Mod 3 homotopy associative *H*-spaces which are products of spheres

Dedicated to Professor Hirosi Toda on his 60th birthday

Yutaka HEMMI (Received August 14, 1987)

§1. Introduction

For a prime p, a space X is called a mod p (homotopy associative) H-space if its localization $X_{(p)}$ at p is a (homotopy associative) H-space.

Consider the product space S of odd spheres:

(*)
$$S = S^{n_1} \times \cdots \times S^{n_a} \times (S^3)^b \times (S^1)^c$$
 $(n_i: \text{ odd integers } \geq 5).$

Then S is a mod p H-space for any $p \ge 3$, and so is S for p=2 if and only if each n_i is 7, by Adams [1, 2]. Moreover S is a mod p homotopy associative H-space for any $p \ge 5$ by [2], and so is S for p=2 if and only if a=0 by Goncalves [4; Th. 1]. In case of p=3, the special unitary group SU(3) is 3-equivalent to $S^5 \times S^3$ by Serre [9; Prop. 7]; hence we have the following typical example:

(1.1) $(S^5)^a \times (S^3)^b \times (S^1)^c$ for $a \le b$ is a mod 3 loop space.

Now the main result of this paper is stated as follows:

THEOREM 1.2. S in (*) is a mod 3 homotopy associative H-space if and only if each n_i is 5 and $a \le b$, i.e., S is a mod 3 loop space in (1.1).

We sketch here the proof of the theorem, which is based on the methods of Zabrodsky [14], and is done by continuing to the preceding studies in [5, 6]. We assume that the localization $S_{(3)}$ of S in (*) is a homotopy associative H-space. In the mod 3 Steenrod algebra, we have a decomposition

 $\mathscr{P}^n = \sum_{i=0}^t \mathscr{P}^{3i} \alpha_i$ when $n_i = 2n + 1$, $n = 3^t s$, $3 \not\downarrow s$ and $s \ge 2$,

where \mathscr{P}^m is the mod 3 reduced power operation. This decomposition associates an unstable secondary operation φ in the diagram

$$E_{h} \xrightarrow{\varphi} K(\mathbb{Z}/3, 6n-2)$$

$$\downarrow^{r_{h}}$$

$$S_{(3)} \xrightarrow{\xi} K(\mathbb{Z}/3, 2n-1) \xrightarrow{h} \prod_{j=0}^{r} K(\mathbb{Z}/3, 6n-1-4\cdot3^{j}).$$

Here $h = \prod_{j=0}^{t} \alpha_j$, r_h is the homotopy fiber of h, ξ is an *H*-map corresponding to the factor $S_{(3)}^{n_1}$, $\tilde{\xi}$ is a lift of ξ , and $\varphi \tilde{\xi}$ is shown to be an *H*-map. Now, by [13; 2.5.1], we have the obstruction $\theta(\varphi \tilde{\xi})$ for $\varphi \tilde{\xi}$ to preserve the homotopies of homotopy associativity (i.e., to be an A_3 -map); and we can lead a contradiction by calculating $\theta(\varphi \tilde{\xi})$ in two different ways. By this way, we have proved that

(1.3) [5; Th. A]
$$n_i = 2 \cdot 3^{e(i)} - 1$$
 ($e(i) \ge 1$) for each *i*.

On the other hand, by considering the projective 3-space of $S_{(3)}$ and by studying the Hubbuck operations S^q and Q^q on certain quotient algebra of its cohomology with coefficient in $Z_{(3)}$, we have also proved that

(1.4) [6]
$$a \leq b$$
 holds if each n_i is 5.

Therefore we shall prove Theorem 1.2 by showing the following

(1.5) If
$$e = e(i) = \max \{e(j)\} \ge 2$$
 in (1.3), then we have a contradiction

In this case, for $n = 3^e$, we have the diagram

$$E_{h} \xrightarrow{\varphi} K(\mathbb{Z}/3, 6n-2)$$

$$\downarrow^{r_{h}}$$

$$E_{f} \xrightarrow{h} K(\mathbb{Z}/3, 6n-2) \times \prod_{j=0}^{e-1} K(\mathbb{Z}/3, 6n-1-4\cdot3^{j})$$

$$\downarrow^{r_{f}}$$

$$S_{(3)} \xrightarrow{\xi} K(\mathbb{Z}/3, 2n-1) \xrightarrow{f} K(\mathbb{Z}/3, 2n) \times \prod_{j=0}^{e-1} K(\mathbb{Z}/3, 2n-1+4\cdot3^{j})$$

instead of the above one. Here $f = \beta \times \prod_{j=0}^{r-1} \mathcal{P}^{3^j}$ with the Bockstein operation β , and *h* is the secondary operation due to Shimada-Yamanoshita [10] or Liulevicius [7], which associates an unstable tertiary operation φ (see Proposition 2.4). Moreover ξ is a suitable lift of ξ given in Proposition 3.4, which assures that $\varphi \xi$ is an *H*-map and $\theta(\varphi \xi)$ is calculated in two ways to show (1.5). Now we prepare in §4 the ladder Toda bracket due to Zabrodsky [12], and prove Proposition 3.4 in §5.

The author wishes to thank Professor M. Sugawara for his critical reading of the manuscript and useful suggestions.

§2. Unstable tertiary operation

In this paper, we assume that spaces have base points * which are nondegenerate, and that (continuous) maps preserve them, unless otherwise stated.

