l-A)^*+l-*.*+2-t Um(^)^m.*+l«ι,|m+l(ίθ)(*)

is continuous at a. a. points of [0, oo)*+1 x dΩm+ 1 _ f c.

PROOF. We give a proof only in the case k = 1 the remaing case k > 1 may
be proved similarly. Thus we consider a function g of (s, ί, jc) e [0, oo)2 x Ωm

defined by

(4.18) g(s, ί; x) = Um(t)Kmtm+lun}m+i(s)(x),

and prove

(4.19) g is continuous at (s, ί, z(x', /', v'))

for a.a. (s, ί, x', /', ι/) e [0, oo)2 x Nm

where z(jc', /, t;) and Nm are introduced previous to the proof of Lemma 3.4.
Corresponding to the sum in the definition of Kmtm+ί, g(s, ί, x) is the sum of m

integrals alike, the last of which can be expressed

(4.20) Γ uΛlm+l(s9 z(T™x, /, υ))(υ-υm).ldldυ
J sxs

(see Remark 4.1). First let us consider this expression with ί = 0. Since the
function un\m+ί(s, y) of (s, j)e(0, oo) x Ωm+l is continuous at (s, z(jc, /, v)) for
a.a. (s9 jc, /, v) e (0, oo) x Ωm x S x S (cf. Remark 4.3) and, for each (/, v), the
mapping: jc-»z(jt, /, v) is continuous at a.a. xeΩm (observe that these state-
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ments are valid even when z(x, /, v) is outside Ωm+l to be identified with d), it
holds that

(4.21) the mapping: (s, x) - >un{m+ί(s, z(jc, /, v)) is continuous at (s, x)

for a.a. (s, jt, /, v).

Consequently, by Lemma 4.1, the function of (s, x) expressed in (4.20) with
/ = 0 is continuous at a.a. (s, x); hence so is g(s, 0, jc). Now Lemma 3.4 may
be applied to see that g(s, t, x) = g(s, 0, ΓLfjc) satisfies (4.19). Q.E.D.

PROOF OF THEOREM 4.2. Since the equality (4.5) holds a.e. (with t fixed), it
must hold for all points at which both sides of (4.5) are continuous. But by
Lemma 4.2 they are continuous at a.a. points of dΩm for a.a. t. The equality
(4.5) is therefore correct in the same sence, so that it can be iterated untill we
arrive at (4.6). Lemma 4.2 shows also that each term of the sum in (4.6) has
the continuity property as stated in (4.2); in particular (4.6) holds a.e. on
RxdΩm. Q.E.D.

THEOREM 4.3. The condition (4.1) may be removed from the assumptions of
Theorems 4.1 and 4.2.

The proof of Theorem 4.3 will be given not in this section but in § 6.

REMARK 4.4. Throughout this remark fn is a bounded Borel function on Ωn

which satisfies the continuity condition (4.1) and φ is a continuous function on
Ωn which has a bounded gradient Γq φ on Ωn\dΩn9 where Ϋq denotes the gradient
with respect to q. Through i) to iii) below another proof of Theorem 4.2 will
be given.

i) In a manner similar to that proving Theorem 4.1 we can show that
<wrt(0, φy is absolutely continuous in t and

(4.22) />**<"„«> Φ> = <"„«, V- rqΦ> + V2 β f «„(*, y)Φ(y)dπ(y)
* J dΩn

where D*N, applied to an absolutely continuous function, denotes the Radon-
Nikodym derivative, F(jc) = u, and dπ(y) is the same as in (4.13). The integral
of the second term on the right-hand side can also be expressed as follows

(4.23) Γ u [«n(ί, y)φ(y) - un(t,
J dΩn

ii) We here (and only here) assume that/π(x) has a bounded gradient Pqfn

off 6Ωn and satisfies the boundary condition fn(y*)=fn(y) for y e dΩn (in iii below
the role of /„ here will be played by a test function φ). Then, by extending the
argument made in the proof of Lemma 1.2, we have
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(4.24) -j~ un(t9 x) = - v Vq un(t, x) for (ί, x) e G,

and

(4.25) 4"M"(ίf *} = " (V' Γ^")(Γ-ίJc) for ('

Let B* = {xeGn: T_,+sjtedΩ,, for some -h<s<h} for /z>0 with t fixed. Since

(4.25) shows that (d/dt)un(t9 x) is bounded and since \B2h\=O(h) as /ι-*0, (4.24)

shows that for every bounded measurable function ^ on Ωn

(4.26)

where the boundary condition onfn must be employed otherwise a certain integral

°f (fn(y*) — fn(y))Ψ(Tty) over dΩj," must be added to the right-hand side. It is
noted that (4.22) is easily deduced from (4.26). In fact applying first (4.14) to

the right-hand side of (4.26) and then (4.25) with un(t) in place of /„ we see

= - Γ outdπ(y) Γ\-j-un(t9 T8y)]φ(T8y)ds.
J δΩ°n

u J o L os Jdt x""vt"
The assumed continuity along the trajectory allows us to carry out the usual

partial integration for the inner integral above, which after applications of (4.14)

and (4.15) results in (4.22). Such deduction may also be done by formally

applying Gauss' theorem, although because of the discontinuity of un(i) caused

by the multiple collision a straightforward application of it does not seem to be

readily justified.

iii) Let us write the right-hand side of (4.22) symbolically (&nun(t), φy so

that DfN<Mrt(0, φy = (&nun(t)9 φy. Suppose that /„ is symmetric in xm+ί,...,xn

and φ is independent of these variables (l<m<π). Then the equation (4.22)

turns into

(4.27) />«N<u,,|m(0, </>> = <&munlM9 φy + ε(n - m) <Km>m+ l W / j | m + 1(0, φ> ,

and gives a precise meaning to (4.4). The integral (4.23) vanishes if φ(x*) = φ(x)

on dΩn and by the same argument as has been made to verify (4.26) for each s we

can replace φ by ψ: = Un(s)φ in (4.22) with a.e. defined v - Pq φ. Applying these

two facts with m in place of n we get a simple expression for the first term on

the right-hand side of (4.27) (with φ replaced by Όm(s)φ), so that for each 5

(4.28) Df N<ll|i|M(ί), Um(s)φy

= <"„,„«, V' rq(Um(s)φ» 4- *(n-m)<Kmtm+1un]m+l(t)9 Um(s)φy.

We conclude this remark by verifying the series expansion (4.6) from (4.28).
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First observe that the right-hand side of (4.6), which we denote by wπ |m(f), satisfies
(4.28) and is continuous as a function of t taking values in L^(Ωm, dx). This
continuity is possessed also by un\m(i). Since un\J(t) = ύn\n(t) = un(i) by the very
definition, the problem is reduced to showing that if a continuous function u: f->

u(t)εL,(Ωm,dx) satisfies D,RN<"(0, Um(s)φ> =<ιι(ί), K r,(Um(s)φ» together
with u(0) = 0, then w=0. But an application of (4.26) with m and Vm(t)φ in place
of n and un(i), respectively, shows that the premiss of this claim implies D*N<w(t0 —

0, Um(t)φy = 09 so that <w(ί0)> Φ>=0 for all ί0, proving the claim and hence
the series expansion (4.6).

