Mod 3 homotopy associative \boldsymbol{H}-spaces which are products of spheres

Dedicated to Professor Hirosi Toda on his 60th birthday

Yutaka Hemmi
(Received August 14, 1987)

§1. Introduction

For a prime p, a space X is called a mod p (homotopy associative) H-space if its localization $X_{(p)}$ at p is a (homotopy associative) H-space.

Consider the product space S of odd spheres:

$$
\begin{equation*}
S=S^{n_{1}} \times \cdots \times S^{n_{a}} \times\left(S^{3}\right)^{b} \times\left(S^{1}\right)^{c} \quad\left(n_{i}: \text { odd integers } \geq 5\right) . \tag{*}
\end{equation*}
$$

Then S is a mod $p H$-space for any $p \geq 3$, and so is S for $p=2$ if and only if each n_{i} is 7, by Adams [1,2]. Moreover S is a $\bmod p$ homotopy associative H-space for any $p \geq 5$ by [2], and so is S for $p=2$ if and only if $a=0$ by Goncalves [4; Th. 1]. In case of $p=3$, the special unitary group $S U(3)$ is 3 -equivalent to $S^{5} \times S^{3}$ by Serre [9; Prop. 7]; hence we have the following typical example:
(1.1) $\quad\left(S^{5}\right)^{a} \times\left(S^{3}\right)^{b} \times\left(S^{1}\right)^{c}$ for $a \leq b$ is $a \bmod 3$ loop space.

Now the main result of this paper is stated as follows:
Theorem 1.2. S in (*) is a mod 3 homotopy associative H-space if and only if each n_{i} is 5 and $a \leq b$, i.e., S is $a \bmod 3$ loop space in (1.1).

We sketch here the proof of the theorem, which is based on the methods of Zabrodsky [14], and is done by continuing to the preceding studies in [5, 6]. We assume that the localization $S_{(3)}$ of S in (*) is a homotopy associative H-space. In the mod 3 Steenrod algebra, we have a decomposition

$$
\mathscr{P}^{n}=\sum_{j=0}^{t} \mathscr{P}^{3^{j}} \alpha_{j} \quad \text { when } \quad n_{i}=2 n+1, n=3^{t} s, 3 \not x s \text { and } s \geq 2,
$$

where \mathscr{P}^{m} is the mod 3 reduced power operation. This decomposition associates an unstable secondary operation φ in the diagram

Here $h=\prod_{j=0}^{t} \alpha_{j}, r_{h}$ is the homotopy fiber of h, ξ is an H-map corresponding to the factor $S_{(\mathbf{3})}^{n_{1}}, \tilde{\xi}$ is a lift of ξ, and $\varphi \tilde{\xi}$ is shown to be an H-map. Now, by [13; 2.5.1], we have the obstruction $\theta(\varphi \tilde{\xi})$ for $\varphi \tilde{\xi}$ to preserve the homotopies of homotopy associativity (i.e., to be an A_{3}-map); and we can lead a contradiction by calculating $\theta(\varphi \tilde{\xi})$ in two different ways. By this way, we have proved that
(1.3) [5; Th. A] $n_{i}=2 \cdot 3^{e(i)}-1(e(i) \geq 1)$ for each i.

On the other hand, by considering the projective 3 -space of $S_{(3)}$ and by studying the Hubbuck operations S^{q} and Q^{q} on certain quotient algebra of its cohomology with coefficient in $\boldsymbol{Z}_{(3)}$, we have also proved that

$$
\begin{equation*}
\text { [6] } a \leq b \text { holds if each } n_{i} \text { is } 5 \text {. } \tag{1.4}
\end{equation*}
$$

Therefore we shall prove Theorem 1.2 by showing the following
(1.5) If $e=e(i)=\max \{e(j)\} \geq 2$ in(1.3), then we have a contradiction.

In this case, for $n=3^{e}$, we have the diagram

instead of the above one. Here $f=\beta \times \prod_{j=0}^{e=1} \mathscr{P}^{3 j}$ with the Bockstein operation β, and h is the secondary operation due to Shimada-Yamanoshita [10] or Liulevicius [7], which associates an unstable tertiary operation φ (see Proposition 2.4). Moreover $\tilde{\xi}$ is a suitable lift of ξ given in Proposition 3.4, which assures that $\varphi \tilde{\xi}$ is an H-map and $\theta(\varphi \tilde{\xi})$ is calculated in two ways to show (1.5). Now we prepare in $\S 4$ the ladder Toda bracket due to Zabrodsky [12], and prove Proposition 3.4 in §5.

The author wishes to thank Professor M. Sugawara for his critical reading of the manuscript and useful suggestions.

§ 2. Unstable tertiary operation

In this paper, we assume that spaces have base points $*$ which are nondegenerate, and that (continuous) maps preserve them, unless otherwise stated.

For any space X, we use the Moore path (or loop) spaces
$P X=\{(w, r) \mid r \in[0, \infty)$ and $w:[0, \infty) \rightarrow X$ with $w(t)=w(r)(t \geq r)\}$,
$L X=\{(w, r) \in P X \mid w(0)=*\}, \quad \Lambda X=\{(w, r) \in P X \mid w(0)=w(r)\}, \quad$ and
$\Omega X=\{(w, r) \in P X \mid w(0)=w(r)=*\} . \quad(w$ in $P X$ is non-based.)
We define the maps $c: X \rightarrow P X$ and $e_{t}: P X \rightarrow X(0 \leq t \leq \infty)$ by

$$
c(x)=(\text { the constant map to } x, 0) \text { and } e_{t}(w, r)=w(\min \{t, r\}),
$$

and take $*=c *$ as the non-degenerate base point for $\mathscr{L} X(\mathscr{L}=P, L, \Lambda$ or $\Omega)$. Moreover we define
$\mathscr{L} f: \mathscr{L} X \longrightarrow \mathscr{L} Y$ for a map $f: X \longrightarrow Y$ by $(\mathscr{L} f)(w, r)=(f w, r)$.
In $P X$, we define the path-multiplication $\left(w, r_{1}+r_{2}\right)=\left(w_{1}, r_{1}\right)+\left(w_{2}, r_{2}\right)$ of $\left(w_{i}, r_{i}\right) \in$ $P X$ with $e_{\infty} w_{1}=e_{0} w_{2}$ by $w(t)=w_{1}(t)$ for $t \leq r_{1},=w_{2}\left(t-r_{1}\right)$ for $t \geq r_{1}$; and the inverse path $\left(w^{\prime}, r_{1}\right)=-\left(w_{1}, r_{1}\right)$ by $w^{\prime}(t)=w_{1}\left(\max \left\{r_{1}-t, 0\right\}\right)$.

We define a homotopy to be a map $H: X \rightarrow P Y$ (with $H *=*)$ denoted by

$$
H: X \longrightarrow P Y ; \quad f_{0} \sim f_{\infty}, \quad \text { for } \quad f_{t}=e_{t} H: X \longrightarrow Y \quad(t=0, \infty) ;
$$

and then we denote also by $f_{0} \sim f_{\infty}: X \rightarrow Y$ or $f_{0} x \sim f_{\infty} x(x \in X)$. We note that this is the same as the usual homotopy preserving base points since they are non-degenerate. In case of

$$
H: X \longrightarrow P^{2} Y=P(P Y) \quad \text { with } \quad\left(P e_{t}\right) H=c\left(e_{t}^{2} H\right) \quad(t=0, \infty),
$$

we call H a homotopy between homotopies $e_{0} H$ and $e_{\infty} H$ fixing the end points.
For any spaces X and Y, we have the natural homotopy equivalence

$$
\varepsilon: \mathscr{L} X \times \mathscr{L} Y \simeq \mathscr{L}(X \times Y) \quad(\mathscr{L}=P, L, \Lambda \text { or } \Omega)
$$

given by $\varepsilon((w, r),(v, s))=((w \times v) \Delta, \max \{r, s\})(\Delta$: the diagonal map).
Now we define H-spaces and the related notions (cf. [13; Ch. I-II]). An H-space is a pair (X, μ) of a space X and a map $\mu: X \times X \rightarrow X$ with $\mu \mid X \vee X=\sigma$ (the folding map). μ is called an H-structure or a multiplication for X. We also call X an H-space simply if μ is specified, and denote $\mu(x, y)$ by $x \cdot y$. If $\left(X_{i}, \mu_{i}\right)$ are H-spaces, then so are $\left(\mathscr{L} X_{1},\left(\mathscr{L} \mu_{1}\right) \varepsilon\right.$) and $\left(X_{1} \times X_{2},\left(\mu_{1} \times \mu_{2}\right)(1 \times T \times 1)\right)$ ($1:$ the identity map, T : the twisting map).

A homotopy associative H-space, or an $H A$-space, is a triple (X, μ, α) of an H-space (X, μ) and a homotopy $\alpha: X \times X \times X \rightarrow P X ; \mu(\mu \times 1) \sim \mu(1 \times \mu)$ with $\alpha(*, x, y)=\alpha(x, *, y)=\alpha(x, y, *)=c \mu(x, y) . \quad \alpha$ is called an HA-structure for X. We also call X or (X, μ) an $H A$-space simply if (μ, α) or α is specified. In particular, if $\mu(\mu \times 1)=\mu(1 \times \mu)$ and $\alpha=c \mu(\mu \times 1)$ hold, then $(X, \mu, \alpha)($ or $X,(X, \mu))$ is called an associative H-space. If X_{i} are associative H-spaces, then so are $\mathscr{L} X_{1}$ and $X_{1} \times X_{2}$.