For any space X, we use the Moore path (or loop) spaces

$$PX = \{(w, r) | r \in [0, \infty) \text{ and } w : [0, \infty) \to X \text{ with } w(t) = w(r) \ (t \ge r)\},\$$

$$LX = \{(w, r) \in PX | w(0) = *\}, \quad \Lambda X = \{(w, r) \in PX | w(0) = w(r)\}, \text{ and }\$$

$$\Omega X = \{(w, r) \in PX | w(0) = w(r) = *\}. \quad (w \text{ in } PX \text{ is non-based.})$$

We define the maps $c: X \rightarrow PX$ and $e_t: PX \rightarrow X \ (0 \le t \le \infty)$ by

 $c(x) = (\text{the constant map to } x, 0) \text{ and } e_t(w, r) = w(\min\{t, r\}),$

and take *=c* as the non-degenerate base point for $\mathscr{L}X$ ($\mathscr{L}=P, L, \Lambda$ or Ω). Moreover we define

 $\mathscr{L}f:\mathscr{L}X\longrightarrow\mathscr{L}Y$ for a map $f:X\longrightarrow Y$ by $(\mathscr{L}f)(w,r)=(fw,r)$.

In *PX*, we define the path-multiplication $(w, r_1 + r_2) = (w_1, r_1) + (w_2, r_2)$ of $(w_i, r_i) \in PX$ with $e_{\infty}w_1 = e_0w_2$ by $w(t) = w_1(t)$ for $t \le r_1$, $= w_2(t-r_1)$ for $t \ge r_1$; and the inverse path $(w', r_1) = -(w_1, r_1)$ by $w'(t) = w_1(\max\{r_1 - t, 0\})$.

We define a homotopy to be a map $H: X \rightarrow PY$ (with $H^* = *$) denoted by

$$H: X \longrightarrow PY; f_0 \sim f_{\infty}, \text{ for } f_t = e_t H: X \longrightarrow Y \quad (t=0, \infty);$$

and then we denote also by $f_0 \sim f_\infty \colon X \to Y$ or $f_0 x \sim f_\infty x$ ($x \in X$). We note that this is the same as the usual homotopy preserving base points since they are non-degenerate. In case of

 $H: X \longrightarrow P^2Y = P(PY)$ with $(Pe_t)H = c(e_t^2H)$ $(t=0, \infty)$,

we call H a homotopy between homotopies e_0H and $e_{\infty}H$ fixing the end points.

For any spaces X and Y, we have the natural homotopy equivalence

$$\varepsilon: \mathscr{L}X \times \mathscr{L}Y \simeq \mathscr{L}(X \times Y) \quad (\mathscr{L} = P, L, \Lambda \text{ or } \Omega)$$

given by $\varepsilon((w, r), (v, s)) = ((w \times v)\Delta, \max\{r, s\}) (\Delta: \text{the diagonal map}).$

Now we define H-spaces and the related notions (cf. [13; Ch. I-II]). An H-space is a pair (X, μ) of a space X and a map $\mu: X \times X \to X$ with $\mu | X \vee X = V$ (the folding map). μ is called an H-structure or a multiplication for X. We also call X an H-space simply if μ is specified, and denote $\mu(x, y)$ by $x \cdot y$. If (X_i, μ_i) are H-spaces, then so are $(\mathscr{L}X_1, (\mathscr{L}\mu_1)\varepsilon)$ and $(X_1 \times X_2, (\mu_1 \times \mu_2)(1 \times T \times 1))$ (1: the identity map, T: the twisting map).

A homotopy associative H-space, or an HA-space, is a triple (X, μ, α) of an H-space (X, μ) and a homotopy $\alpha: X \times X \times X \to PX$; $\mu(\mu \times 1) \sim \mu(1 \times \mu)$ with $\alpha(*, x, y) = \alpha(x, *, y) = \alpha(x, y, *) = c\mu(x, y)$. α is called an HA-structure for X. We also call X or (X, μ) an HA-space simply if (μ, α) or α is specified. In particular, if $\mu(\mu \times 1) = \mu(1 \times \mu)$ and $\alpha = c\mu(\mu \times 1)$ hold, then (X, μ, α) (or X, (X, μ)) is called an associative H-space. If X_i are associative H-spaces, then so are $\mathscr{L}X_1$ and $X_1 \times X_2$.

An *H*-map between *H*-spaces (X_i, μ_i) (i=1, 2) is a pair (f, F) of a map $f: X_1 \rightarrow X_2$ and a homotopy $F: X_1 \times X_1 \rightarrow PX_2; \mu_2(f \times f) \sim f\mu_1$ with $F | X_1 \vee X_1 = cf \nabla$. $F = F_f$ is called an *H*-structure for f. We call f an *H*-map if F_f is specified. For *H*-maps $(f_i, F_i): (X_i, \mu_i) \rightarrow (X_{i+1}, \mu_{i+1})$ (i=1, 2), the composition $(f_2, F_2) \cdot (f_1, F_1) = (f_2 f_1, F): (X_1, \mu_1) \rightarrow (X_3, \mu_3)$ is an *H*-map with the composed *H*-structure $F = F_2(f_1 \times f_1) + (Pf_2)F_1: X_1 \times X_1 \rightarrow PX_3$.