REMARK 4.5. In the second proof of (4.8) we have applied the condition
that σi<co a.e., which is valid for the present model but may not be for other
models: it clearly does not hold, e.g., if our disks move in the whole space R2

in stead of 52. Although for this example can be applied a simple device of
approximating R2 by a large torus or a large compact domain bounded by an

elastic smooth curve, we here indicate a straightforward way which dispenses
with the use of this special situation.

Let σj~} be the last collision time before time 0, and put Ωn — {σx — σ[~} < oo},
dU™i = {yEdΩ°»i:σl(y)<co}, dfc" = {y e dΩ™ : σ<~>(y)> - oo}, Ω+ = {0^ = 00,

σ{~}>— 00} and Ω~ = {σί <oo, σ^~}= — oo}. Then (4.14) is valid if we put Λ

on Ω in both places where it appears in the formula. Arguing as before but with
this modified version of (4.14) we find the limit of Ih/h as h i 0, where

/Λ:= I (F(T_hx) — F(x))dx. On the other hand, approximating the difference

T-hΩn\{ϊn [resp. ίV\T-/A] by the set W0<r</, T_rdU°n

utίini we directly obtain

From two expressions for lim Ih/h thus obtained it follows that (4.15) is true if Λ

is put on Ω in the both integrals of it. Now, divide the integral which defines
y(s) according to the partition of Ωn (its range of integration) into Ωn, Ω* and
the rest, and let y(s) = y(s) + y+(s) + y_(s) + R(s) be the corresponding decom-
position. Then we have (4.16) with Λ on y as well as on Ω; and the similar

expression for y+(s) [resp. >>~(s)] in which dΩ°n

ut is replaced by BΩ+: =

dΩ$ui\d&n

ut [resp. ΘΩ-'.^dΩ^^dύ^ and s + σ,00(the upper limit of the inner
integral) by oo [resp. — oo]. Since the set Ωn\(Ωn U Ω+ U Ω~) is invariant under
Ts and φs(x) = φ(T(

s

m}x') = φ((T(

s

n)xy) for x from it, K(s) is independent of s.
It is now immediate to see that the Radon-Nikodim derivatives of j>(s), y+(s) and

y~(s) agree with ^/2ε times the integrals which together constitute the decom-
position of the integral on the right-hand side of (4.13) that corresponds to the
decomposition dΩ = (dΩ™i + dfrn

n) + dΩj + dΩ^, proving (4.8).
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§5. The Boltzmann equation and a factorization property of the Boltzmann
hierarchy

For measurable functions /=/(*) on Ω% and h = h(t, x) on [0, ί0] x Ω° we

set

i1 f
J (»i-|>m) / >

ί,jc) = ΓJ o

In this section we are concerned with the Boltzmann equation

(5.1) -jj- u(t, x) = - v -j- u(t, x) + KQ

lt2u(t)®u(t)

or its weak version

(5.2) 4-<u(t)9

Here ® denotes the outer product of functions; e.g., for two functions /(x) and

000* f®9 denotes the function which sends (x, y) tof(x)g(y).
First of all we note that (5.2) with the initial condition w(0)=/ is equivalent

to the integral equation

(5.3) <tι(0, </>> = <t/?(ί)/, Φ> + Γ <K?,
J 0

provided that u(t, x) is (ί, x)-measurable and I \u(t, x)\dx is locally bounded.
J Ω?

Next let us observe that a measurable solution of (5.3) having the property that

(5.4) ess sup J |w(r, q, v)\dv is locally bounded
q J

is uniquely determined (if it exists) by w(0)=/. The proof is easy. In fact, by

noticing that for / and g functions on Ω? and function φ = φ(v)

, v)φ(v)dv

= f [<Kv*)-φ(v)}f(q9 v)g(q, v^ψ-vj Idldvdv,
J (v-vι) l>0
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(for a.a. #eS2), we see ^at if vv = u — t? is a difference of two solutions u and ύ
of (5.3), then

I Γ I
w(t, q, v)φ(v)dv\

I »/ I

s, ds

< 4(2π)2 I jess sup j \u(s, q, v)\dv + ess sup I |ίϊ(s, q, v)\dv\h(s9 q)ds

so that /IΞ=O. In what follows we shall consider only solutions for (5.1), (5.2)
or (5.3) which satisfy (5.4).

THEOREM 5.1. Let f be a continuous function on Ω%. Then there exists a
unique solution u(t, x) of (5.2) with u(0)=//or 0^ί<(8||/||00)-1. u(t, x) is
continuous in (f, x). For m = 1, 2,... the m-fold outer product ofu(t) is expanded
in the series :

(5.5) u(t)^(x) = Σ*% (^°^°)k(ί/^fc( )/(m+k)®)(ί, x)

which converges uniformly in 0<tζtθ9 xeΩ° ϊ/ί0<(8||/lloo)~1. (Here(<&°K°)k

is the iteration of <%<jK0jJ+ί9 j = m-f k~l,..., m, as in Theorem 4.2.) // /e
C^β?) ίften u(ί, x) admits partial derivatives du/dt and dufdq which are con-
tinuous in (f, x); in particular u satisfies (5.1).

The following generalization of Theorem 5.1 will be used in §§6 and 7.

THEOREM 5.2. Let p=l, 2,.... Let f and /<*'>, i = l,..., p be continuous
functions on Ω?, and u(t) the solution of (5.2) in the interval [0, (&\\f\\Λ)~l) with
u(0)=/. Then there exists a (unique) solution u(i\t), 0<ί<(8||/||00)~1, of

(5.6)

ii(')(0)=/(05 ί = l,..., p. iiίO^x) are continuous in (f, x).

Moreover the following analogue of (5.5) holds:

(5.7) Π?=ι

ίΛe convergence of the series on the right-hand side is uniform in 0<f <f0,

If a continuous solution u of (5.3) exists, we have for m = l, 2,...
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(5.8) u(t) * = Uθ(t)f * + *°*°.m+1i<0)

which can be iterated and leads to (5.5). Thus one may expect that u(t) defined
by the series on the right-hand side of (5.5) with m = l should solve (5.3). But
to prove this we need the relation (5.5) for m = 2 which can be rewritten as follows:
for £ = 0, 1,2,...

(5.9) (Wψ{f/2+2( )/(Λ+2)®} = Σ*1+fc2=* Fkί ® F,2,

where

(5.10) Fk = Fk(t, x) = (*°A:0)*{t/2+ι( )/(k+1)®} (*^0).

The next lemma is concerned with a generalization of this identity.

LEMMA 5.1. Let /, /(/), /=!,..., p be continuous functions on Ω? and Fk

defined by (5.10). Set Fj f )(f) = l/?(f)/(0 and

f, x) =

Then for m = 0, 1, 2,..., v = p+l, p + 2,...

(5.11)

= Σ
*ι+ ; +*v=m

REMARK 5.1. i) Lemma 5.1 is algebraic in nature: what we make use of
in its proof are the linearity of t/°(0 and X£,m+u the semi-group property U(t —

s)I7(s)=l/(0, the factorization l/S(0[/i®'-®/J = l/?(0/i®-®l/?(0/«, and
the relation

1 W-WJm-l -

Therefore Lemma 5.1 is valid e.g. to the model for hard spheres moving in bounded
or unbounded region with an elastic wall; hence analogues to Theorems 5.1 and
5.2 are proved along the same lines as they are proved after this remark, if one
applies an estimate obtained in §8.

ii) The usual method of successive approximation can be applied to
construct a continuous solution u(t, x) of (5.3) (for the present model the con-
struction is very simple into details). Once u(t, x) is obtained, the linear equa-
tion (5.6) for M ( / ) is easy to solve. By the uniqueness of the solution and a
remark as made previous to Lemma 5.1 these in turn prove (5.9) as well as the
factorization, so that Lemma 5.1 is dispensable. Still it would be interesting and
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sometimes useful to directly prove (5.11) without resorting to the uniqueness.