An H-map between H-spaces $\left(X_{i}, \mu_{i}\right)(i=1,2)$ is a pair (f, F) of a map $f: X_{1} \rightarrow X_{2}$ and a homotopy $F: X_{1} \times X_{1} \rightarrow P X_{2} ; \mu_{2}(f \times f) \sim f \mu_{1}$ with $F \mid X_{1} \vee X_{1}=$ $c f \sigma . \quad F=F_{f}$ is called an H-structure for f. We call f an H-map if F_{f} is specified. For H-maps $\left(f_{i}, F_{i}\right):\left(X_{i}, \mu_{i}\right) \rightarrow\left(X_{i+1}, \mu_{i+1}\right)(i=1,2)$, the composition $\left(f_{2}, F_{2}\right)$. $\left(f_{1}, F_{1}\right)=\left(f_{2} f_{1}, F\right):\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{3}, \mu_{3}\right)$ is an H-map with the composed H structure $F=F_{2}\left(f_{1} \times f_{1}\right)+\left(P f_{2}\right) F_{1}: X_{1} \times X_{1} \rightarrow P X_{3}$.

An HA-map between $H A$-spaces $\left(X_{i}, \mu_{i}, \alpha_{i}\right)(i=1,2)$ is a triple (f, F, A) of an H-map $(f, F):\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \mu_{2}\right)$ and a homotopy

$$
A: X_{1} \times X_{1} \times X_{1} \longrightarrow P^{2} X_{2} ; \quad \alpha_{2}(f \times f \times f) \sim(P f) \alpha_{1}
$$

with $\quad\left(P e_{0}\right) A=\left(P \mu_{2}\right)(F \times c f)+F\left(\mu_{1} \times 1\right), \quad\left(P e_{\infty}\right) A=\left(P \mu_{2}\right)(c f \times F)+F\left(1 \times \mu_{1}\right) \quad$ and $A(*, x, y)=A(x, *, y)=A(x, y, *)=(P F)(c x, c y)$. A is called an HA-structure for (f, F). In particular, if $\left(X_{i}, \mu_{i}, \alpha_{i}\right)$ are associative H-spaces and $\mu_{2}(f \times f)=$ $f \mu_{1}, F=c f \mu_{1}, \alpha_{2}(f \times f \times f)=(P f) \alpha_{1}$ and $A=c(P f) \alpha_{1}$ hold, then (f, F, A) (or f, $(f, F))$ is called a homomorphism.

Note that the loop space ΩY of Y is an associative H-space by the pathmultiplication, and $\Omega f: \Omega Y_{1} \rightarrow \Omega Y_{2}$ of a map $f: Y_{1} \rightarrow Y_{2}$ is a homomorphism.

Let $\left(X_{i}, \mu_{i}\right)(i=1,2)$ be H-spaces. Then for any map $f: X_{1} \rightarrow X_{2}$, we have

$$
d(f): X_{1} \wedge X_{1} \longrightarrow X_{2} \quad \text { with } \quad \mu_{2}\left(d(f) \operatorname{pr} \times f \mu_{1}\right) \Delta \sim \mu_{2}(f \times f)
$$

(pr: $X \times \cdots \times X \rightarrow X \wedge \cdots \wedge X$ is the projection). $d(f)$ is called the H-deviation of f, because f is an H-map if and only if $d(f) \sim *$.

Moreover, let $\left(X_{i}, \mu_{i}, \alpha_{i}\right)(i=1,2)$ be $H A$-spaces and $(f, F):\left(X_{1}, \mu_{1}\right) \rightarrow$ $\left(X_{2}, \mu_{2}\right)$ be an H-map. Then we have the map $\hat{\theta}: X_{1} \times X_{1} \times X_{1} \rightarrow \Lambda X_{2}$ defined by

$$
\begin{aligned}
\tilde{\theta}(x, y, z)= & \alpha_{2}(f x, f y, f z)+c f x \cdot F(y, z)+F\left(x, \mu_{1}(y, z)\right)-(P f) \alpha_{1}(x, y, z) \\
& -F\left(\mu_{1}(x, y), z\right)-F(x, y) \cdot c f z \quad\left(\cdot \text { is induced from } \mu_{2}\right) .
\end{aligned}
$$

Since $\tilde{\theta}(*, x, y)=\tilde{\theta}(x, *, y)=\tilde{\theta}(x, y, *)=F(x, y)-F(x, y) \sim *$, we get a map, which is unique up to homotopy,

$$
\left.\theta=\theta(f, F): X_{1} \wedge X_{1} \wedge X_{1} \longrightarrow \Omega X_{2} \quad \text { (due to Zabrodsky }[13 ; 2.5]\right)
$$

such that $\tilde{\theta} \sim \theta^{\prime}: X_{1} \times X_{1} \times X_{1} \rightarrow \Lambda X_{2}$ fixing the end points, where $\theta^{\prime}(x, y, z)=$ $\theta(x, y, z) \cdot((f x \cdot f y) \cdot f z)$. We call $\theta=\theta(f, F)$ the HA-deviation of an H-map (f, F), because (f, F) has an $H A$-structure if and only if $\theta \sim *$ by definition. We denote $\theta(f, F)$ by $\theta(f)$ when F is specified.

We note that $\theta\left(f_{0}, F_{0}\right) \sim \theta\left(f_{\infty}, F_{\infty}\right)$ for two H-maps $\left(f_{i}, F_{i}\right):\left(X_{1}, \mu_{1}\right) \rightarrow$ $\left(X_{2}, \mu_{2}\right)$, if they are homotopic as H-maps, i.e., if there are homotopies

$$
H: X_{1} \longrightarrow P X_{2} ; \quad f_{0} \sim f_{\infty} \quad \text { and } \quad G: X_{1} \times X_{1} \longrightarrow P^{2} X_{2} ; \quad F_{0} \sim F_{\infty}
$$

with $\left(P e_{0}\right) G=\left(P \mu_{2}\right)(H \times H),\left(P e_{\infty}\right) G=H \mu_{1}$, and $G \mid X_{1} \vee X_{1}=c H V$. Moreover, we note that $\theta(\Omega g) \sim *$ for any map $g: Y_{1} \rightarrow Y_{2}$.

Now, for a given map $h: X \rightarrow Y$, let

$$
\Omega Y \xrightarrow{j_{h}} E_{h}=\left\{(x, l) \in X \times L Y \mid h x=e_{\infty} l\right\} \xrightarrow{r_{h}} X \xrightarrow{h} Y
$$

denote the fiber sequence given by $r_{h}(x, l)=x$ and $j_{h}(l)=(*, l)$, i.e., r_{h} is the homotopy fiber of h and j_{h} is the fiber of r_{h}. Then for the fiber sequence

$$
\Omega^{2} Y \xrightarrow{j_{g_{h}}} E_{\Omega h}=\left\{\left(x^{\prime}, l^{\prime}\right) \in \Omega X \times L \Omega Y \mid(\Omega h) x^{\prime}=e_{\infty} l^{\prime}\right\} \xrightarrow{r_{\Omega_{h}}} \Omega X \xrightarrow{\Omega h} \Omega Y
$$

we see that $E_{\Omega h}$ is an associative H-space with the multiplication induced from the ones of ΩX and ΩY, and $j_{\Omega h}$ and $r_{\Omega h}$ are homomorphisms. Also we note that there is a natural homotopy equivalence $\varepsilon: E_{\Omega h} \simeq \Omega E_{h}$ with $\left(\Omega r_{h}\right) \varepsilon \sim r_{\Omega h}$.

Moreover, let $\iota_{t} \in H^{t}(K(\boldsymbol{Z} / 3, t) ; \boldsymbol{Z} / 3)$ be the fundamental class, and let $\sigma: H^{t}(X ; Z / 3) \rightarrow H^{t-1}(\Omega X ; Z / 3)$ be the cohomology suspension. Then:

Proposition 2.1. For given $a \in H^{2 n}(X ; Z / 3)$ and maps

$$
X \xrightarrow{h} Y \xrightarrow{g} K(Z / 3,6 n) \text { with }(g h)^{*} \iota_{6 n}=a^{3},
$$

there is an H-map $\varphi: E_{\Omega h} \rightarrow \Omega^{2} K(Z / 3,6 n)$ with $\varphi j_{\Omega h}=\Omega^{2} g$ and

$$
\theta(\varphi)^{*} \iota_{6 n-3}= \pm b \otimes b \otimes b \quad \text { for } \quad b=r_{\Omega h}^{*} \sigma a \in H^{2 n-1}\left(E_{\Omega h} ; Z / 3\right)
$$

where $\theta(\varphi): E_{\Omega h} \wedge E_{\Omega h} \wedge E_{\Omega h} \rightarrow K(Z / 3,6 n-3)$ is the HA-deviation of φ.
Proof. Consider $K=K(Z / 3,2 n), K^{\prime}=K(Z / 3,6 n)$ and the maps

$$
X \xrightarrow{f} K \xrightarrow{k} K^{\prime} \quad \text { with } f^{*} \iota_{2 n}=a \text { and } k^{*} \iota_{6 n}=\iota_{2 n}^{3}=\mathscr{P}^{n} \iota_{2 n} .
$$

Then $(g h)^{*} \iota_{6 n}=(k f)^{*} \iota_{6 n}$; hence we can take k and f to satisfy $k f=g h$. Thus we have the commutative diagram
(*)