An *HA*-map between *HA*-spaces (X_i, μ_i, α_i) (i=1, 2) is a triple (f, F, A) of an *H*-map (f, F): $(X_1, \mu_1) \rightarrow (X_2, \mu_2)$ and a homotopy

$$A: X_1 \times X_1 \times X_1 \longrightarrow P^2 X_2; \quad \alpha_2(f \times f \times f) \sim (Pf)\alpha_1$$

with $(Pe_0)A = (P\mu_2)(F \times cf) + F(\mu_1 \times 1)$, $(Pe_\infty)A = (P\mu_2)(cf \times F) + F(1 \times \mu_1)$ and A(*, x, y) = A(x, *, y) = A(x, y, *) = (PF)(cx, cy). A is called an *HA-structure* for (f, F). In particular, if (X_i, μ_i, α_i) are associative *H*-spaces and $\mu_2(f \times f) = f\mu_1$, $F = cf\mu_1$, $\alpha_2(f \times f \times f) = (Pf)\alpha_1$ and $A = c(Pf)\alpha_1$ hold, then (f, F, A) (or f, (f, F)) is called a *homomorphism*.

Note that the loop space ΩY of Y is an associative H-space by the pathmultiplication, and $\Omega f: \Omega Y_1 \rightarrow \Omega Y_2$ of a map $f: Y_1 \rightarrow Y_2$ is a homomorphism.

Let (X_i, μ_i) (i=1, 2) be *H*-spaces. Then for any map $f: X_1 \rightarrow X_2$, we have

 $d(f): X_1 \wedge X_1 \longrightarrow X_2$ with $\mu_2(d(f) \operatorname{pr} \times f\mu_1) \Delta \sim \mu_2(f \times f)$

(pr: $X \times \cdots \times X \to X \wedge \cdots \wedge X$ is the projection). d(f) is called the *H*-deviation of f, because f is an *H*-map if and only if $d(f) \sim *$.

Moreover, let (X_i, μ_i, α_i) (i=1, 2) be *HA*-spaces and $(f, F): (X_1, \mu_1) \rightarrow (X_2, \mu_2)$ be an *H*-map. Then we have the map $\hat{\theta}: X_1 \times X_1 \times X_1 \rightarrow AX_2$ defined by

$$\tilde{\theta}(x, y, z) = \alpha_2(fx, fy, fz) + cfx \cdot F(y, z) + F(x, \mu_1(y, z)) - (Pf)\alpha_1(x, y, z) - F(\mu_1(x, y), z) - F(x, y) \cdot cfz \quad (\cdot \text{ is induced from } \mu_2).$$

Since $\tilde{\theta}(*, x, y) = \tilde{\theta}(x, *, y) = \tilde{\theta}(x, y, *) = F(x, y) - F(x, y) \sim *$, we get a map, which is unique up to homotopy,

$$\theta = \theta(f, F): X_1 \wedge X_1 \wedge X_1 \longrightarrow \Omega X_2$$
 (due to Zabrodsky [13; 2.5])

such that $\tilde{\theta} \sim \theta' \colon X_1 \times X_1 \times X_1 \to \Lambda X_2$ fixing the end points, where $\theta'(x, y, z) = \theta(x, y, z) \cdot ((fx \cdot fy) \cdot fz)$. We call $\theta = \theta(f, F)$ the *HA*-deviation of an *H*-map (f, F), because (f, F) has an *HA*-structure if and only if $\theta \sim *$ by definition. We denote $\theta(f, F)$ by $\theta(f)$ when F is specified.

We note that $\theta(f_0, F_0) \sim \theta(f_{\infty}, F_{\infty})$ for two *H*-maps $(f_i, F_i): (X_1, \mu_1) \rightarrow (X_2, \mu_2)$, if they are homotopic as *H*-maps, i.e., if there are homotopies

$$H: X_1 \longrightarrow PX_2; f_0 \sim f_{\infty} \text{ and } G: X_1 \times X_1 \longrightarrow P^2X_2; F_0 \sim F_{\infty}$$

with $(Pe_0)G = (P\mu_2)(H \times H)$, $(Pe_{\infty})G = H\mu_1$, and $G \mid X_1 \vee X_1 = cH\mathcal{V}$. Moreover, we note that $\theta(\Omega g) \sim *$ for any map $g \colon Y_1 \to Y_2$.

Now, for a given map $h: X \rightarrow Y$, let

$$\Omega Y \xrightarrow{j_h} E_h = \{(x, l) \in X \times LY | hx = e_{\infty}l\} \xrightarrow{r_h} X \xrightarrow{h} Y$$

denote the fiber sequence given by $r_h(x, l) = x$ and $j_h(l) = (*, l)$, i.e., r_h is the homotopy fiber of h and j_h is the fiber of r_h . Then for the fiber sequence

$$\Omega^{2}Y \xrightarrow{f_{a_{h}}} E_{\Omega h} = \{(x', l') \in \Omega X \times L\Omega Y | (\Omega h) x' = e_{\alpha} l'\} \xrightarrow{r_{a_{h}}} \Omega X \xrightarrow{\Omega h} \Omega Y$$

we see that $E_{\Omega h}$ is an associative H-space with the multiplication induced from the ones of ΩX and ΩY , and $j_{\Omega h}$ and $r_{\Omega h}$ are homomorphisms. Also we note that there is a natural homotopy equivalence $\varepsilon: E_{\Omega h} \simeq \Omega E_h$ with $(\Omega r_h) \varepsilon \sim r_{\Omega h}$.