PROOF OF LEMMA 5.1. We proceed by induction on m. For simplicity we

put

/«•>:=/ and F^: = Fk for i = p + 1,...

0 and; in <%<}, KQ

jtj+ ί and U°j will be omitted. Let (5.11) hold for 1,..., m. Then

jm+ί: =

Set

<#>: = Σ Ftf®Fk2 fc = 0,1,2,...,
fcl+*2=*

and then for 0<s<ί with ί fixed

and carry out first the summation on kj and kv+1 under the constraint kj + kv+ ί =
k — 1 in the inner sum of the last expression of Jm+1 and put k = kj afresh to get

(5.12) / M + 1 =Σ Σ f Y ® C / ( f -
7=1 kι + ~ +kv=m+l J 0 i=l

*;=l

We may put ^ol) = 0, so that the constraint kj^ 1 in the inner sum above may be
deleted, which allows us to change the order of the double sum. On the other
hand, letting p=l and v = 2 in (5.11) and then having <%K operate on the both
sides of it, we obtain

which is valid for 1 < k < m + 1 because of the induction hypothesis. Hence, by
the semi group property of

in particular
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(5.13) F<' >(0 = Γ g(

k

l\r)dr.
J o

We have also U(t — s)F#\s) = F#\t). Substituting these relations in the right-
hand side of (5.12) and applying (5.13) together with the identity

Σ*=ι dSj\ h(sl,...,sk)dsί ' dSj-ίdsj+1i~ dsk
J 0 *) [0,5^]" *

= I h(sl,...,sk)dsl "dsk
J [0,ί]k

which is valid if h is integrable, we have

J _ V /?(!) /s?N /^ JΓ(v)
Λn+i — 2- ^Λ, Q9 Q 9 ^ f c vf c ι + + Λ v = m + l

The proof of Lemma 5.1 is complete. Q. E. D.

PROOF OF THEOREM 5.1. As mentioned after Theorem 5.2 we define u(t)
by (5.5) with m = 1 . Using

(5.14) Γ (v-v^Ίdldv = 4 for every i^eS
J ( t-υ, ) />0

we see that the /?-th term of the series in (5.5) is dominated by

which equals to M OT multiplied by the /c-th term of the binomial expansion of

(1— 8Mi)~m. Thus the series in (5.5) converges uniformly in ί<ί0and xeΩm.
An application of Lemma 5.1 proves (5.5) for all m. The special case m = 2 of
(5.5) proves (5.2). Q. E. D.

The proof of Theorem 5.2 is similar and omitted.

§ 6. Convergence to a solution of the Boltzmann equation

dm = {* e O£ : fl, = qj for some / *j

and define, for f_ <0<r+

dmfoτ all ί.

The condition jceJm(ί_, ί+) consists of the two: the one concerned with the



Derivation of the Boltzmann equation from particle dynamics 277

past — no pair of (point) particles meet (i.e., occupy a same position) in [ί_, 0] in
the process of free motion starting from x — and the other with the future — at
least one pair meet in (0, t+). Given /„ a function on Ω(

n

ε\ let un(i) be defined as

in §4 but with ε= i/n. We write ||/π|J|oo for ess sup |/π! J .

THEOREM 6.1. Let fn be such a sequence that the n-th entry fn is a Borel

measurable function on Ω(

n

ί/n} which is symmetric in xί9 x2» , χ

n- Assume the
following conditions i) and ii) :

i) there are constants C and M such that

f o r m g n ;

ii) there are a pair of numbers f _ ^ 0 < f + , a non-negative integer n0, and
a continuous function f on Ω% such that

(6.1) Im^vfnim =/w® a.e. on ΩQ

m for m < n0; and

(6.2) ifxneΩ<£ln\ xeJm(t.9 t+) and xn - > jr, then

), for m > 2.

Let w π j m denote the right-hand side of the series expansion (4.6). Then for
0<f<(l/8M)Λf+

[ M ~\m

l_ltM\ for all m;

(6.4) lim,,^ uπ|m(0 = lim^^ un,m(ί) = u(t)m a.e. on Ω° for m < n0; and

(6.5) ifxneΩ^/n\xeJm(t_-t9 t+-t) and xn - , jc, then

lim,,^ ύnlm(t, xn) = W(0W0(JC), for m > 2.

where u(t) is a unique solution of the Boltzmann equation (5.2) starting with
u(0)=/; moreover, for m>2 and l^ ^m, i/jce J~(ί_ — ί), then

(6.6) lim tϊn|m+1 ( f , x, \ q j + — , v \ )
w-*oo \ L '* J/

j9 Vj)u(t9 qj9 v) for (vj -v)Ί>Q

y, vj)u(l, qp v*) for (VJ-Ό) / < 0

except for a finite number ofveS (which may depend on x).

REMARK 6.1. i) In Theorem 6.1 we exactly set ε = the diameter of a particle
of n-particle system = 1/n. This can be replaced by

(6.7) Hm,,-̂  n
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Under this scaling the chance the one specified particle experiences a collision per
unit time is asymptotically constant (>0), provided the dynamics is in equilibrium

state (i.e. fn=\/\Ωn\). The limit under (6.7) is called the Boltzmann-Grad limit.
ii) The uniform bound (6.3) follows from the condition i) independently of the
condition ii).

REMARK 6.2. The condition ii) of Theorem 6.1 is satisfied if the convergence
in (6.1) is uniform on every compact set of Ω°\dw, an example of {/„} which
satisfies the latter condition being given in Appendix III. It is noted that one

can replace the condition (ii) by the uniform convergence on every compact set
of J^n(t-) with the corresponding uniformity of convergence in the conclusion of
Theorem 6.1. (See Appendix IT.)

REMARK 6.3. Some comments on (6.1) to (6.5) would be to be given. If
n0 = 0, the condition (6.1) becomes empty. If n0= 1, (6.4) says that the solution

of the Boltzmann equation is obtained as a limit of the first marginal density
M π|i(0* which in a way is a result that we set out to seek for; the condition like
(6.1) with n0= 1 is surely indispensable for such a result. Assume / _ = 0 t o simplify
the discussion below. Then the condition (6.2) imposes a kind of uniformity
on the convergence of fn\m to fm® along the set Jm(0, / + ) which is very thin
(definitely Lebesgue null) and concerns only the future behavior of particles.
This may be understood in view of the series expansion (4.6): each point of

dΩj+l, which the operator KJtj+l involved in it is concerned in, leads to a con-
figuration of future collision after operating the flow backward in time (what
comes up from repeting these will clearly be seen in the expression (4.8) that

follows).
Now we turn to (6.5). The constraint x e Jm(0, t+ — t) involved in it inevitably

ensues from the corresponding part of (6.2): such constraint is needed for and
only for the first term of the series in (4.6). To explain the meaning of the other
constraint that jte«/"( — /) we let/n be a probability density so that X"(t) is con-
sidered as a stochastic process taking values in Ωn and un\m(i) gives the probability

density of (Xftt),..., X^(t)). We assume lim/n|m=/m<g) locally uniformly in

Φϋ\dw. ϊn tne Botzmann-Grad limit the contribution to Mn ) 1(0 of initial con-
figurations x such that in F[jc, [0, f]] the first particle collides with none of the

other n — 1 particles remains away from zero. But for (xj, x°2)ί Jϊ(""0 sucn

contribution vanishes because of a collision between the first and the second

particles and therefore must substantially destroy the independence of the first
and the second particles at the time t which was approximately valid at time

zero under the present assumption, strongly suggesting that un\2(t, x°9 ^2) would
not be factorized.