($E=E_{\Omega k}, r=r_{\Omega k}, j=j_{\Omega k}, f=\Omega f \times L \Omega g \mid E_{\Omega h}$) of the fiber sequences, consisting of the associative H-spaces and the homomorphisms. Moreover we have a homotopy

$$
\eta: \Omega K \longrightarrow L \Omega K^{\prime} ; * \sim \Omega k \quad\left(\Omega K=K(Z / 3,2 n-1), \Omega K^{\prime}=K(Z / 3,6 n-1)\right),
$$

since $(\Omega k)^{*} \iota_{6 n-1}=\mathscr{P}^{n} \iota_{2 n-1}=0$. This defines $w: \Omega K \times \Omega K \rightarrow \Omega^{2} K^{\prime}$ by $w(x, y)=$ $(\eta x) \cdot(\eta y)-\eta(x \cdot y)$, and $w^{\prime}: \Omega K \wedge \Omega K \rightarrow \Omega^{2} K^{\prime}$ with $w^{\prime} \mathrm{pr} \sim w$ since $w \mid K \vee K \sim *$. Now as is shown in the proof of Zabrodsky [14;1.3], we can take η so that $w^{\prime} \sim *$, i.e., there is a homotopy

$$
(\eta x) \cdot(\eta y) \sim \eta(x \cdot y)(x, y \in \Omega K) \quad \text { fixing the end points. }
$$

Using these f and η, we define

$$
\varphi=\psi f: E_{\Omega h} \longrightarrow E \longrightarrow \Omega^{2} K^{\prime}=K(Z / 3,6 n-2)
$$

by $\psi(x, l)=l-\eta x$ for $(x, l) \in E \subset \Omega K \times L \Omega K^{\prime}$. Then

$$
\psi j=1 \quad \text { and } \quad \varphi j_{\Omega h}=\psi \tilde{j}_{\Omega h}=\psi j \Omega^{2} g=\Omega^{2} g ;
$$

and $\psi: E \rightarrow \Omega^{2} K^{\prime}$ is an H-map by the H-structure $F: E \times E \rightarrow P \Omega^{2} K^{\prime}$, where $F((x, l),(y, m))$ is given by

$$
(l-\eta x) \cdot(m-\eta y) \sim l \cdot m-(\eta x) \cdot(\eta y) \sim l \cdot m-\eta(x \cdot y)
$$

Hence $\varphi=\psi f$ is an H-map, and

$$
\begin{equation*}
\theta(\varphi) \sim \theta(\psi)(\tilde{f} \wedge \tilde{f} \wedge \tilde{f}) \quad(\text { by }[13 ; 2.5 .2]) \tag{**}
\end{equation*}
$$

Therefore the equality $\theta(\varphi)^{*} \iota_{6 n-3}= \pm b \otimes b \otimes b$ follows from

$$
\begin{equation*}
\theta(\psi) \sim *: E \wedge E \wedge E \longrightarrow \Omega^{3} K^{\prime}=K(Z / 3,6 n-3) \tag{2.2}
\end{equation*}
$$

In fact, by the lower fibration in (*), we see that $H^{6 n-3}(E \wedge E \wedge E ; Z / 3) \cong Z / 3$ with a generator $c \otimes c \otimes c$ for $c=r^{*} \iota_{2 n-1}$. Thus $\theta(\psi)^{*} \iota_{6 n-3}= \pm c \otimes c \otimes c$ by (2.2), which implies the equality by ($* *$) and $\tilde{f}^{*} c=r_{\Omega h}^{*}(\Omega f)^{*} c_{2 n-1}=b$.

To prove (2.2), suppose contrarily that $\theta(\psi) \sim *$. Then the H-map $\psi: E \rightarrow$ $\Omega^{2} K^{\prime}$ has an $H A$-structure, or is an A_{3}-map in the sence of Stasheff [11; II, Def. 4.4]. Thus, by [11; II], we have a map

$$
\psi_{3}: P_{3} E \longrightarrow B \Omega^{2} K^{\prime}=\Omega B \Omega K^{\prime} \simeq \Omega K^{\prime} \quad \text { with } \quad \psi \sim \bar{\psi}_{3}: E \longrightarrow \Omega \tilde{\Omega} K^{\prime} \subset \Omega^{2} K^{\prime}
$$

for the projective t-space $P_{t} E(t \geqq 2)$ of the associative H-space $E=E_{\Omega k}$, where $\bar{\psi}_{3}$ is the adjoint of $\psi_{3} \varepsilon_{3}: \Sigma E \subset P_{3} E \rightarrow \Omega K^{\prime}$ for the usual loop space $\tilde{\Omega} K^{\prime}$ (which is homotopy equivalent to ΩK^{\prime} by $\tilde{\Omega} K^{\prime} \subset \Omega K^{\prime}$).

Now ψ_{3} cna be extended to $\psi_{t}: P_{t} E \rightarrow \Omega K^{\prime}$ for all t. In fact, the obstruction for ψ_{t} to be extended to ψ_{t+1} is in $H^{6 n-1-t}\left(X_{t} ; \boldsymbol{Z} / 3\right)$ for $X_{t}=E \wedge \cdots \wedge E(t+1$ copies) by [11; II, 8], which is 0 for $t \geq 3$ since E is $(2 n-2)$-connected. Therefore we have a map

$$
\psi_{\infty}=B \psi: P_{\infty} E=B E \longrightarrow \Omega K^{\prime} \quad \text { with } \quad \psi \sim \psi_{\infty} \sim \Omega \psi_{\infty}
$$

Since $\psi j=1$, this shows that $\psi_{\infty} B j \sim 1$ for the fiber sequence

$$
\Omega K^{\prime} \xrightarrow{B j} B E \xrightarrow{B r} B \Omega K \simeq K \xrightarrow{k} K^{\prime} \simeq B \Omega K^{\prime}
$$

(up to homotopy equivalences) obtained from the lower one in (*). Thus ($\mathrm{Br} \times$ $\left.\psi_{\infty}\right) \Delta: B E \simeq K \times \Omega K^{\prime}$, and we have a section $s: K \rightarrow B E$ with $(B r) s \sim 1$. So $k \sim$ $k(B r) s \sim *$, which contradicts $k^{*} \iota_{6 n}=\iota_{2 n}^{3} \neq 0$. Hence (2.2) is proved.
q.e.d.

In the rest of this section, we construct a particular tertiary operation.
Let $e \geq 1$ be a fixed integer, and consider the maps in the diagram

$$
\begin{align*}
& E_{f} \xrightarrow{h} K_{1}=\prod_{i=-1}^{e-2} K\left(Z / 3, m_{i}\right) \xrightarrow{g} K^{\prime}=K(Z / 3,6 n) \tag{2.3}\\
& l_{r_{f}} \\
& K=K(Z / 3,2 n) \xrightarrow{f} K_{0}=\prod_{i=-1}^{e-1} K\left(Z / 3, l_{i}\right)
\end{align*}
$$

for $n=3^{e}, l_{-1}=2 n+1, l_{i}=2 n+4 \cdot 3^{i}(i \geq 0)$ and $m_{i}=8 n-l_{i}$, such that

$$
f^{*} \iota_{l_{i}}=\mathscr{P}^{(i)} \iota_{2 n}, \quad g^{*} \iota_{6 n}=\sum_{i=-1}^{e-1} \mathscr{P}^{(i)} \iota_{m_{i}} \quad\left(\mathscr{P}^{(-1)}=\beta, \mathscr{P}^{(i)}=\mathscr{P}^{3^{i}}(i \geq 0)\right)
$$

and $h^{*} \iota_{m_{i}}=v_{i}$ for some classes $v_{i} \in H^{m_{i}}\left(E_{f} ; \boldsymbol{Z} / 3\right)$ with

$$
r_{f}^{*} \epsilon_{2 n}^{3}=\mathscr{P}^{n} r_{f}^{*} l_{2 n}=\sum_{i=-1}^{e=1} \mathscr{P}^{(i)} v_{i} .
$$

We note that the equalities for f^{*} and the definition of r_{f} imply

$$
a=r_{f}^{*} c_{2 n} \neq 0, \quad \beta a=0 \quad \text { and } \quad \mathscr{P}^{\prime} a=0 \text { for } t<n,
$$

which assure the existence of such v_{i} by Shimada-Yamanoshita [10; Th. 5.1-2] or Liulevicius [7; Th. 4.5.1]; hence h exists. Then $(g h)^{*} \iota_{6 n}=a^{3}$, and Proposition 2.1 implies the following

Proposition 2.4. (i) $\pi_{t}\left(E_{\Omega h}\right)=0$ for $t \geq 6 n-2$.
(ii) There is an H-map $\varphi: E_{\Omega h} \rightarrow \Omega^{2} K^{\prime}$ with $\varphi j_{\Omega h}=\Omega^{2} g$ and

$$
\theta(\varphi)^{*} \iota_{6 n-3}= \pm u \otimes u \otimes u \quad \text { for } \quad u=r_{\Omega h}^{*}\left(\Omega r_{f}\right)^{*} \iota_{2 n-1} \in H^{2 n-1}\left(E_{\Omega h} ; Z / 3\right) .
$$

§ 3. Reduction of (1.5)

Note that if a connected space X is an $H A$-space, then so is its universal covering space, which has the homotopy type of Y when $X=Y \times\left(S^{1}\right)^{c}$ for a simply connected space Y. Then (1.5) follows from the following

Proposition 3.1. For the localized sphere $S_{(3)}^{n}$ at 3 , and integers $n_{i}=3$ $(i>a(\geq 1))$ and $n_{i}=2 \cdot 3^{e(i)}-1 \quad(i \leq a)$ with $e(1) \geq e(2) \geq \cdots \geq e(a) \geq 1$, assume that $S=\prod_{i=0}^{a+b} S_{(3)}^{n_{i}}$ is an HA-space. Then $e(1)=1$.