Moreover, let $c_t \in H^t(K(\mathbb{Z}/3, t); \mathbb{Z}/3)$ be the fundamental class, and let $\sigma: H^t(X; \mathbb{Z}/3) \to H^{t-1}(\Omega X; \mathbb{Z}/3)$ be the cohomology suspension. Then:

PROPOSITION 2.1. For given $a \in H^{2n}(X; \mathbb{Z}/3)$ and maps

$$X \xrightarrow{h} Y \xrightarrow{g} K(\mathbb{Z}/3, 6n)$$
 with $(gh)^* c_{6n} = a^3$,

there is an H-map $\varphi: E_{\Omega h} \rightarrow \Omega^2 K(\mathbb{Z}/3, 6n)$ with $\varphi j_{\Omega h} = \Omega^2 g$ and

 $\theta(\varphi)^* \iota_{6n-3} = \pm b \otimes b \otimes b \qquad for \quad b = r^*_{\Omega h} \sigma a \in H^{2n-1}(E_{\Omega h}; \mathbb{Z}/3),$

where $\theta(\varphi)$: $E_{\Omega h} \wedge E_{\Omega h} \wedge E_{\Omega h} \rightarrow K(\mathbb{Z}/3, 6n-3)$ is the HA-deviation of φ .

PROOF. Consider $K = K(\mathbb{Z}/3, 2n)$, $K' = K(\mathbb{Z}/3, 6n)$ and the maps

$$X \xrightarrow{f} K \xrightarrow{k} K'$$
 with $f^* \iota_{2n} = a$ and $k^* \iota_{6n} = \iota_{2n}^3 = \mathscr{P}^n \iota_{2n}$.

Then $(gh)^*\iota_{6n} = (kf)^*\iota_{6n}$; hence we can take k and f to satisfy kf = gh. Thus we have the commutative diagram

$$(*) \qquad \qquad \begin{array}{c} \Omega^{2}Y \xrightarrow{j_{g_{h}}} E_{\Omega h} \xrightarrow{r_{g_{h}}} \Omega X \xrightarrow{\Omega h} \Omega Y \\ \downarrow^{\Omega^{2}g} \qquad \qquad \downarrow^{\tilde{f}} \qquad \qquad \downarrow^{\Omega f} \qquad \qquad \downarrow^{\Omega g} \\ \Omega^{2}K' \xrightarrow{j} E \xrightarrow{r} \Omega K \xrightarrow{\Omega k} \Omega K' \end{array}$$

 $(E = E_{\Omega k}, r = r_{\Omega k}, j = j_{\Omega k}, \tilde{f} = \Omega f \times L\Omega g | E_{\Omega h})$ of the fiber sequences, consisting of the associative *H*-spaces and the homomorphisms. Moreover we have a homotopy

$$\eta \colon \Omega K \longrightarrow L\Omega K'; * \sim \Omega k \quad (\Omega K = K(\mathbb{Z}/3, 2n-1), \ \Omega K' = K(\mathbb{Z}/3, 6n-1)),$$

since $(\Omega k)^* \iota_{6n-1} = \mathscr{P}^n \iota_{2n-1} = 0$. This defines $w: \Omega K \times \Omega K \to \Omega^2 K'$ by $w(x, y) = (\eta x) \cdot (\eta y) - \eta(x \cdot y)$, and $w': \Omega K \wedge \Omega K \to \Omega^2 K'$ with w' pr $\sim w$ since $w \mid K \lor K \sim *$. Now as is shown in the proof of Zabrodsky [14; 1.3], we can take η so that $w' \sim *$, i.e., there is a homotopy

 $(\eta x) \cdot (\eta y) \sim \eta(x \cdot y) (x, y \in \Omega K)$ fixing the end points.

Using these \tilde{f} and η , we define

$$\varphi = \psi \tilde{f} \colon E_{\Omega h} \longrightarrow E \longrightarrow \Omega^2 K' = K(\mathbb{Z}/3, 6n-2)$$

by $\psi(x, l) = l - \eta x$ for $(x, l) \in E \subset \Omega K \times L\Omega K'$. Then

$$\psi j = 1$$
 and $\varphi j_{\Omega h} = \psi \tilde{j}_{\Omega h} = \psi j \Omega^2 g = \Omega^2 g;$

and $\psi: E \to \Omega^2 K'$ is an *H*-map by the *H*-structure $F: E \times E \to P \Omega^2 K'$, where F((x, l), (y, m)) is given by

$$(l-\eta x)\cdot(m-\eta y)\sim l\cdot m-(\eta x)\cdot(\eta y)\sim l\cdot m-\eta(x\cdot y).$$

Hence $\varphi = \psi \tilde{f}$ is an *H*-map, and

(**)
$$\theta(\varphi) \sim \theta(\psi) (\tilde{f} \wedge \tilde{f} \wedge \tilde{f})$$
 (by [13; 2.5.2]).

Therefore the equality $\theta(\varphi)^* \iota_{6n-3} = \pm b \otimes b \otimes b$ follows from

(2.2)
$$\theta(\psi) \sim *: E \wedge E \wedge E \longrightarrow \Omega^3 K' = K(\mathbb{Z}/3, 6n-3).$$

In fact, by the lower fibration in (*), we see that $H^{6n-3}(E \wedge E \wedge E; \mathbb{Z}/3) \cong \mathbb{Z}/3$ with a generator $c \otimes c \otimes c$ for $c = r^* \epsilon_{2n-1}$. Thus $\theta(\psi)^* \epsilon_{6n-3} = \pm c \otimes c \otimes c$ by (2.2), which implies the equality by (**) and $\tilde{f}^* c = r^*_{\Omega h}(\Omega f)^* \epsilon_{2n-1} = b$.