Of the two chaos properties (6.4) and (6.5) the latter is established inde-
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pendently of the former as it stands in the statement of Theorem 6.1, while in
order to prove the former (with n0>Q) we shall have to make use of both
assumptions (6.1) and (6.2). Nevertheless (6.5) can be considered more stringent
than (6.4) in a sense, as suggested by an evidence observed with a model in which
the velocity takes discrete values (cf. [16]). For such a model an analogue of
(6.4) holds with limu^^t) replacing u(t)9 but no analogue of (6.5) does except
for special choices of/; the limit of Mπ J 1(0 does not solve the Boltzmann equation
corresponding to the model, being consistent with the observation that for the
validity of its derivation the relation like (6.5) must be essential.

REMARK 6.4. The fact that the Boltzmann equation is time-irreversible does
not contradict the time-reversibility of the underlying dynamics. Let (6.2*) be
the condition obtained by modifying (6.2) corresponding to the reversal of time.
Assume n0 ̂  1 in (6. 1). Then replacing (6.2) by (6.2*), we have lim,,^ n MΠ, t(ί, x) =
u(ί, x), — t0<t^Q and u(i) solves

(B. eq*) JjL <tφ), φ>

Assume that the conditions i), (6.1) and (6.2*) are satisfied. Let — ί0<ί1<0
and set/π(x) = ull(-ί1, x) and

fi-(0 = fn(T-tx\ ύ(t) = u(t - t,\ 0 £ f £ f ! .

wπ|i(0 converges to ύ(t), while ύ(t) solves (B.eq*), but, in general, does not the
B. eq. (5.2). This does not contradict Theorem 6.1, but rather shows that
Theorem 6.1 cannot be applied to {/„}, though {/„} satisfies the condition of the
theorem other than (6.2) (even when n0 = oo) —fn\m is not factorized in the limit

on the set /(O, f i) in general. A reasoning similar to the above is advanced by
Lanford [10] as an answer to the longstanding equestion of why the time-

irreversible equation of Boltzmann can be derived from a time-reversible dynamics
of classical particles.

Let us introduce some notations to give a more or less transparent expression
for each term of the series in (4.6). For jceΩ^ε ), /, veS and 7=1, 2,..., m set

q:U = (*!,..., xm9 [

if (Vj-v)Ί>Q; and

Cj Jjc = Cj ί* = 3 if (vj-Ό) l ^ 0 and Cj ίδ = d (σ = 0, 1)

where d is the extra point introduced before. Then
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*,..,.+ι0(*ι,. ,**)=Σ7-ι^

(Points outside Ω^j are identified with d and g(d) = Q by convention.) For

ε^O, k=l, 2,..., n — m, xeΩ^ε ) and a set of multivariables

where

A = (s, /, i;, σ, y)

5 = ($!,..., sΛ)e[0, oo)fc with sί < s2 <-•-< sk

, 1}*

with 1 ^ 7 ^
we set M )

J J C = X and

where s0 = 0. By writing \σ\ = Σ7 σj9 (4.6) can be written as

(6.8) uΛlm(t,x)

= /n|m(T_,Jc) + ΣZ-TΣσΣTίίΓ1 - Σ7ι=ι (-l) |σ |(

x Γώ k ΓS k... [2ds, Γ /M |m+ΛJ o J o J o J s2k

where

(V(p) is the velocity of the 7p-th particle at the time when the p-th addition of a
particle is about to be made in the evolution of Mj^jt).

LEMMA 6.1. Let ί_^0, f>0, /c=l, 2,... and A be as above. Let Γk(t) be

the set of s: Q<s{<-'<sk<t. 7/ jceJ~(ί_ — t) then there is a Borel set B of
Γk(t)xS2k such that Γk(t)xS2k\B is a Lebesgue null set and for each (5, /, ι;)e
B and each σ, j

lira Γ<f>+SkMi*> = Γ» f + Λ kΛfl»>ajr,
ε i O

ί/ί^ limit being in J~+Λ(ί_) unless it equals d. (Note that the right-hand side of

the above equality equals d if and only if / is wrongly chosen, i.e.,(t;m+p—
jc)) / <0 for some p.)
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PROOF. Consider an orbit drawn in the space W^Ωiε) by the system
starting at jceJ~(ί_— t) at time zero and arriving at TL^+SkM^Δx at time t in
which particles evolves by the time reversed flow T(J* except that k new particles
are added at times 51?...,s fc according to the operation of Cj J's. We denote
this orbit by w(ε)(s), 0 < s < t, which is determined by ί, Δ and jc. It is not difficult
to see that there is a Borel subset B of Γk(t) x S2k such that \Γh x S2k \ B\ = 0 and
that if (s9 l,v)eB and vv<°>(sfe)^d, then in the orbit w<0)(s), 0<s<ί, no pair of
particles occupies the same position at the same time except such simultaneous
occupancies of the v-th added particle (i.e., the (vH-m)-th particle) and the jv-th
paricle as caused by the operation of Clft

v

σ9 and \v(0)(t)eJ^+k(t.). (The problem
is reduced to the case fc = m = l by induction on k.) It now would be almost
clear that if (s, l,v)eB then w(ε)(s) converges to w(0)(s) for 0<s<f (the con-

vergence is uniform); in particular lim w(ε)(f) = w(0)(ί). Q. E. D.

The next lemma is prepared to remove the condition (4.1) introduced in

§4.

LEMMA 6.2. For each t >0, <7, and j the mapping Θ of Γk(t) x S2k x Ωm

into Ωm+k defined by

Θ(s9 /, t?, jc) = T.t+SkMΔx

is nonsingular in the sense that if A is a null set of Ωm+k, then Θ~1A is also null.

PROOF. We prove only the case k — 1 the general case k> 1 can be dealt
with by induction in view of the relation T.t+sMΔ=T-t+sC

υ

j\
l

σT,s(TSk_^MΔf)
where we write s = sk, v = vk, etc. and 2Γ = ($',...), s' = (sl,...9 ^-t), etc. Let
fc = 1 and put

Then the (s, /, ϋ)-section, B'(J, /, t;), of B': = Θ~M is given by T2\B(s, /, v),
which is null for a. a. (5, /, υ) since, by Lemma 3.4, B is null. Consequently B'
is null. Q. E. D.

By virtue of Lemma 6.2 the integrals on the right-hand side of (6.8) have a
definite meaning even when the Borel function fn does not satisfy the continuity
property (4.1) by Fubini's theorem the same is true for the expressions in (4.5)
and (4.6). Now, approximating /„ by a.e.-convergent sequence of continuous
functions, we can easily prove Theorem 4.3, i.e., that the condition (4.1) on/n

can be removed from the assumptions of Theorems 4.1 and 4.2.