Hereafter, we study S under these assumptions.
Lemma 3.2. (i) $\quad H^{*}\left(S ; \boldsymbol{Z}_{(3)}\right) \cong \Lambda\left(\dot{\xi}_{1}, \cdots, \dot{\xi}_{a+b}\right)$ and $H^{*}(S ; \boldsymbol{Z} / 3) \cong \Lambda\left(\xi_{1}, \cdots\right.$, ξ_{a+b}) by primitive elements $\bar{\xi}_{i}$ and ξ_{i} such that $\operatorname{dim} \bar{\xi}_{i}=\operatorname{dim} \xi_{i}=n_{i}$ and ξ_{i} is the $\bmod 3$ reduction of $\bar{\xi}_{i}$.
(ii) Moreover, $\bar{\xi}_{i}$ can be chosen to be a generator of $H^{n_{i}}\left(S_{(3)}^{n_{i}} ; \boldsymbol{Z}_{(3)}\right)$ for any i.

Proof. (i) is seen in the same way as Borel [3; Th. 4.1-2, Prop. 4.3].
(ii) If $x \in H^{t}\left(S ; Z_{(3)}\right)(t:$ odd $)$ is a monomial of generators $\zeta_{i} \in H^{n_{i}}\left(S_{(3)}^{n_{i}}\right.$; $\left.\boldsymbol{Z}_{(3)}\right)$, i.e., $x=c \zeta_{i(1)} \cdots \zeta_{i(l)}\left(1 \leq i(1)<\cdots<i(l) \leq a+b, c \in \boldsymbol{Z}_{(3)}\right)$, then

$$
\psi_{x}: S \xrightarrow{\mathrm{pr}} \prod_{j=1}^{l} S_{(3)}^{n_{i}(j)} \xrightarrow{\mathrm{pr}} \wedge_{j=1}^{l} S_{(3)}^{n_{i}(j)}=S_{(3)}^{\prime} \xrightarrow{c} S_{(3)}^{\prime}
$$

(c is the map of degree c) satisfies $\psi_{x}^{*} \zeta=x$ for a generator $\zeta \in H^{t}\left(S_{(3)}^{t} ; \boldsymbol{Z}_{(3)}\right)$. If $x=x_{1}+\cdots+x_{m} \in H^{t}\left(S ; Z_{(3)}\right)$ with monomials x_{j} of ζ_{i}, then

$$
\psi_{x}=\mu_{m}\left(\prod_{j=1}^{m} \psi_{x_{j}}\right) \Delta: S \longrightarrow(S)^{m} \longrightarrow\left(S_{(3)}^{t}\right)^{m} \longrightarrow S_{(3)}^{t}
$$

satisfies $\psi_{x}^{*} \zeta=x$, where $\mu_{m}=\mu\left(\mu_{m-1} \times 1\right)$ is the iterated multiplication of $\mu=\mu_{2}$ of the H-space $S_{(3)}^{t}$. Thus we see (ii) by taking $x=\bar{\xi}_{i}$.
q.e.d.

Let $\rho^{\prime}(t): S^{\prime}(t) \rightarrow \prod_{i=2}^{a+b} S_{(3)}^{n_{i}}$, be the t-connected fibration (i.e., $S^{\prime}(t)$ is t connected and $\rho^{\prime}(t)$ is a fibration inducing an isomorphism on π_{n} for $\left.n>t\right)$, and put

$$
\rho(t)=1 \times \rho^{\prime}(t): S(t)=S_{(3)}^{n_{1}} \times S^{\prime}(t) \longrightarrow S=\prod_{i=1}^{a+b} S_{(3)}^{n_{1}}
$$

Lemma 3.3. If $t \leq 2 n_{1}-1$, then $S(t)$ is an $H A$-space and $\rho(t)$ is an HA-map.
Proof. If $t<n_{1}$, then $\rho(t)$ is the t-connected fibration by definition. Thus the $H A$-structure for S can be lifted to that for $S(t)$, and the lemma holds.

Suppose inductively that the lemma holds for t with $n_{1}-1 \leq t<2 n_{1}-1$. Let $\psi^{\prime}: S^{\prime}(t) \rightarrow K\left(\pi_{t+1}\left(S^{\prime}(t)\right), t+1\right)$ be the map inducing an isomorphism on π_{t+1}. Then by the definition of $\rho^{\prime}(t)$'s, the homotopy fiber of ψ^{\prime} is $\rho^{\prime}: S^{\prime}(t+1) \rightarrow S^{\prime}(t)$ with $\rho^{\prime}(t) \rho^{\prime}=\rho^{\prime}(t+1)$. Thus $\rho(t+1)=\rho(t)\left(1 \times \rho^{\prime}\right)$, and $1 \times \rho^{\prime}: S(t+1) \rightarrow S(t)$ is the homotopy fiber of

$$
\psi=\psi^{\prime} \mathrm{pr}_{2}: S(t) \longrightarrow S^{\prime}(t) \longrightarrow K=K\left(\pi_{t+1}\left(S^{\prime}(t)\right), t+1\right) .
$$

Therefore, if ψ is an $H A$-map, then the lemma holds for $t+1$ by [13; 2.5.3].
Now $d(\psi) \sim *: S(t) \wedge S(t) \rightarrow K$ for the H-deviation $d(\psi)$ since $n_{1}-1 \leq t<$ $2 n_{1}-1$ and $S(t) \wedge S(t)$ is $\left(2 n_{1}-1\right)$-connected. Hence ψ is an H-map. Moreover $\theta(\psi) \sim *: S(t) \wedge S(t) \wedge S(t) \rightarrow \Omega K$ for the $H A$-deviation $\theta(\psi)$ since $S(t) \wedge S(t) \wedge S(t)$ is $\left(3 n_{1}-1\right)$-connected. Thus ψ is an $H A$-map; and the lemma is proved by induction. q.e.d.

Now Proposition 3.1 follows from the following
Proposition 3.4. For S in Proposition 3.1, consider

$$
\xi_{1} \in H^{2 n-1}(S ; \boldsymbol{Z} / 3) \quad\left(n=3^{e}, e=e(1), n_{1}=2 n-1\right)
$$

and the HA-map $\rho=\rho(4 n-3): \tilde{S}=S(4 n-3) \rightarrow S$ given in Lemmas 3.2-3. Furthermore, consider $u \in H^{2 n-1}\left(E_{\Omega h} ; \boldsymbol{Z} / 3\right)$ and the H-map

$$
\varphi: E_{\Omega h} \longrightarrow \Omega^{2} K^{\prime}=K(Z / 3,6 n-2) \quad \text { with } \quad \theta(\varphi)^{*} \iota_{6 n-3}= \pm u \otimes u \otimes u
$$

given in Proposition 2.4 (ii). If $e \geq 2$, then there are a space X and maps

$$
S \wedge S \xrightarrow{\lambda_{1}} X \xrightarrow{\lambda_{2}} E_{\Omega h} \quad \text { and } \quad s: S \longrightarrow E_{\Omega h}
$$

such that $\lambda_{1}(\rho \wedge \rho) \sim *, \varphi \lambda_{2} \sim *, d(s) \sim \lambda_{2} \lambda_{1}$ and $s^{*} u=\xi_{1}$.
Corollary 3.5. In Proposition 3.4, the compositions

$$
\tilde{\varphi}=\varphi s: S \longrightarrow \Omega^{2} K^{\prime} \quad \text { and } \quad \tilde{\rho}=s \rho: \tilde{S} \longrightarrow E_{\Omega h}
$$

are H-maps so that the composed H-maps $\tilde{\varphi} \rho, \varphi \tilde{\rho}: \tilde{S} \rightarrow \Omega^{2} K^{\prime}$ are mutually homotopic as H-maps (hence $\theta(\tilde{\varphi} \rho) \sim \theta(\varphi \tilde{\rho})$ as is noted in $\S 2$).

Proof of Proposition 3.1 from Proposition 3.4 and Corollary 3.5.

Suppose $e=e(1) \geq 2$. Then, by these results, the $H A$-deviation

$$
\theta(\tilde{\varphi}): S \wedge S \wedge S \longrightarrow \Omega^{3} K^{\prime}=K(Z / 3,6 n-3)
$$

of the H-map $\tilde{\varphi}$ is calculated as follows:
$\theta(\rho) \sim *$ since ρ is an $H A$-map; and $\theta(\tilde{\rho}) \sim *: \tilde{S} \wedge \tilde{S} \wedge \tilde{S} \rightarrow \Omega E_{\Omega h}$ by Proposition 2.4 (i) since \tilde{S} is $(2 n-2)$-connected. Thus

$$
\theta(\tilde{\varphi})(\rho \wedge \rho \wedge \rho) \sim \theta(\tilde{\varphi} \rho) \sim \theta(\varphi \tilde{\rho}) \sim \theta(\varphi)(\tilde{\rho} \wedge \tilde{\rho} \wedge \tilde{\rho})
$$

by [13; 2.5.2]. Hence it follows from Proposition 3.4 that

$$
\begin{aligned}
\theta(\tilde{\varphi})^{*} \iota & \equiv\left(s^{*} \otimes s^{*} \otimes s^{*}\right) \theta(\varphi)^{*} \iota \quad \bmod \operatorname{Ker}\left(\rho^{*} \otimes \rho^{*} \otimes \rho^{*}\right) \quad\left(\iota=\iota_{6 n-3}\right) \\
& = \pm s^{*} u \otimes s^{*} u \otimes s^{*} u= \pm \xi_{1} \otimes \xi_{1} \otimes \xi_{1}
\end{aligned}
$$

Also by Lemma 3.2 (ii) and the definition of ρ, there is a homology class $t \in$ $H_{2 n-1}(S ; Z / 3)$ with $\left\langle t, \xi_{1}\right\rangle=1$ and $\left\langle t, \operatorname{Ker} \rho^{*}\right\rangle=0$; hence

$$
\begin{equation*}
\left\langle t \otimes t \otimes t, \theta(\tilde{\varphi})^{*} \iota\right\rangle= \pm\left\langle t, \xi_{1}\right\rangle^{3}= \pm 1 \tag{3.6}
\end{equation*}
$$

On the other hand, $\tilde{\varphi}^{*} \iota_{6 n-2} \in H^{6 n-2}(S ; Z / 3)$ is primitive since $\tilde{\varphi}$ is an $H-$ map; and $H^{*}(S ; \boldsymbol{Z} / 3)$ has no even dimensional primitive classes by Lemma 3.2 (i).