To prove (2.2), suppose contrarily that $\theta(\psi) \sim *$. Then the *H*-map $\psi: E \rightarrow \Omega^2 K'$ has an *HA*-structure, or is an A_3 -map in the sence of Stasheff [11; II, Def. 4.4]. Thus, by [11; II], we have a map

$$\psi_3: P_3E \longrightarrow B\Omega^2K' = \Omega B\Omega K' \simeq \Omega K' \text{ with } \psi \sim \overline{\psi}_3: E \longrightarrow \Omega \overline{\Omega} K' \subset \Omega^2 K'$$

for the projective t-space $P_t E$ $(t \ge 2)$ of the associative H-space $E = E_{\Omega k}$, where $\overline{\psi}_3$ is the adjoint of $\psi_3 \varepsilon_3 : \Sigma E \subset P_3 E \to \Omega K'$ for the usual loop space $\widetilde{\Omega} K'$ (which is homotopy equivalent to $\Omega K'$ by $\widetilde{\Omega} K' \subset \Omega K'$).

Now ψ_3 cna be extended to $\psi_t: P_t E \to \Omega K'$ for all t. In fact, the obstruction for ψ_t to be extended to ψ_{t+1} is in $H^{6n-1-t}(X_t; \mathbb{Z}/3)$ for $X_t = E \land \dots \land E$ (t+1 copies) by [11; II, 8], which is 0 for $t \ge 3$ since E is (2n-2)-connected. Therefore we have a map

$$\psi_{\infty} = B\psi \colon P_{\infty}E = BE \longrightarrow \Omega K' \text{ with } \psi \sim \overline{\psi}_{\infty} \sim \Omega \psi_{\infty}.$$

Since $\psi j = 1$, this shows that $\psi_{\infty} Bj \sim 1$ for the fiber sequence

$$\Omega K' \xrightarrow{Bj} BE \xrightarrow{Br} B\Omega K \simeq K \xrightarrow{k} K' \simeq B\Omega K'$$

(up to homotopy equivalences) obtained from the lower one in (*). Thus $(Br \times \psi_{\infty})\Delta$: $BE \simeq K \times \Omega K'$, and we have a section s: $K \rightarrow BE$ with $(Br)s \sim 1$. So $k \sim k(Br)s \sim *$, which contradicts $k^* \iota_{6n} = \iota_{2n}^3 \neq 0$. Hence (2.2) is proved. q. e. d.

In the rest of this section, we construct a particular tertiary operation. Let $e \ge 1$ be a fixed integer, and consider the maps in the diagram

(2.3)
$$E_{f} \xrightarrow{h} K_{1} = \prod_{i=-1}^{e-2} K(\mathbb{Z}/3, m_{i}) \xrightarrow{g} K' = K(\mathbb{Z}/3, 6n)$$
$$\downarrow r_{f} K = K(\mathbb{Z}/3, 2n) \xrightarrow{f} K_{0} = \prod_{i=-1}^{e-1} K(\mathbb{Z}/3, l_{i})$$

for $n=3^e$, $l_{-1}=2n+1$, $l_i=2n+4\cdot 3^i$ $(i\geq 0)$ and $m_i=8n-l_i$, such that

$$f^*\iota_{l_i} = \mathcal{P}^{(i)}\iota_{2n}, \quad g^*\iota_{6n} = \sum_{i=-1}^{e-1} \mathcal{P}^{(i)}\iota_{m_i} \quad (\mathcal{P}^{(-1)} = \beta, \ \mathcal{P}^{(i)} = \mathcal{P}^{3^i} \ (i \ge 0))$$

and $h^* c_{m_i} = v_i$ for some classes $v_i \in H^{m_i}(E_f; \mathbb{Z}/3)$ with

$$r_f^* c_{2n}^3 = \mathscr{P}^n r_f^* c_{2n} = \sum_{i=-1}^{e-1} \mathscr{P}^{(i)} v_i$$

We note that the equalities for f^* and the definition of r_f imply

$$a = r_t^* c_{2n} \neq 0$$
, $\beta a = 0$ and $\mathcal{P}^t a = 0$ for $t < n$,

which assure the existence of such v_i by Shimada-Yamanoshita [10; Th. 5.1-2] or Liulevicius [7; Th. 4.5.1]; hence h exists. Then $(gh)^* c_{6n} = a^3$, and Proposition 2.1 implies the following

PROPOSITION 2.4. (i) $\pi_t(E_{\Omega h}) = 0$ for $t \ge 6n-2$. (ii) There is an H-map $\varphi: E_{\Omega h} \to \Omega^2 K'$ with $\varphi j_{\Omega h} = \Omega^2 g$ and $\theta(\varphi)^* \iota_{6n-3} = \pm u \otimes u \otimes u$ for $u = r^*_{\Omega h}(\Omega r_f)^* \iota_{2n-1} \in H^{2n-1}(E_{\Omega h}; \mathbb{Z}/3)$.

§3. Reduction of (1.5)

Note that if a connected space X is an HA-space, then so is its universal covering space, which has the homotopy type of Y when $X = Y \times (S^1)^c$ for a simply connected space Y. Then (1.5) follows from the following

PROPOSITION 3.1. For the localized sphere $S_{(3)}^n$ at 3, and integers $n_i=3$ ($i > a (\ge 1)$) and $n_i=2 \cdot 3^{e(i)}-1$ ($i \le a$) with $e(1) \ge e(2) \ge \cdots \ge e(a) \ge 1$, assume that $S = \prod_{i=0}^{a+b} S_{(3)}^{n_i}$ is an HA-space. Then e(1)=1. Hereafter, we study S under these assumptions.