PROOF OF THEOREM 6.1. Since the absolute value of the fc-th term of the
sum over k in (6.8) with ε= 1/n is dominated by



282 Kόhei UCHIYAMA

C2k4k(n - m\(m + k- l\ - - Mk+mn~k

and the infinite sum of the last quantity over k equals C(M/(1 — 8fM))m (0<ί<
1/8M), we have (6.3). This ensures that we can take the term-wise limit in the
right-hand side of (6.8). But an application of Lemma 6.1 with the assumption
ii) of Theorem 6.1 shows that each term of the sum converges in the required
manner to the corresponding one of the right-hand side of (5.5). Q. E. D.

The following generalizations of Theorem 6.1 (Theorem 6.2 and 6.3) are
useful in the next section where we are concerned with correlations for the distri-

butions of Ttx between different times.

THEOREM 6.2. Let p be a positive integer and {/„} be as in Theorem 6.1
except that fn is supposed to be symmetric not in all labels 1 to n but only in
xp+ j,..., xn. The conditions i) and ii) are assumed but in ii) the limiting relations

(6.1) and (6.2) are claimed for m>p with the limit

(6.9)
ί=l

in place 0//w<g)(jt), where f(i\ / = !,...,p, are some continuous functions of Ω°.

Then all of (6.3) to (6.6) hold with an appropriate modification: (6.4) to (6.6)
are claimed for m>p with the limit function

(6.10)

Here u(t) is the same as in Theorem 6.1 and u ( i } ( t ) is a unique solution of (5.6),

The proof of Theorem 6.2 is the same as that of Theorem 6.1 and omitted.

Given a continuous function / on Ω? and a solution u(i), 0<ί<ί0 of the
Boltzmann equation (5.2) with w(0)=/, let us denote by Hs

t: 0<s<t<t0 a family

of linear transformations on C(Ω?): for </>eC(ί2?) and 0<s<f0, gt = Hs

t{φ} is

a solution of the evolution equation in the interval s < t < t0

ί 4r <gt, <A> = <0r, 9U^> for all φ
(6.11) dt

[ 9s = Φ,

which is uniquely solved. Here
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• f£ (*) + Γ W«, »*)- «M<7, »)}«(*, ί, vί)(v-vί) ldldvl .
oq J (t;-ι>,) />o

For a finite sequence of times f = (*,,..., fk, f) with

and for 0 = {</>;}*• = 0> f/eC(Ω?) we set

(6.12) 0««>{x; ί, 0} = H\*{φkH\t- •{•••{01//?1 W><XO)}} }} -

For a sequence 0 = {0/}J=p whose y'-component is a Borel measurable func-

tion on Ω ( j l / n } we denote by L^p{g} the sequence of the same kind whose j-

component is

and for ^ a Borel function on Ωi,1/π), ^0 denotes a sequence whose j-component

THEOREM 6.3. Lei p=l, 2,..., /c = 0, 1,... αnί/ {/„} be as in Theorem 6.2 and

satisfy hypotheses of it with /(0 = $>ί) -/, φ#} e C(Ω?). fbr /=!,..., fc (ίfk^l)

let\l/i(xl,...,xp) = Up

j^φ\j\xj) where φ\» e C(Ω?). 77iέ?n /or 0<ί1<-<
ί f c<ί<(l/8M)Λί+ and for v = p,..., n, n^/?, it holds that a.e. on Ω(

v

1/π)

(6.13) Γ o lAtίΓiVΛ^ ^.C
*/ ΩΛ-V

= f Ae v-component of

where \l/t on the left-hand side is naturally regarded as a function of ΩJ, i. e.9

identified with ψi®(the identity map on Ω°_p). Moreover the right-hand side

of (6.13) converges, as n->oo, to

in ί/ie same manner of convergence as in (6.4) fo (6.6) o/ Theorem 6.1.

PROOF. We shall proceed by induction on k. The case fc = 0 is just Theorem

6.2. If we set

then the integrand on the left-hand side of (6.13) is written

and we can apply the induction hypothesis to obtain the relation (6.13) and the
required convergence, because
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and in view of Theorem 6.2 the v-component of the right-hand side of the last
relation converges to

in the same manner as required for {/„} in the assumption of Theorem 6.2.
Q.E.D.

§ 7. Convergence to a limiting Markov process

In this section we shall assume that {/„} satisfies all the assumptions of
Theorem 6.1 and

(7.1) /„>(>, Joίl/.,/^-1

For f 0 >0 let Dm>roΞ=D[[0, ί0], Ω%] denote the set of all mappings of [0, f0] into

Ω° that are left-continuous and have limits from the right. We regard it as a
topological space endowed with the Skorohod topology (cf. [3]). The topological
σ-field of Dm fo, denoted by &m, coincides with the σ-field generated by Borel

measurable cylinder sets. A generic element of DOTffo will be denoted by w = (w(ί);

Let μn(dx)=fn(x)dx. μn is a probability on the σ-field &n of all Borel subsets
of Ω(

n

ί/n\ For each m<n the motion of the first m particles

is a stochastic process defined on the probability space (Ω(

n

l/n}, S8n, μπ), whose

sample paths restricted to [0, f0] are elements of Dm ίo if τ > t0. Since τ > t0 μM-a.e.,

the map x-*Yn m( ) which is a measurable map from ({τ>f0}, £%n Π {τ>ί0}) into
(DTO>fo, ^m) induces a probability measure on Dm fo from μn. We denote this
probability measure by Pπ)m. Pn\m is simply written Pn. Pn\m is then a marginal

distribution of Pn.

THEOREM 7. 1 . Let {/„} satisfy (7. 1 ) as well as the hypothesis of Theorem 6. 1 ,
and f and u(t) be as in Theorem 6.1. Then for each m = l, 2,... and 0<f 0<

(l/8M)Λf+ the family of measures {Pn\m}%=m on Dm f o weakly converges to the
m-fold product measure P^>® (g)P^) as n-»oo where P(^) is a probability

measure on D1>fo which solves the following martinagle problem: for each

(7.2) φ(w(t)) - Γ 9lu(s)^(w(s))ds, ί e [0, ί0], is α P^ -martingale,
J 0

and
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(7.3) Γ φ(w(0))rf/*/> = Γ Qφ(x)f(x)dx.
J Dι,to J Ω°

(9ίM(ί) is defined just after (6.11).)

REMARK 7.1. The proof of Theorem 7.1 consists of an application of

Theorem 6.3 and the proof of the relative compactness of {Pn\m}n, the latter
being shown under the uniform bound of un\m(i) as in (6.3). In the equilibrium
case Theorem 6.3 extends to the arbitrary time interval and accordingly so does
Theorem 7.1 (and all the other results in this section). The convergence of finite

dimensional distributions of Yn l(t), which follows from Theorem 6.3, has already
been observed by Spohn [14] (see also [11] and references therein), while the com-
pactness result seems new.

LEMMA 7.1. The martingale problem (7.2)-(7. 3) has a unique solution P(f\
The finite dimensional distribution of P(f) is expressed by means of gu(t} defined
by (6.12) as follows: for t\ Q<t1< -<tk<t<t0 and 0 = {<£0,..., φk}9 φ,

and for ψ e C(O?)