Hence $\tilde{\varphi}^{*} \iota_{6 n-2}=0$ and $\tilde{\varphi} \sim *$. This implies by Zabrodsky [14; 1.2.1] that

$$
\theta(\tilde{\varphi})^{*} \iota=(1 \otimes \bar{\mu}-\bar{\mu} \otimes 1) z \quad \text { for some } \quad z \in H^{*}(S \wedge S ; Z / 3),
$$

where $\bar{\mu} \alpha=\mu^{*} \alpha-1 \otimes \alpha-\alpha \otimes 1$ for the multiplication of μ of S. Thus

$$
\begin{align*}
& \left\langle t \otimes t \otimes t, \theta(\tilde{\varphi})^{*} \iota\right\rangle=\langle t \otimes t \otimes t,(1 \otimes \bar{\mu}-\bar{\mu} \otimes 1) z\rangle \tag{3.7}\\
& \quad=\left\langle t \otimes t \otimes t,\left(1 \otimes \mu^{*}-\mu^{*} \otimes 1\right) z\right\rangle=\left\langle t \otimes t^{2}-t^{2} \otimes t, z\right\rangle
\end{align*}
$$

Here $t^{2}=t t$ is the Pontrjagin product in $H_{*}(S ; \boldsymbol{Z} / 3)$ given by μ, which is commutative by Milnor-Moore $[8 ; 4.20]$ since $H^{*}(S ; \boldsymbol{Z} / 3)$ is primitively generated by Lemma 3.2 (i). Therefore $t^{2}=0$ since $\operatorname{dim} t$ is odd; and the last in (3.7) is 0 , which contradicts (3.6).
q.e.d.

Proof of Corollary 3.5 from Proposition 3.4. Let

$$
\begin{aligned}
& v_{1}: \tilde{S} \wedge \tilde{S} \longrightarrow L X ; * \sim \lambda_{1}(\rho \wedge \rho), \quad v_{2}: X \longrightarrow L \Omega^{2} K^{\prime} ; * \sim \varphi \lambda_{2} \quad \text { and } \\
& \omega: S \wedge S \longrightarrow P E_{\Omega h} ; d(s) \sim \lambda_{2} \lambda_{1}
\end{aligned}
$$

be homotopies given by Proposition 3.4. Then $\tilde{\varphi}$ is an H-map with the H structure $F_{\tilde{\varphi}}: S \times S \rightarrow P \Omega^{2} K^{\prime}$ given by

$$
\begin{aligned}
F_{\tilde{\varphi}}(x, y)= & F_{\varphi}(s x, s y)+(P \varphi)(\zeta(s x, s y)+\omega(x, y) \cdot c s(x \cdot y)) \\
& -F_{\varphi}\left(\lambda_{2} \lambda_{1}(x, y) \cdot s(x \cdot y)\right)-v_{2} \lambda_{1}(x, y) \cdot c \varphi s(x \cdot y),
\end{aligned}
$$

and so is $\tilde{\rho}$ with $F_{\tilde{\rho}}: \tilde{S} \times \tilde{S} \rightarrow P E_{\Omega h}$ given by

$$
F_{\tilde{\rho}}(\tilde{x}, \tilde{y})=\zeta(\rho \tilde{x}, \rho \tilde{y})+\left(\omega(\rho \tilde{x}, \rho \tilde{y})-\left(L \lambda_{2}\right) v_{1}(\tilde{x}, \tilde{y})\right) \cdot(P s) F_{\rho}(\tilde{x}, \tilde{y})
$$

where $F_{\varphi}: E_{\Omega h} \times E_{\Omega h} \rightarrow P \Omega^{2} K^{\prime}$ and $F_{\rho}: \tilde{S} \times \tilde{S} \rightarrow P S$ are those of φ and ρ, and $\zeta: S \times S \rightarrow P E_{\Omega h}$ is a homotopy $s x \cdot s y \sim d(s)(x, y) \cdot s(x \cdot y)$.

Now the homotopy $\left(L v_{2}\right) v_{1}: \tilde{S} \wedge \tilde{S} \rightarrow L^{2} \Omega^{2} K^{\prime}$ gives us a homotopy

$$
v_{2} \lambda_{1}(\rho \wedge \rho) \sim\left(L\left(\varphi \lambda_{2}\right)\right) v_{1} \quad \text { fixing the end points. }
$$

Also the one $\tilde{S} \times \tilde{S} \rightarrow P^{2} S$, defined by $(\tilde{x}, \tilde{y}) \rightarrow\left(P F_{\varphi}\right)\left(\left(L \lambda_{2}\right) v_{1}(\tilde{x}, \tilde{y}), \operatorname{cs}(\rho \tilde{x} \cdot \rho \tilde{y})\right)$, gives us a homotopy

$$
\begin{aligned}
- & F_{\varphi}\left(\lambda_{2} \lambda_{1}(\rho \tilde{x}, \rho \tilde{y}), s(\rho \tilde{x} \cdot \rho \tilde{y})\right)-\left(L\left(\varphi \lambda_{2}\right)\right) v_{1}(\tilde{x}, \tilde{y}) \cdot c \varphi s(\rho \tilde{x} \cdot \rho \tilde{y}) \\
& \sim-(P \varphi)\left(\left(L \lambda_{2}\right) v_{1}(\tilde{x}, \tilde{y}) \cdot c s(\rho \tilde{x} \cdot \rho \tilde{y})\right) \quad \text { fixing the end points. }
\end{aligned}
$$

By these homotopies, we can define the homotopy $F_{\tilde{\varphi}}(\rho \times \rho)+(P \tilde{\varphi}) F_{\rho} \sim F_{\varphi}(\tilde{\rho} \times \tilde{\rho})+$ $(P \varphi) F_{\tilde{\rho}}: \tilde{S} \times \tilde{S} \rightarrow P \Omega^{2} K^{\prime}$ between the composed H-structures of $\tilde{\varphi} \rho$ and $\varphi \tilde{\rho}$, so that this and the stationary homotopy $H=c \tilde{\varphi} \rho: \tilde{S} \rightarrow P \Omega^{2} K^{\prime} ; \tilde{\varphi} \rho=\varphi \tilde{\rho}$ show $\tilde{\varphi} \rho \sim \varphi \tilde{\rho}$ as H-maps.
q.e.d.

Therefore we have proved that Proposition 3.4 implies Proposition 3.1, which implies (1.5) and Theorem 1.2.

§ 4. Ladder Toda Bracket

In this section we discuss a simple case of the ladder Toda bracket introduced by Zabrodsky [12].

Consider the following diagram of spaces and maps:

$$
\begin{aligned}
& Y \xrightarrow{g} Y_{0} \xrightarrow{g_{0}} Y_{1} \\
& \downarrow h_{0} \\
& \Omega X_{2} \stackrel{\psi}{\Psi} \\
& \hline
\end{aligned} \xrightarrow{r} X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2} .
$$

Here $f_{0}, f_{1}, g, g_{0}, h_{0}$ and h_{1} are given maps with

$$
f_{1} f_{0} \sim *, \quad g_{0} g \sim *, \quad h_{1} g_{0} \sim f_{0} h_{0} \quad \text { and } \quad f_{1} h_{1} \sim *
$$

r is the homotopy fiber of f_{0}, i.e., $E=E_{f_{0}}=\left\{(x, l) \in X_{0} \times L X_{1} \mid f_{0} x=e_{x} l\right\}$ and $r(x, l)=x$, and ψ is the map defined by

$$
\psi(x, l)=\left(L f_{1}\right) l-v x \quad \text { by a fixing homotopy } v: X_{0} \longrightarrow L X_{2} ; * \sim f_{1} f_{0} .
$$

Then we prove the following
Proposition 4.1. There are maps $h: Y \rightarrow E$ and $h^{\prime}: Y_{0} \rightarrow \Omega X_{2}$ with

$$
r h=h_{0} g \quad \text { and } \quad h^{\prime} g \sim \psi h .
$$

Proof. By using homotopies $\eta: Y \rightarrow L Y_{1} ; * \sim g_{0} g, \omega: Y_{0} \rightarrow P X_{1} ; h_{1} g_{0} \sim$ $f_{0} h_{0}$ and $\zeta: Y_{1} \rightarrow L X_{2} ; * \sim f_{1} h_{1}$, we define h and h^{\prime} by

$$
h=\left\{h_{0} g \times\left(\left(L h_{1}\right) \eta+\omega g\right)\right\} \Delta \quad \text { and } \quad h^{\prime}=\zeta g_{0}+\left(P f_{1}\right) \omega-v h_{0} .
$$

Then $r h=h_{0} g$. Moreover $L\left(f_{1} h_{1}\right) \eta \sim \zeta g_{0} g: Y \rightarrow L X_{2}$ fixing the end points by $(L \zeta) \eta: Y \rightarrow L^{2} X_{2}$. Therefore

$$
h^{\prime} g=\zeta g_{0} g+\left(P f_{1}\right) \omega g-v h_{0} g \sim L\left(f_{1} h_{1}\right) \eta+\left(P f_{1}\right) \omega g-v h_{0} g=\psi h . \quad \text { q.e.d. }
$$