LEMMA 3.2. (i) $H^*(S; \mathbb{Z}_{(3)}) \cong \Lambda(\xi_1, \dots, \xi_{a+b})$ and $H^*(S; \mathbb{Z}/3) \cong \Lambda(\xi_1, \dots, \xi_{a+b})$ by primitive elements ξ_i and ξ_i such that dim $\xi_i = \dim \xi_i = n_i$ and ξ_i is the mod 3 reduction of ξ_i .

(ii) Moreover, ξ_i can be chosen to be a generator of $H^{n_i}(S_{(3)}^{n_i}; \mathbf{Z}_{(3)})$ for any *i*.

PROOF. (i) is seen in the same way as Borel [3; Th. 4.1-2, Prop. 4.3].

(ii) If $x \in H^t(S; \mathbb{Z}_{(3)})$ (t: odd) is a monomial of generators $\zeta_i \in H^{n_i}(S_{(3)}^{n_i}; \mathbb{Z}_{(3)})$, i.e., $x = c\zeta_{i(1)} \cdots \zeta_{i(l)}$ $(1 \le i(1) < \cdots < i(l) \le a + b, c \in \mathbb{Z}_{(3)})$, then

 $\psi_x \colon S \xrightarrow{\mathrm{pr}} \prod_{j=1}^l S_{(3)}^{n_i(j)} \xrightarrow{\mathrm{pr}} \wedge_{j=1}^l S_{(3)}^{n_i(j)} = S_{(3)}^t \xrightarrow{c} S_{(3)}^t$

(c is the map of degree c) satisfies $\psi_x^* \zeta = x$ for a generator $\zeta \in H^i(S_{(3)}^t; \mathbb{Z}_{(3)})$. If $x = x_1 + \dots + x_m \in H^i(S; \mathbb{Z}_{(3)})$ with monomials x_j of ζ_i , then

$$\psi_x = \mu_m(\prod_{j=1}^m \psi_{x_j}) \Delta \colon S \longrightarrow (S)^m \longrightarrow (S^t_{(3)})^m \longrightarrow S^t_{(3)}$$

satisfies $\psi_x^* \zeta = x$, where $\mu_m = \mu(\mu_{m-1} \times 1)$ is the iterated multiplication of $\mu = \mu_2$ of the *H*-space $S_{(3)}^t$. Thus we see (ii) by taking $x = \xi_i$. q. e. d.

Let $\rho'(t): S'(t) \to \prod_{i=2}^{a+b} S_{(3)}^{n_i}$ be the *t*-connected fibration (i.e., S'(t) is *t*-connected and $\rho'(t)$ is a fibration inducing an isomorphism on π_n for n > t), and put

$$\rho(t) = 1 \times \rho'(t) \colon S(t) = S_{(3)}^{n_1} \times S'(t) \longrightarrow S = \prod_{i=1}^{a+b} S_{(3)}^{n_i}.$$

LEMMA 3.3. If $t \le 2n_1 - 1$, then S(t) is an HA-space and $\rho(t)$ is an HA-map.

PROOF. If $t < n_1$, then $\rho(t)$ is the *t*-connected fibration by definition. Thus the *HA*-structure for S can be lifted to that for S(t), and the lemma holds.

Suppose inductively that the lemma holds for t with $n_1 - 1 \le t < 2n_1 - 1$. Let $\psi': S'(t) \to K(\pi_{t+1}(S'(t)), t+1)$ be the map inducing an isomorphism on π_{t+1} . Then by the definition of $\rho'(t)$'s, the homotopy fiber of ψ' is $\rho': S'(t+1) \to S'(t)$ with $\rho'(t)\rho' = \rho'(t+1)$. Thus $\rho(t+1) = \rho(t)(1 \times \rho')$, and $1 \times \rho': S(t+1) \to S(t)$ is the homotopy fiber of

$$\psi = \psi' \operatorname{pr}_2: S(t) \longrightarrow S'(t) \longrightarrow K = K(\pi_{t+1}(S'(t)), t+1).$$

Therefore, if ψ is an HA-map, then the lemma holds for t+1 by [13; 2.5.3].

Now $d(\psi) \sim *: S(t) \land S(t) \rightarrow K$ for the *H*-deviation $d(\psi)$ since $n_1 - 1 \le t < 2n_1 - 1$ and $S(t) \land S(t)$ is $(2n_1 - 1)$ -connected. Hence ψ is an *H*-map. Moreover $\theta(\psi) \sim *: S(t) \land S(t) \land S(t) \rightarrow \Omega K$ for the *HA*-deviation $\theta(\psi)$ since $S(t) \land S(t) \land S(t)$ is $(3n_1 - 1)$ -connected. Thus ψ is an *HA*-map; and the lemma is proved by induction. q.e.d.

Now Proposition 3.1 follows from the following

PROPOSITION 3.4. For S in Proposition 3.1, consider

$$\xi_1 \in H^{2n-1}(S; \mathbb{Z}/3)$$
 $(n=3^e, e=e(1), n_1=2n-1)$

and the HA-map $\rho = \rho(4n-3)$: $\tilde{S} = S(4n-3) \rightarrow S$ given in Lemmas 3.2-3. Furthermore, consider $u \in H^{2n-1}(E_{\Omega h}; \mathbb{Z}/3)$ and the H-map

 $\varphi \colon E_{\Omega h} \longrightarrow \Omega^2 K' = K(\mathbb{Z}/3, \, 6n-2) \quad with \quad \theta(\varphi)^* \iota_{6n-3} = \pm \, u \otimes u \otimes u$

given in Proposition 2.4 (ii). If $e \ge 2$, then there are a space X and maps

$$S \wedge S \xrightarrow{\lambda_1} X \xrightarrow{\lambda_2} E_{\Omega h}$$
 and $s: S \longrightarrow E_{\Omega h}$

such that $\lambda_1(\rho \wedge \rho) \sim *$, $\varphi \lambda_2 \sim *$, $d(s) \sim \lambda_2 \lambda_1$ and $s^*u = \xi_1$.