(7.4) Γ ΦQ(wm ''Φk(w(tk))ψ(w(t))dp<» = Γ <K*)<r(i){*; *,
j D l > t o Jβ<ϊ

PROOF. Let P be a solution of the martingale problem (7.2) and (7.3). For

solves (6.11) with 5 = 0, φ = φ0. Hence <0f, ψy = (H°t{φ0f}9 ψy. Repeating
this we get (7.4). Tn particular a solution of (7.2)-(7.3) is unique. Conversely
the probability measure defined by (7.4) solves the martingale problem. Q. E. D.

REMARK 7.2. By the probability law P(/) in Theorem 7.1 the process w(t):

0<ί</0 (we^i,f0) ^s a time-inhomogeneous Markov process governed by
the characteristic operator 9ίtt(ί). The transition law of it is given by a Markov

semi-group of linear operators P(s, ί)> 0<s<ί<ί0, acting on C(ί2?) which is
characterized by (a weak version of)

-jLp(s,t)=-Ku(s)P(S,t) or

These equations with P(ί, f) = the identity operator are solved by iterating their
common integrated version

)P(r, t}φdr
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where

= (
J ((v-vι) l>0

The operators Hs

t defined by (6.11) links with P(s, ί) by

A> = <φu(s), P(s,

from which also the formula (7.4) can be derived. This relation may also be
rewritten by means of the expectation E(f) by P(/) as follows:

H t{φ}(x) = £<'>[(ψMs))(vv(s))| w(f) = jc]ιι(ί, x).

PROOF OF THEOREM 7.1. Lemma 7.1 together with Theorem 6.3 proves the
convergence of finite dimensional distribution of Pn\m. Therefore the proof of
Theorem 7.1 is reduced to proving

LEMMA 7.2. Under the assumption of Theorem 7.1 the family {Pn\m}ΐ=m

 /s

relatively compact with respect to the weak topology of probability measures on

Όmttofor each m = 1, 2,... and 0<f 0 < l/8Λf.

PROOF. It suffices to show that there exists a constant C0 such that if 0< tl <
t<t2<t0 and n>m, then

(7.5) /Uϊ/.(0^(f,)and K/ί2)* F/ί) for some 1 </J

^Co^-ί,)2-

In fact from (7.5) it follows that

which together with the convergence of the finite dimensional distribution implies

the weak pre-compactness of {Pπjm} (cf. Billingsley [3]).

Set

/ = μJF^O has at least two jumps in [ f j , f 2 ]}»

//= /^ π {K,(Ohasajumpat5and F2(0hasa jump in (5, f2] for some se[ί1? ί2]} -

Then the left-hand side of (7.5) is dominated by m/ + m(m — I)//. We will show

that both / and //are bounded by a constant multiple of (ί2~ *ι)2

Instead of / we estimate the quantity
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+ [/"] = ( n — l)μπ{for some se[ί l 5 t2), the 1-st particle collides with the
2nd particle at s and one of them collides with some

of the other particles in (s, t2~\ [resp. in [ί,, s)]} .

One observes that 7g/ + +/-. Let μ(

n

s\dx) = un(s, x)dx. For the sake of
notational simplicity we have the (n — l)-th and n-th particles play the role of the
1-st and 2nd particles in the definition of / + . Then, noting Lemma 3.3, we. see

that

/+ < (n — l)(n — 2)μπ{for some sε[t^ t2~], the n-th particle collides with the
(n — l)-th particle at s and one of them collides with the
first particle in (s, ί2] for the first time after s}

g (n-l)(n-2) μ(

w

s){x = (jc', xa_l9 xn)eΩn: there is a collision in

" FjKjc,-!, xπ), (-ds, 0]]; and Q(,"-2)(ί, *') intersects

with β(2)C, *„-!, xn) for some re(0, t2-s)}.

(In the last braces "intersect" means that the areas occupied by particles centered

at Q(n~2) and β(2) overlap each other; here the shadow collisions treated in
Lemma 3.3 become relevant.) The last integral equals

(7.6) — Γ2 ds (dx Γ dldvn(v - vn) - //fe ' "»> {the first particle
n J ίi J J (υ-υ n) />0

intersects with β(2)(ί, x, [q-f//n, t J) for some f e(0, ί2~
s)}

where x = [̂ , υ] and

Set

fte.ι.'*\x') = un(s, x'9 x, fo + //n, I? J),

^'^«>(Γlv2) x')dx2 dxn-2.

Though / above is defined only via values of un(s) on <3ΩΠ, the relation w π ( m =
w π ) m a.e. on R x δί2m enables us to make the same computation as employed to

get (6.3) to see

for a a ( f f» '̂ ^ O

and hence

2 for ..a. (,, x, /, „.).

Taking into account that the roles played by the n-th and (n— l)-th particle are



288 Kόhei UCHIYAMA

iterchangeable, one sees that (7.6) is dominated by

Λ- Γds (dx Γ dldvn(v-vn)Ί Γ~Sdt Γ dΓdv^v-v^'Γ
n J f i J J (y-υ n ) />0 Jo J (υ-vι) Γ>0

X βίs.Jc.l.i^Λ Γ^-f-^+.L, p l y

Consequently we have

/+< (Λ-l)(n--2) c[M/(l--8Mr0)]3.32 f'2(ί2-s)ds < C^-^)2.
Λ J ίi

Similarly we have 7~<C1(r2-ί1)
2.

In view of the bound of 7+ and /~ above we get

(7.7) II<C2(t2-t^

if we prove

(7.8) (n — 2)(n — 3)μπ{for some se[ί,, ί2] the particles 1 and 3 collide with
each other at 5 but each of them no more collides with any particle in

(s, ί2] and the particles 2 and 4 collide with each other in (s, f 2] but
neither of them collides with any particle in the past within this interval}

By interchanging the role of particles 2 and 3, we see that the left-hand side of
(7.8) is at most

(n-2)(n-3) \ μ(

n

s){xeΩ2: there is a collision in F[(*!, x2), (-ds, 0]];
J ίι

and also in F[(x3, x4), [0, t2 — 5]]}

= (κ-2)(n-3) p& C^ C d

ft J ίι J J (vι-v2)Ί>0

x Γ2~*Λ Γc/x3 Γ (vi-
J o J J (υ 3-υ 4) ί '>0

Thus we have (7.8) and hence (7.7). The proof of Lemma 7.2 is complete.
Q.E.D.

The conclusion of Theorem 7.1 may be stated by means of the empirical
measure α" which is the random probability measure on D t ,0 defined by



Derivation of the Boltzmann equation from particle dynamics 289

namely, under the symmetry of /„, the convergence of Pn\m to

(m=l, 2,...) is equivalent to that of α" to P(/) in probability as is easily shown.
Since the limiting process X(t) is free from any fixed points of discontinuity, the
convergence of α" is stronger than that of

which is a random probability measure on Ω?. The next theorem which is
another strengthened version of the latter convergence would not directly follow
from Theorem 7.1 but is easily proved with the aid of (7.5). (The relation (7.9)
in it is set forth, for a slightly different model, by Lebowitz and Spohn [11] as
having "not been proved so far".)