§5. Proof of Proposition 3.4

By the consturction given in $\S 2$, we have the diagram

$$
\begin{align*}
& \Omega^{2} K_{1} \xrightarrow{i_{1}=j_{g_{h}}} E_{2}=E_{\Omega h} \xrightarrow{\varphi} \Omega^{2} K^{\prime}=K(Z / 3,6 n-2) \\
& { }^{r_{2}}=r_{\Omega h} \\
& \begin{aligned}
& \Omega^{2} K_{0} \xrightarrow{j_{0}=\Omega j_{f}} E_{1}=\Omega E_{f} \xrightarrow{\Omega h} \Omega K_{1}=\prod_{i=-1}^{e-1} K\left(Z / 3, m_{i}-1\right) \xrightarrow{\Omega g} \Omega K^{\prime} \\
& \mid r_{1}=\Omega r_{f}
\end{aligned} \tag{5.1}\\
& S \xrightarrow{s_{0}} \Omega K=K(\boldsymbol{Z} / 3,2 n-1) \xrightarrow{\Omega f} \Omega K_{0}=\prod_{i=-1}^{e=1} K\left(\boldsymbol{Z} / 3, l_{i}-1\right)
\end{align*}
$$

for f, g, h and φ in (2.3) and Proposition 2.4 (ii) and s_{0} with $s_{0}^{*} \iota_{2 n-1}=\xi_{1}$ in Lemma 3.2.

Hereafter assume that $n=3^{e}$ and $e=e(1) \geq 2$. Then:
Lemma 5.2. s_{0} is an H-map, and there are maps

$$
s_{1}: S \longrightarrow E_{1} \text { and } d_{0}: S \wedge S \longrightarrow \Omega^{2} K_{0}=\prod_{i=-1}^{e-1} K\left(Z / 3, l_{i}-2\right)
$$

such that $r_{1} s_{1} \sim s_{0}, d\left(s_{1}\right) \sim j_{0} d_{0}, d_{0}^{*} \iota_{t}=0$ for $t=l_{i}-2(i \neq 0)$, and

$$
d_{0}^{*} \iota_{2 n+2} \in P H^{2 n-1}(S ; Z / 3) \otimes P H^{3}(S ; Z / 3) \quad\left(l_{1}-2=2 n+2\right),
$$

where $P H^{*}$ denotes the primitive module of H^{*}.
Proof. s_{0} is an H-map since ξ_{1} is primitive; and we fix an H-structure F : $S \times S \rightarrow P \Omega K$ for s_{0}.

The mod 3 Steenrod algebra \mathscr{A} acts on $H^{*}(S ; \boldsymbol{Z} / 3)$ trivially. Hence $s_{0}^{*}(\Omega f)^{*} \iota_{t}$ $=0$ for all t by the definition of f in (2.3). Thus $(\Omega f) s_{0} \sim *$. By choosing a homotopy $v: S \rightarrow L \Omega K_{0} ; * \sim(\Omega f) s_{0}$, we define

$$
d: S \wedge S \longrightarrow \Omega^{2} K_{0} \quad \text { by } \quad d(x, y) \sim v x \cdot v y+(P \Omega f) F(x, y)-v(x \cdot y) .
$$

Then by $[14 ; 1.2 .1]$ and $[13 ; 2.5 .2]$, we see that

$$
(1 \otimes \bar{\mu}-\bar{\mu} \otimes 1) d^{*} \iota_{t}=\theta\left((\Omega f) s_{0}\right)^{*} \iota_{t}=\theta\left(s_{0}\right)^{*}\left(\Omega^{2} f\right)^{*} \iota_{t}=0
$$

for any $t\left(\bar{\mu}\right.$ is the one in (3.7)). Thus $d^{*} c_{t}$ represents some element in $\Gamma=\operatorname{Ext}_{\boldsymbol{H}_{*}^{2}}{ }^{*}(\boldsymbol{Z} / 3, \boldsymbol{Z} / 3)$ for $H_{*}=H_{*}(\boldsymbol{S} ; \boldsymbol{Z} / 3)$. Here Γ is isomorphic to $\oplus\{\boldsymbol{Z} / 3$ generated by $\left.\xi_{i} \otimes \xi_{j} \mid 1 \leq i \leq j \leq a+b\right\}$, since $H^{*}=H^{*}(S ; Z / 3)$ is given in Lemma 3.2 (ii). Therefore, by dimensional reason, $d^{*} \iota_{t}=0$ in Γ for $t \neq 2 n+2$, and $d^{*} c_{2 n+2}$ in Γ is represented by a class in $P H^{2 n-1} \otimes P H^{3}$. Thus there are $a_{t} \in H^{t}$ for $t=l_{i}-2(-1 \leq i<e)$ such that

$$
d^{*} c_{t}=\bar{\mu} a_{t} \text { if } t \neq 2 n+2, \text { and } d^{*} \iota_{t}-\bar{\mu} a_{t} \in P H^{2 n-1} \otimes P H^{3} \text { if } t=2 n+2
$$

Now we take a map $\omega: S \rightarrow \Omega^{2} K_{0}$ with $\omega^{*} c_{t}=a_{t}$, and define $d_{0}: S \wedge S \rightarrow \Omega^{2} K_{0}$ by

$$
d_{0}(x, y) \sim(\omega+v) x \cdot(\omega+v) y+(P \Omega f) F(x, y)-(\omega+v)(x \cdot y)
$$

Then $d_{0}(x, y) \sim d(x, y)+\omega x \cdot \omega y-\omega(x \cdot y)$ since + is homotopy commutative in $\Omega^{2} K_{0}$. Hence $d_{0}^{*} \iota_{t}=d^{*} \iota_{t}-\bar{\mu} \omega^{*} \iota_{t}$, and so d_{0} satisfies the last conditions in the lemma by the definition of a_{t} and ω. Moreover, by using the natural homotopy equivalence $\varepsilon: E_{\Omega f} \rightarrow \Omega E_{f}$ (see $\S 2$), we put

$$
s_{1}=\varepsilon\left(s_{0} \times(\omega+v)\right) \Delta: S \longrightarrow E_{\Omega f} \longrightarrow \Omega E_{f}=E_{1}
$$

Then $r_{1} s_{1} \sim s_{0}$ and we see that $d\left(s_{1}\right) \sim j_{0} d_{0}$ (cf. [13;2.2.1 (b) $]$). q. e. d.

The above lemma implies that

$$
\begin{equation*}
d_{0}^{*} \iota_{2 n+2}=\sum_{i=1}^{b} \zeta_{i} \otimes \xi_{a+i} \text { for some } \zeta_{i} \in P H^{2 n-1}(S ; Z / 3) \tag{5.3}
\end{equation*}
$$

Therefore by the proof of Lemma 3.2 (ii), there are maps

$$
\begin{equation*}
\psi_{i}: S \longrightarrow \Sigma=S_{(3)}^{2 n-1} \quad \text { with } \quad \psi_{i}^{*} \zeta=\zeta_{i} \quad \text { for } \quad 1 \leq i \leq b \tag{5.4}
\end{equation*}
$$

where $\zeta \in H^{2 n-1}(\Sigma ; Z / 3)$ is a generator. Consider the maps
(5.5) $\quad \sigma_{i}: S \longrightarrow K\left(\boldsymbol{Z}_{(3)}, 3\right)$ with $\sigma_{i}^{*} \bar{\epsilon}_{3}=\bar{\xi}_{a+i}$ for $1 \leq i \leq b$, and
$\tau: \Sigma \wedge K\left(Z_{(3)}, 3\right) \longrightarrow \Omega^{2} K_{0}$ with $\tau^{*} \iota_{t}=0(t \neq 2 n+2), \tau^{*} \iota_{2 n+2}=\zeta \otimes \tilde{\iota}_{3}$,
for the fundamental class \bar{c}_{3} and its $\bmod 3$ reduction \bar{c}_{3}. Then Lemma 5.2 together with (5.3-5) implies the following

Lemma 5.6. $d_{0} \sim \tau\left(\psi_{1} \wedge \sigma_{1}\right) \cdot \tau\left(\psi_{2} \wedge \sigma_{2}\right) \cdots \cdots \tau\left(\psi_{b} \wedge \sigma_{b}\right)$.
Now we consider the special maps

$$
K_{3}=K\left(\boldsymbol{Z}_{(3)}, 3\right) \xrightarrow{\eta_{1}} K_{7}=K(\boldsymbol{Z} / 3,7) \xrightarrow{\eta_{2}} K_{12}=K(\boldsymbol{Z} / 3,12)
$$

with $\eta_{1}^{*} \iota_{7}=\mathscr{P}^{1} \tilde{\iota}_{3}$ and $\eta_{2}^{*} \iota_{12}=\mathscr{P}^{1} \beta \epsilon_{7}$. Then $\left(\eta_{2} \eta_{1}\right)^{*} \iota_{12}=\left(\mathscr{P}^{2} \beta+\beta \mathscr{P}^{2}\right) \tilde{c}_{3}=0$. Thus we have the maps

$$
F_{1} \xrightarrow{p_{1}} K_{3} \xrightarrow{\eta} F_{2} \xrightarrow{p_{2}} K_{7} \text { with } \quad p_{2} \eta=\eta_{1},
$$

where p_{2} is the homotopy fiber of η_{2} and p_{1} is that of η. Then:
Lemma 5.7. $\pi_{t}\left(F_{1}\right)=0$ for $t \geq 11, p_{1}^{*}: \tilde{H}^{*}\left(K_{3} ; Z / 3\right) \rightarrow \tilde{H}^{*}\left(F_{1} ; Z / 3\right)$ is 0 for $* \neq 3$, and there are maps $\tilde{\sigma}_{i}: S \rightarrow F_{1}$ with $p_{1} \tilde{\sigma}_{i} \sim \sigma_{i}$ for σ_{i} in $(5.5)(1 \leq i \leq b)$.