COROLLARY 3.5. In Proposition 3.4, the compositions

$$\tilde{\varphi} = \varphi s \colon S \longrightarrow \Omega^2 K' \text{ and } \tilde{\rho} = s \rho \colon \tilde{S} \longrightarrow E_{\Omega h}$$

are H-maps so that the composed H-maps $\tilde{\varphi}\rho$, $\varphi\tilde{\rho}: \tilde{S} \rightarrow \Omega^2 K'$ are mutually homotopic as H-maps (hence $\theta(\tilde{\varphi}\rho) \sim \theta(\varphi\tilde{\rho})$ as is noted in §2).

PROOF OF PROPOSITION 3.1 FROM PROPOSITION 3.4 AND COROLLARY 3.5.

Suppose $e = e(1) \ge 2$. Then, by these results, the *HA*-deviation

$$\theta(\tilde{\varphi}): S \wedge S \wedge S \longrightarrow \Omega^3 K' = K(\mathbb{Z}/3, 6n-3)$$

of the *H*-map $\tilde{\varphi}$ is calculated as follows:

 $\theta(\rho) \sim *$ since ρ is an *HA*-map; and $\theta(\tilde{\rho}) \sim *: \tilde{S} \wedge \tilde{S} \to \Omega E_{\Omega h}$ by Proposition 2.4 (i) since \tilde{S} is (2n-2)-connected. Thus

$$\theta(\tilde{\varphi})(\rho \land \rho \land \rho) \sim \theta(\tilde{\varphi}\rho) \sim \theta(\varphi\tilde{\rho}) \sim \theta(\varphi)(\tilde{\rho} \land \tilde{\rho} \land \tilde{\rho})$$

by [13; 2.5.2]. Hence it follows from Proposition 3.4 that

$$\theta(\tilde{\varphi})^* \iota \equiv (s^* \otimes s^* \otimes s^*) \theta(\varphi)^* \iota \mod \operatorname{Ker}(\rho^* \otimes \rho^* \otimes \rho^*) \quad (\iota = \iota_{6n-3})$$
$$= \pm s^* u \otimes s^* u \otimes s^* u = \pm \xi_1 \otimes \xi_1 \otimes \xi_1.$$

Also by Lemma 3.2 (ii) and the definition of ρ , there is a homology class $t \in H_{2n-1}(S; \mathbb{Z}/3)$ with $\langle t, \xi_1 \rangle = 1$ and $\langle t, \text{Ker } \rho^* \rangle = 0$; hence

(3.6)
$$\langle t \otimes t \otimes t, \theta(\tilde{\varphi})^* t \rangle = \pm \langle t, \xi_1 \rangle^3 = \pm 1.$$

On the other hand, $\tilde{\varphi}^* \iota_{6n-2} \in H^{6n-2}(S; \mathbb{Z}/3)$ is primitive since $\tilde{\varphi}$ is an H-map; and $H^*(S; \mathbb{Z}/3)$ has no even dimensional primitive classes by Lemma 3.2 (i).

Hence $\tilde{\varphi}^* \iota_{6n-2} = 0$ and $\tilde{\varphi} \sim *$. This implies by Zabrodsky [14; 1.2.1] that

$$\theta(\tilde{\varphi})^* \iota = (1 \otimes \bar{\mu} - \bar{\mu} \otimes 1)z$$
 for some $z \in H^*(S \wedge S; \mathbb{Z}/3)$,

where $\bar{\mu}\alpha = \mu^*\alpha - 1 \otimes \alpha - \alpha \otimes 1$ for the multiplication of μ of S. Thus

(3.7)
$$\langle t \otimes t \otimes t, \theta(\tilde{\varphi})^* t \rangle = \langle t \otimes t \otimes t, (1 \otimes \bar{\mu} - \bar{\mu} \otimes 1) z \rangle$$
$$= \langle t \otimes t \otimes t, (1 \otimes \mu^* - \mu^* \otimes 1) z \rangle = \langle t \otimes t^2 - t^2 \otimes t, z \rangle$$

Here $t^2 = tt$ is the Pontrjagin product in $H_*(S; \mathbb{Z}/3)$ given by μ , which is commutative by Milnor-Moore [8; 4.20] since $H^*(S; \mathbb{Z}/3)$ is primitively generated by Lemma 3.2 (i). Therefore $t^2 = 0$ since dim t is odd; and the last in (3.7) is 0, which contradicts (3.6). q.e.d.

PROOF OF COROLLARY 3.5 FROM PROPOSITION 3.4. Let

$$v_1: \tilde{S} \wedge \tilde{S} \longrightarrow LX; * \sim \lambda_1(\rho \wedge \rho), \quad v_2: X \longrightarrow L\Omega^2 K'; * \sim \varphi \lambda_2 \quad \text{and}$$
$$\omega: S \wedge S \longrightarrow PE_{\Omega h}; d(s) \sim \lambda_2 \lambda_1$$

be homotopies given by Proposition 3.4. Then $\tilde{\varphi}$ is an *H*-map with the *H*-structure $F_{\tilde{\varphi}}: S \times S \rightarrow P\Omega^2 K'$ given by