THEOREM 7.2. If φ is a bounded Borel measurable function on Ω? such that
either (i) φ is differentiable with respect to the space variable q with the partial
derivative (8jdq)φ being bounded or (ii) φ is of the form φ(q, v) = h(v)χA(q) where
A is a domain of the torus S2 with its boundary being smooth (χA is an indicator
function of A), then, under the same assumption as in Theorem 7.1, for each <5>0

(7.9) lim^βP[supo^J<αe?, Φ>-<u(t), φ>|><5] = 0.

PROOF. It suffices to show that for 0 ̂  s < r < t ̂  t0

(7.10) Γ |<α«, 0>-<α?, 0>|2|<α?, <£>-<α?, φ^dμn ^ C\t-s\\
J ««

where C is a constant independent of s, r, t and n. In fact this estimate proves

that in the Skorohod topology of D: = D[[0, /0], /?] the family of processes
yw = <α[', φy is tight and hence, by a remark which precedes Theorem 7.2, weakly

converges to a (nonradom) process <w(0> φ>; but the boundary of the set B =

{weD: supo^,^ \w(t) — <w(ί), φy\>δ} is null with respect to the limit measure

which concentrates on a single path w0(f) = <u(0, φ>, so that the corresponding
probability of B tends to zero.

One can replace (7.10) by

\φ(Xn

i(r))-φ(Xl(s))\ \φ(X»j(r))-φ(X».(s))\

x \φ(Xl(t)) -
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which should be valid for every combination of 1 ̂  /, /, /c, /^4. In the case (i) of

φ this follows from (7.5) as in the proof of Lemma 7.2. As for the case (ii) of φ

we have merely to get such an estimate as

μΛW)*V{r)', Q k ( r ) e A but Q k ( t ) £ A } ^ C(f-s)2

or self-evident variants of this. But these are proved by applying (7.5) in a way
similar to that that proved (7.7). Q. E. D.

§ 8. The case of hard spheres

For the dynamics of hard spheres moving in R3 the velocities after the

collision are given by

y* = v- [(ϋ-i;,)./]/

where v9 vγ e R3 and / is a unit vector in R3. For each / fixed the mapping At\

(v, i^-Kf*, f*) is a linear transformation of R6 with |detΛ/ | = l, so that it

preserves the volume dυdυl. This proves an analogue of Lemma 1.1 which
the discussions through §1 to §4 are based on. We have not to modify the

expressions of Kmttn+l in §4 and Ku(t} in §7; with (v*9 v'f) defined above they are
valid for the hard sphere dynamics. Though the modulus of the velocity of

each particle changes through collisions, the total energy υ\ + υ\-\ ----- hi?2, is

kept constant. Therefore we can suppose that the velocities are uniformly

bounded to derive the BBGKY hierarchy, since the number of particles are
fixed in the derivation. The equations (4.4) to (4.6) are valid if ε is replaced

by ε2 (ε is the common diameter of the hard spheres). To obtain a limit theorem

as H-+OO, we need some upper bounds for un\m(i):

LEMMA 8.1. Let /„ be a Borel function on R6n (π=l,2, . . . ) having the

symmetry as in Theorem 4.1. Define un(i) and un\m(i) as before but by means of

the dynamics of hard spheres of diameter ε=\/^/~n. Assume that there exist
positive constants C, M and β such that

(8.1) IΛ|

where

hβ(v) = (/S/27r)3/2έΓW2>»2, v e R3.

Then for 0<t<t0

(8.2) k,|m(ί, q, i7)| < eC
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where β' = e~l/5β and

to = (Jβ/M)[_2e«'*(^+πj5/ϊ)Yl (>0.2x VJF/Λf).

Iffn^Q* ^en (8.2) is valid for Ogί^2ί0. (A similar bound is obtained by King
[8] and Spohn [15]; cf. also [6] for a similar computation.)

Once the bound (8.2) is verified, one can proceed as before to obtain, an
analogue of Theorems 6.1 and 7.1 in which the limit is taken under the Grad's
scaling ε—l/^fίϊ and the bounds i) and (6.3) in Theorem 6.1 are replaced by
(8.1) and by (8.2), respectively. (The collision integral of the Boltzmann
epuation thus obtained differs from that of (0.1) by the factor 1/2.)

PROOF OF LEMMA 8.1. Set v = m + /c-l and βj = aj/kβ with 0<a<l and
7=0, 1, 2,.... Then

4π exp(- | Σj-i »}) J^3 *-<3>2>"a[v|ι;|

(where we applied Σ}=ι \Vj-v\<v\v\ + Jv(Σ vj)112 and Γ v ldl = \υ\π)
J v KQ

R m+k-l
-V Σ » π + m + sup /- .

/ y=ι / Po r>o

We apply this inequality repeatedly. In the (p+ l)-th step m + k — p may replace
m + fc which appears, on the last line above, in the middle (as a factor) and in
the braces. We however does not make such replacement, but retain m + fc
in these places, without violating the inequality. Now, noticing

and making use of the hypothesis (8.1), we have, with β' — aβ,

- Σ vj

By the relations
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the last line is dominated by

By elementary calculus we have (1— e~x)~1 / 2<(l+x)A/x~ (0<x<l). Hence

if -l

and by 2^2/π > 1 ,

,^\2nMet^ ̂  , 1 y. | i
rC

Now let us take α = e~1/5. Then from the last inequality follows the inequality
(8.2), which was to be proved. Q. E. D.

Appendix I. Measurability of Tr

We shall prove Borel measurability of sets and functions which appeared
in §3. The parameter ε will be fixed and suppressed from the notation.

Set for f >0

Bk(t) = {xeΩn: τ>t and the number of collisions in Fn[jt; [;ί//c, 0'+l)f//c]]
is at most one for eachj = 0, 1,..., k— 1} .

Bk(t) for f<0 is analogously defined ("τ>ί" is replaced by "τ^^f and [jt/k,

LEMMA 1. Let t>0 and B be a Borel subset of Ωn. If BcB^-t), then
B and T_tB are Borel measurable. The analogous statement holds for

PROOF. Let B' = B{}dΩn and B" = B'\dΩn. Since Tt is a continuous map
from Gt = {x: (t, Jc)GC} into Ωn\dΩn (see Lemma 1.2), T-1B" is Borel. B' is
decomposed into a disjoint union of two Borel sets B'± — Bf r\(dΩn\Σn)± where
(dΩn\Σn)+(-} is the set of all x e dΩ\Σn s.t. a pair of x is in in-coming (out-going)
collision. Since BaBJ-t), T-lB'+ = TQ_tB'+ and T~;1B'+ = T* ,(&-)*; hence
these are all Borel. (/l*: = {jc*: xeA}.) Consequently T~1B is Borel. Since
T-tB=TϊlB\(dΩ,\Σa)-, T_rβ also is Borel. Q. E. D.

LEMMA 2. For euery /c= 1, 2,... BΛ(0 is a Borel set.
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PROOF. The induction with the help of Lemma 1 and the relation

Bk(i) = T-^B^-t/k) Π Bk_,(t-tlk))

proves the lemma, if one shows that B^t) is Borel for every t. Let f >0 and set

B(ί'j\t) = (xeB^t): a collision in F[jc, [0, tj] if any may occur only

between the i-th and 7-th particle} .

Then Bl(t) = \jt<J B<l »(t) and B<' />(ί) equals

oo

W Γ\ {xeΩn: there is no grazing collision in F2[(Xf, x7 ), [0, ί]],

r is rational P(β(2)(^ (*h */))» <?fc + ™k) ^ ε + W f°Γ k Φ ϊ, J9 and

for fc, v ̂  I,;, /c^v}.