Proof. By definition, $\pi_{t}\left(F_{2}\right)=0$ for $t \geq 12$, and $\pi_{t}\left(F_{1}\right)=0$ for $t \geq 11$. Moreover we see the second assertion since $p_{1}^{*} \mathscr{P}^{1} \tilde{\zeta}_{3}=0$.

Fix i with $1 \leq i \leq b$. Then by the proof of Lemma 3.2 (ii), σ_{i} is factored through as $S \xrightarrow{\sigma^{\prime}} S_{(3)}^{3} \xrightarrow{\sigma} K_{3}, \sigma_{i} \sim \sigma \sigma^{\prime} . ~ \eta \sigma \sim *$ since F_{2} is 6-connected; hence $\sigma \sim p_{1} \tilde{\sigma}$ for some $\tilde{\sigma}: S_{(3)}^{3} \rightarrow F_{1}$. Thus $p_{1} \tilde{\sigma}_{i} \sim \sigma_{i}$ for $\tilde{\sigma}_{i}=\tilde{\sigma} \sigma^{\prime}$.
q.e.d.

Lemma 5.8. For the diagram (5.1), there is a map

$$
\alpha_{2}: \Sigma \wedge F_{1} \longrightarrow E_{2} \quad\left(\Sigma=S_{(3)}^{2 n-1}\right)
$$

with $r_{2} \alpha_{2}\left(\psi_{\imath} \wedge \tilde{\sigma}_{i}\right) \sim j_{0} \tau\left(\psi_{i} \wedge \sigma_{i}\right): S \wedge S \rightarrow E_{1}$ and $\varphi \alpha_{2} \sim *: \Sigma \wedge F_{1} \rightarrow \Omega^{2} K^{\prime}$.
Proof. ($\Omega h) j_{0}=\Omega\left(h j_{f}\right): \Omega^{2} K_{0} \rightarrow \Omega K_{1}=\prod_{i=-1}^{e-1} K\left(\boldsymbol{Z} / 3, m_{i}-1\right)$, and so

$$
\left((\Omega h) j_{0} \tau\right)^{*} \iota_{t} \in P H^{2 n-1}(\Sigma ; Z / 3) \otimes P H^{*}\left(K_{3} ; Z / 3\right) \quad \text { for } t=m_{i}-1
$$

by (5.5). On the other hand, it is well known that

$$
H *\left(K_{3} ; Z / 3\right)=\Lambda\left(\tilde{\iota}_{3}, \mathscr{P}^{(i)} \ldots \mathscr{P}^{(0)} \tilde{\iota}_{3} \mid i \geq 0\right) \otimes Z / 3\left[\beta \mathscr{P}^{(i)} \ldots \mathscr{P}^{(0)} \tilde{\iota}_{3} \mid i \geq 0\right]
$$

$\left(\mathscr{P}^{(i)}=\mathscr{P}^{3 i}\right)$. Thus, by dimensional reason, we see that

$$
\left((\Omega h) j_{0} \tau\right)^{*} \iota_{t}=c \zeta \otimes\left(\beta \mathscr{P}^{1} \tilde{\iota}_{3}\right)^{n^{\prime}} \quad\left(c \in Z / 3, n^{\prime}=3^{e-1}\right) \quad \text { for } t=m_{e-1}-1
$$

and $\left((\Omega h) j_{0} \tau\right)^{*} \iota_{t}=0$ otherwise. Define a map $\tilde{\tau}: \Sigma \wedge K_{7} \rightarrow \Omega K_{1}$ by

$$
\tilde{\tau}^{*} \iota_{t}=c \zeta \otimes\left(\beta c_{7}\right)^{n^{\prime}} \text { for } t=m_{e-1}-1 \quad \text { and } \quad \tilde{\tau}^{*} \iota_{t}=0 \text { otherwise }
$$

Since $\eta_{1}^{*} \iota_{7}=\mathscr{P}^{1} \tilde{c}_{3}$ and $p_{2} \eta=\eta_{1}$ by definition, these imply that

$$
(\Omega h) j_{0} \tau \sim \tilde{\tau}\left(1 \wedge \eta_{1}\right)=\tilde{\tau}\left(1 \wedge p_{2}\right)(1 \wedge \eta)
$$

Therefore we have the homotopy commutative diagram

Here $(1 \wedge \eta)\left(1 \wedge p_{1}\right) \sim *$ by definition. Moreover, by the definitions of g and h in (2.3), $(g h)^{*} \iota_{6 n}=r_{f}^{*} \iota_{2 n}^{3}$ and so $\Omega(g h) \sim *$. Also

$$
\tilde{\tau}^{*}(\Omega g)^{*} \iota_{6 n-1}=\mathscr{P}^{n^{\prime}}\left(c \zeta \otimes\left(\beta \iota_{7}\right)^{n^{\prime}}\right)=c \zeta \otimes\left(\mathscr{P}{ }^{1} \beta \iota_{7}\right)^{n^{\prime}}=\left(1 \wedge \eta_{2}\right)^{*}\left(c \zeta \otimes \iota_{12}^{n^{\prime}}\right)
$$

hence $\left((\Omega g) \tilde{\tau}\left(1 \wedge p_{2}\right)\right)^{*} \iota_{6 n-1}=0$. Thus $(\Omega g) \tilde{\tau}\left(1 \wedge p_{2}\right) \sim *$. Therefore we can apply Proposition 4.1 to get two maps
$\alpha_{2}: \Sigma \wedge F_{1} \longrightarrow E_{2}$ with $r_{2} \alpha_{2}=j_{0} \tau\left(1 \wedge p_{1}\right) \quad$ and $\quad \tilde{\alpha}_{2}: \Sigma \wedge K_{3} \longrightarrow \Omega^{2} K^{\prime}$
with $\tilde{\alpha}_{2}\left(1 \wedge p_{1}\right) \sim \varphi \alpha_{2}$, because ψ in Proposition 4.1 for the above diagram is equal to φ by a suitable homotopy $\Omega(g h) \sim *$ (see the proof of Proposition 2.1).

Now we have the first homotopy for α_{2} using Lemma 5.7; and the second one because $p_{1}^{*}=0$ in dimension $\neq 3$ by Lemma 5.7, $\Omega^{2} K^{\prime}=K(Z / 3,6 n-2)$ and $6 n-2 \neq 2 n+2$.
q.e.d.

Proof of Proposition 3.4. By Lemma 5.2, we see that

$$
d\left((\Omega h) s_{1}\right) \sim(\Omega h) d\left(s_{1}\right) \sim(\Omega h) j_{0} d_{0}=\Omega\left(h j_{f}\right) d_{0} \sim *,
$$

because Ωh and $\Omega\left(h j_{f}\right)$ are given by some mod 3 Steenrod operations of positive degree which are trivial on $H^{*}(S \wedge S ; Z / 3)$. Therefore $(\Omega h) s_{1}: S \rightarrow \Omega K_{1}=$ $\prod_{i=-1}^{e-1} K\left(Z / 3, m_{i}-1\right)$ is an H-map. Thus for any $t=m_{i}-1,\left((\Omega h) s_{1}\right)^{*} \iota_{t}$ is primitive, and so it is 0 by dimensional reason. Hence $(\Omega h) s_{1} \sim *$, and we have a lift

$$
s: S \longrightarrow E_{2}=E_{\Omega h} \text { with } r_{2} s=s_{1} \text {, i.e., } r_{1} r_{2} s \sim s_{0} \text { and } s^{*} u=\xi_{1} .
$$

Now we consider the maps

$$
\begin{equation*}
S \wedge S \xrightarrow{\delta_{1}} Y=\left(\Sigma \wedge F_{1}\right)^{b} \xrightarrow{\delta_{2}} E_{2}=E_{\Omega h} \quad\left(\Sigma=S_{(3)}^{2 n-1}\right) \tag{5.9}
\end{equation*}
$$

given by $\delta_{1}=\left(\prod_{i=1}^{b}\left(\psi_{i} \wedge \tilde{\sigma}_{i}\right)\right) \Delta$ and $\delta_{2}=\alpha_{2} \cdots \cdot \alpha_{2}(b$ times $)$, where $\psi_{i}, \tilde{\sigma}_{i}$ and α_{2} are the maps in (5.4) and Lemmas 5.7-8. Then

$$
\begin{aligned}
r_{2} \delta_{2} \delta_{1} & =r_{2}\left(\alpha_{2}\left(\psi_{1} \wedge \tilde{\sigma}_{1}\right) \cdots \cdots \alpha_{2}\left(\psi_{b} \wedge \tilde{\sigma}_{b}\right)\right) \\
& \sim j_{0}\left(\tau\left(\psi_{1} \wedge \sigma_{1}\right) \cdots \cdots \tau\left(\psi_{b} \wedge \sigma_{b}\right)\right) \sim j_{0} d_{0} \sim d\left(s_{1}\right) \sim r_{2} d(s)
\end{aligned}
$$

by Lemmas 5.8, 5.6 and 5.2, since $r_{2}=\Omega r_{h}$ and $j_{0}=\Omega j_{f}$ are H-maps. Thus

$$
\begin{equation*}
j_{1} d+\delta_{2} \delta_{1} \sim d(s): S \wedge S \longrightarrow E_{2} \text { for some } d: S \wedge S \longrightarrow \Omega^{2} K_{1} \tag{5.10}
\end{equation*}
$$