It would be clear that BV>j\t) is Borel. The case t <0 is similarly treated.

Q.E.D.

LEMMA 3. // f^O [f>0] and B is a Borel set included in {τ>t} [resp.

{τ(~)<t}'\, then TtB and T~\B are Borel measurable.

PROOF. Let f>0. Since {τ>0 = W?=ι Bk(t\ it suffices to show that TtA

and T~]A are Borel if A is a Borel subset of Bk(i). As for TtA this is inductively

deduced from

because Lemma 1 together with 5fc(ί)c:β1(r//c) shows that Tt/kA is Borel and, on

the other hand, Tt/kAc: Tf/JkBk(ί)c:Bk_1(ί-ί/fc). The proof for T~\A is similar.

Q.E.D.

The measurability of Al J in the proof of Lemma 3.2 is shown in that of

Lemma 2 above. The measurability of TtA and Am in the proofs of Lemmas 3.2

and 3.1 follows from Lemmas 1 and 2. From Lemma 3 it follows thatφ(T fjc) is

Borel measurable on {τ>t} [resp. {τ(~><ί}] if ί^O [resp. f <0] and τ is a Borel

function on Ωn. All the other measurability questions may be answered by the

next theorem. Recall that Σn = Σ(

n

ε) denotes the set of configurations of multiple

touch, twin collision or grazing collision.

THEOREM. If B is a Borel subset of Ωn such that either B n Σn = 0orΣnc:B9

then {(ί, x) 6 R x Ωn: Ttx e B} is a Borel set. In other words the mapping (t, jt)-»

Ttx is Borel measurable if all the points of Σn are identified.

PROOF. First we show that T~1B is a Borel set of Ωn. Let f<0 and

decompose B into three disjoint sets Bl=B n {τ<~><f}, B2 = B n {τ(-
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and B3 = B ( ] Σ n . Since {τ(~}<ί} is Borel (in fact open), Bl and B2 are Borel.
By Lemma 3 T~lBl is a Borel set. Also we have T~}B2 = 0 and B3 = 0 or Σ.
Therefore T~1B is a Borel set. The case where ί^O is similar. Thus we have
shown that if all the points of Σn are identified, the mapping x^Ttx is Borel
measurable. But, under this identification, t-+Ttx is left-continuous up to τ

for all x and τ is a Borel function hence Ttx is jointly Borel measurable. Q.E. D.

Appendix II. The uniform convergence of unlm(f)

The lemma given below is a strong version of Lemma 6.1 and proves the
uniform convergence of un\m(t, jc) on each compact set of J~(r_ — ί) in Theorem 6.1,

provided that the convergence of/π ) m to/"1® also is uniform on each compact set
of J~0_). This formulation of the main theorem is found in [8], [10] and [14].

LEMMA. Let A be a compact set of J~(r_-ί) (ί_^0, f>0). Then for any
η>Q there exists a Borel set B of Γk x S2k x A such that

\ΓkxS2k\B(x)\<η for all xeA

(B(x) is the x-section of B; Γk = Γk(t) is the same as in Lemma 6.1), for all σ, j

TL*l+SkM^Δx > Γ° f + β k Λ/2 i d j r as ε |0 (A = (j, /, v, σ, j))

uniformly in (5, /, v, *)e£, and {T^t+SkM^fΔx: (5, /, v, x)eB} is relatively
compact in J~+k(t.).

PROOF. For v= 1, 2,..., k we write

Δv = (sv,..., σv), 5V = (sj,..., sv) etc.

and

[M?>jvjc]1 = the element of Ω^ί+v_l obtained from M°jΔvx by discarding the
lastly added (i.e., the (v-hm)-th) particle.

[ΛfS>JvJc]2 is defined as above but by discarding theyv-th particle instead of the
added particle. Set for x e A

hΔ(x)= min inf dist {T^s+Sv [M ĵt],., d^.,}
v = l ,- ,,k Sv^s^t-t-

i=\ ,2

where dist {jc, dm+v,ί} is the distance of x from dm+v_l if xeΩm + v_{ and dist {θ,

ί/m + v _ , } = oo. It suffices to prove that for any η>Q there exists a constant α0>0
and a Borel set BaΓkx S2k x A such that

(IΓ.l) |Γ f cxS2fc\β(jc)| <η for j c e X
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and

(11.2) /? J ( jc)>α 0 if (5, /, v, x) e B.

We note that hΔ(x) is continuous in x for a.a. (s, /, ϋ). Set for α>0

βα = {(jc, 5, /, i>):xeA,hA(x)><*}

and

Λ(jc) = |ΓkxS"\Bβ(χ)|.

Then on the one hand

(11.3) /α(jc) I 0 as α I 0 for all xeA

and on the other hand, by Fatou's lemma, /α(x) is upper semi-continuous in jc for
each α. Therefore the convergence in (II. 3) is uniform. Now take α0>0 so that

/α0(*)<f/ for a11 xeA and set B==B«o' τhen (H l) and (π 2) are satisfied as
desired. Q. E. D.

Appendix III. An example of {/„}

Let /I be a bounded measurable set of Rd (d = 2, 3,...) with the symmetry
Λ= —A, and define for ε>0 and n = l, 2,... a function

#«ε)(tf), ^ = («ι,..., «.)€«' x - x Rd (n-fold product),

by

( 1 if ^ — ̂  , ^ εΛ for all pairs I ^ i < j ^ n

0 otherwise.

Let (V, ̂ , v) be a measure space and /=/(<?, i?) be a probability density on the

product space Rd x V. Set ρ(q)= 1 /(^f, v)dv(v) ,
J ^*

c(.) = Γ

and

LEMMA. Let f be bounded. Then for each m = 1, 2,... there exists a constant
Am such that if nεd\Λ\\\p IL^l/2, then

(ΠLl) \\f$m
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For the Grad scaling nεd~l= const the right-hand side of (I I I.I) vanishes in
the limit so that the assumption ii) on {/„} in Theorem 6.1 are satisfied; the other

assumption i) in it is ready from (III.4) below and H(

n

ε}^H

PROOF OF LEMMA. Fixing ε and n9 we suppress the superscript ε from the

notations. Set gm=fm®Hm. Let us divide the difference which is to be estimated

into two parts :

(IH.2) fn\m ~ dm = (L\m ~ (^-m/O^m) ~ 0 ~ ̂ -JOtfm

Noticing the relation

"„(*, ί') = Hm(q) Hn_m(q') Un

k=m^ //„+,(*, qk)

where q = (q^..., qm) and q' = (qm+ι,..., <?„), and applying the identity

1 - ΠZ=ι ak = (1-0,) + (l-fl2)fl, + (i-a3)a2a1 + ••• + (1 -<>ΓK=i flfc,

we see that

= 7-^(ί) f [l-ΠZ=CΠ J / ? ( « - m ) d

^7-ffJf) f ΣZ=m+, (1
Ln J R(n-m)d

= -^-9m(9)(n-m)cn.m_l I
cn J Rd

Similarly we have Ogc f e + 1 — ck-ζkεd\Λ\\\p\\^ck, or, what is the same,

The required relation (III.l) is now deduced by applying the inequalities (III. 3)
and (ΠI.4) to the right-hand side of (III.2). Q. E. D.
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