Here, by dimensional reason, we see that

$$
\begin{equation*}
d^{*} c_{t-1} \in D H^{*} \otimes \tilde{H}^{*}+\tilde{H}^{*} \otimes D H^{*} \text { for any } t=m_{i}-1 \tag{5.11}
\end{equation*}
$$

where $H^{*}=H^{*}(S ; Z / 3)$, and $D H^{*}$ is the decomposable module of H^{*}. Consider the maps

$$
S \xrightarrow{\gamma_{1}} S^{\prime}=\prod_{i=2}^{a+b} S_{(3)}^{n_{i}} \xrightarrow{\gamma_{2}} \tilde{K}=\prod_{i=2}^{a+b} K\left(Z / 3, n_{i}\right),
$$

where γ_{1} is the projection and $\gamma_{2}^{*}{c_{n}}_{i}=\xi_{i}$ (in Lemma 3.2). Then we see that

$$
\begin{align*}
& \operatorname{Im}\left[\gamma^{*}: \tilde{H}^{*}(\tilde{K} \wedge S ; Z / 3) \rightarrow \tilde{H}^{*}\right]=D H^{*} \tag{5.12}\\
& \\
& \quad \text { for } \gamma=\left(\gamma_{2} \gamma_{1} \wedge 1\right) \Delta: S \longrightarrow \tilde{K} \wedge S
\end{align*}
$$

Thus by (5.10-12), there are two maps

$$
\begin{align*}
d_{1} & : \tilde{K} \wedge S \wedge S \longrightarrow \Omega^{2} K_{1} \quad \text { and } \quad d_{2}: S \wedge \tilde{K} \wedge S \longrightarrow \Omega^{2} K_{1} \quad \text { with } \tag{5.13}\\
d & \sim d_{1}(\gamma \wedge 1)+d_{2}(1 \wedge \gamma): S \wedge S \longrightarrow \Omega^{2} K_{1} .
\end{align*}
$$

Furthermore, by putting $e(i)=1$ for $i>a$, define

$$
f_{i}: K\left(Z / 3, n_{i}\right) \longrightarrow \tilde{K}_{i}=K\left(Z / 3, n_{i}+1\right) \times \prod_{j=0}^{e(i)-1} K\left(Z / 3, n_{i}+4 \cdot 3^{j}\right)
$$

by $f_{i}^{*} \iota_{t}=\beta c_{n_{i}}$ for $t=n_{i}+1$ and $f_{i}^{*} c_{t}=\mathscr{P}^{(j)} c_{n_{i}}$ for $t=n_{i}+4 \cdot 3^{j}$; and consider the homotopy fiber

$$
\tilde{r}: \tilde{E} \longrightarrow \tilde{K} \quad \text { of } \quad \prod_{i=2}^{a+b} f_{i}: \tilde{K} \longrightarrow \prod_{i=2}^{a+b} \tilde{K}_{i} .
$$

Then

$$
\begin{equation*}
\pi_{t}(\tilde{E})=0 \text { for } t \geq n_{1}+4 \cdot 3^{e-1}=10 \cdot 3^{e-1} \quad\left(n_{1}=2 n-1, n=3^{e}\right) . \tag{5.14}
\end{equation*}
$$

Furthermore $\left(\prod_{i} f_{i}\right) \gamma_{2} \sim *$ since $\gamma_{2}^{*}\left(\prod_{i} f_{i}\right)^{*} \iota_{t}=0$ for any t, and so we see that

$$
\begin{equation*}
\gamma_{2}=\tilde{\gamma} \tilde{\gamma}_{2} \text { for some } \tilde{\gamma}_{2}: S^{\prime} \longrightarrow \tilde{E} . \tag{5.15}
\end{equation*}
$$

Moreover the mod 3 Steenrod algebra \mathscr{A} acts trivially on $\operatorname{Im}\left[\tilde{r}^{*}: H^{*}(\tilde{K} ; \boldsymbol{Z} / 3) \rightarrow\right.$ $\left.H^{*}(\tilde{E} ; \boldsymbol{Z} / 3)\right]$ by definition, and $\varphi j_{1}=\Omega^{2} g$. Thus

$$
\begin{equation*}
\varphi \dot{j}_{1} d_{1}(\tilde{r} \wedge 1 \wedge 1) \sim * \quad \text { and } \quad \varphi j_{1} d_{2}(1 \wedge \tilde{r} \wedge 1) \sim * . \tag{5.16}
\end{equation*}
$$

On the other hand, $\rho: \tilde{S} \rightarrow S$ is defined by

$$
\rho=\rho(4 n-3)=1 \times \rho^{\prime}(4 n-3): \tilde{S}=\Sigma \times S^{\prime}(4 n-3) \longrightarrow S=\Sigma \times S^{\prime},
$$

and $S^{\prime}(4 n-3)$ is $(4 n-3)$-connected. Therefore,

$$
\tilde{\gamma}_{2} \gamma_{1} \rho=\tilde{\gamma}_{2} \rho^{\prime}(4 n-3) \mathrm{pr}_{2}: \tilde{S} \longrightarrow S^{\prime}(4 n-3) \longrightarrow S^{\prime} \longrightarrow \tilde{E}
$$

is homotopic to $*$ by (5.14) and $4 n-3 \geq 10 \cdot 3^{e-1}$. Thus

$$
\begin{equation*}
(\tilde{r} \wedge 1) \tilde{\gamma}=\gamma \quad \text { and } \quad \tilde{\gamma} \rho \sim * \quad \text { for } \quad \tilde{\gamma}=\left(\tilde{\gamma}_{2} \gamma_{1} \wedge 1\right) \Delta: S \longrightarrow \tilde{E} \wedge S \tag{5.17}
\end{equation*}
$$

Now using $Y, \delta_{1}, \delta_{2}$ in (5.9) and the above maps, we define

$$
S \wedge S \xrightarrow{\lambda_{1}} X=(\tilde{E} \wedge S \wedge S) \times(S \wedge \tilde{E} \wedge S) \times Y \xrightarrow{\lambda_{2}} E_{2}=E_{\Omega h}
$$

by $\lambda_{1}=\left((\tilde{\gamma} \wedge 1) \times(1 \wedge \tilde{\gamma}) \times \delta_{1}\right) \Delta$ and $\lambda_{2}=j_{1} d_{1}(\tilde{r} \wedge 1 \wedge 1) \operatorname{pr}_{1}+j_{1} d_{2}(1 \wedge \tilde{r} \wedge 1) \mathrm{pr}_{2}+$ $\delta_{2} \mathrm{pr}_{3}$. Then, noticing that j_{1} and φ are H-maps, we see that $d(s) \sim \lambda_{2} \lambda_{1}$ by (5.10), (5.13) and (5.17), and $\varphi \lambda_{2} \sim \varphi \delta_{2} \operatorname{pr}_{3} \sim\left(\varphi \alpha_{2} \cdots \varphi \alpha_{2}\right) \mathrm{pr}_{3} \sim *$ by (5.16) and

Lemma 5.8. Moreover, $\pi_{t}\left(F_{1}\right)=0$ for $t \geq 11$ by Lemma 5.7, and $\tilde{S}=\Sigma \times S^{\prime}(4 n-3)$ is $(2 n-2)$-connected. Thus $\tilde{\sigma}_{i} \rho \sim *: \tilde{S} \rightarrow F_{1}$ because $2 n-2=2 \cdot 3^{e}-2 \geq 11$ by the assumption $e \geq 2$. Therefore

$$
\lambda_{1}(\rho \wedge \rho)=\left((\tilde{\gamma} \rho \wedge \rho) \times(\rho \wedge \tilde{\gamma} \rho) \times \delta_{1}(\rho \wedge \rho)\right) \Delta \sim\left(\prod_{i=1}^{b}\left(\psi_{i} \rho \wedge \tilde{\sigma}_{i} \rho\right)\right) \Delta \sim *
$$

by (5.17) and (5.9). This completes the proof of Proposition 3.4. q.e.d.

References

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
[2] J. F. Adams, The sphere, considered as an H-space $\bmod p$, Quart. J. Math. Oxford (2) 12 (1961), 52-60.
[3] A. Borel, Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Math. 36 (1967), Springer, Berlin.
[4] D. L. Goncalves, Mod 2 homotopy-associative H-spaces, Geometric Application of Homotopy Theory I, Lecture Notes in Math. 657 (1978), Springer, Berlin, 198-216.
[5] Y. Hemmi, Homotopy associative H-spaces and 3-regularities, Mem. Fac. Sci. Kochi Univ. (Math.) 7 (1986), 17-31.
[6] Y. Hemmi, Certain 3-regular homotopy associative H-spaces, Mem. Fac. Sci. Kochi Univ. (Math.) 8 (1987), 5-8.
[7] A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962).
[8] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
[9] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294.
[10] N. Shimada and T. Yamanoshita, On triviality of the mod p Hopf invariant, Japan. J. Math. 31 (1961), 1-25.
[11] J. D. Stasheff, Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292, 293-312.
[12] A. Zabrodsky, Secondary cohomology operations in the module of indecomposables, Proceedings of the Advances Study on Algebraic Topology III (1970), Aarhus Univ., 657-672.
[13] A. Zabrodsky, Hopf Spaces, North-Holland Mathematics Studies 22 (1976), Notas de Matemática (59).
[14] A. Zabrodsky, Some relations in the mod 3 cohomology of H-spaces, Israel J. Math. 33 (1979), 59-72.

Department of Mathematics,
Faculty of Science, Kochi University