$$F_{\bar{\varphi}}(x, y) = F_{\varphi}(sx, sy) + (P\varphi)(\zeta(sx, sy) + \omega(x, y) \cdot cs(x \cdot y))$$
$$- F_{\varphi}(\lambda_2 \lambda_1(x, y) \cdot s(x \cdot y)) - v_2 \lambda_1(x, y) \cdot c\varphi s(x \cdot y),$$

and so is $\tilde{\rho}$ with $F_{\tilde{\rho}}: \tilde{S} \times \tilde{S} \to PE_{\Omega h}$ given by

$$F_{\tilde{\rho}}(\tilde{x}, \tilde{y}) = \zeta(\rho \tilde{x}, \rho \tilde{y}) + (\omega(\rho \tilde{x}, \rho \tilde{y}) - (L\lambda_2)v_1(\tilde{x}, \tilde{y})) \cdot (Ps)F_{\rho}(\tilde{x}, \tilde{y}),$$

where $F_{\varphi}: E_{\Omega h} \times E_{\Omega h} \to P\Omega^2 K'$ and $F_{\rho}: \tilde{S} \times \tilde{S} \to PS$ are those of φ and ρ , and $\zeta: S \times S \to PE_{\Omega h}$ is a homotopy $sx \cdot sy \sim d(s)(x, y) \cdot s(x \cdot y)$.

Now the homotopy $(Lv_2)v_1: \tilde{S} \wedge \tilde{S} \rightarrow L^2 \Omega^2 K'$ gives us a homotopy

$$v_2\lambda_1(\rho \wedge \rho) \sim (L(\varphi\lambda_2))v_1$$
 fixing the end points.

Also the one $\tilde{S} \times \tilde{S} \to P^2 S$, defined by $(\tilde{x}, \tilde{y}) \to (PF_{\varphi})((L\lambda_2)v_1(\tilde{x}, \tilde{y}), cs(\rho \tilde{x} \cdot \rho \tilde{y}))$, gives us a homotopy

$$-F_{\varphi}(\lambda_{2}\lambda_{1}(\rho\tilde{x}, \rho\tilde{y}), s(\rho\tilde{x} \cdot \rho\tilde{y})) - (L(\varphi\lambda_{2}))v_{1}(\tilde{x}, \tilde{y}) \cdot c\varphi s(\rho\tilde{x} \cdot \rho\tilde{y})$$

$$\sim - (P\varphi)((L\lambda_{2})v_{1}(\tilde{x}, \tilde{y}) \cdot cs(\rho\tilde{x} \cdot \rho\tilde{y})) \text{ fixing the end points.}$$

By these homotopies, we can define the homotopy $F_{\tilde{\varphi}}(\rho \times \rho) + (P\tilde{\varphi})F_{\rho} \sim F_{\varphi}(\tilde{\rho} \times \tilde{\rho}) + (P\varphi)F_{\tilde{\rho}}$: $\tilde{S} \times \tilde{S} \rightarrow P\Omega^2 K'$ between the composed *H*-structures of $\tilde{\varphi}\rho$ and $\varphi\tilde{\rho}$, so that this and the stationary homotopy $H = c\tilde{\varphi}\rho$: $\tilde{S} \rightarrow P\Omega^2 K'$; $\tilde{\varphi}\rho = \varphi\tilde{\rho}$ show $\tilde{\varphi}\rho \sim \varphi\tilde{\rho}$ as *H*-maps. q. e. d.

Therefore we have proved that Proposition 3.4 implies Proposition 3.1, which implies (1.5) and Theorem 1.2.

§4. Ladder Toda Bracket

In this section we discuss a simple case of the ladder Toda bracket introduced by Zabrodsky [12].

Consider the following diagram of spaces and maps:

$$\begin{array}{cccc} Y \xrightarrow{g} Y_0 \xrightarrow{g_0} Y_1 \\ & & \downarrow h_0 & \downarrow h_1 \\ \Omega X_2 \xleftarrow{\psi} E \xrightarrow{r} X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2. \end{array}$$

Here f_0, f_1, g, g_0, h_0 and h_1 are given maps with

$$f_1 f_0 \sim *, g_0 g \sim *, h_1 g_0 \sim f_0 h_0$$
 and $f_1 h_1 \sim *,$

r is the homotopy fiber of f_0 , i.e., $E = E_{f_0} = \{(x, l) \in X_0 \times LX_1 | f_0 x = e_{\infty} l\}$ and r(x, l) = x, and ψ is the map defined by

 $\psi(x, l) = (Lf_1)l - vx$ by a fixing homotopy $v: X_0 \longrightarrow LX_2$; $* \sim f_1 f_0$.

Then we prove the following

PROPOSITION 4.1. There are maps $h: Y \rightarrow E$ and $h': Y_0 \rightarrow \Omega X_2$ with

 $rh = h_0 g$ and $h'g \sim \psi h$.

PROOF. By using homotopies $\eta: Y \rightarrow LY_1$; $* \sim g_0 g$, $\omega: Y_0 \rightarrow PX_1$; $h_1 g_0 \sim f_0 h_0$ and $\zeta: Y_1 \rightarrow LX_2$; $* \sim f_1 h_1$, we define h and h' by

$$h = \{h_0 g \times ((Lh_1)\eta + \omega g)\} \Delta \quad \text{and} \quad h' = \zeta g_0 + (Pf_1)\omega - \nu h_0.$$

Then $rh = h_0 g$. Moreover $L(f_1 h_1)\eta \sim \zeta g_0 g: Y \rightarrow LX_2$ fixing the end points by $(L\zeta)\eta: Y \rightarrow L^2 X_2$. Therefore

$$h'g = \zeta g_0 g + (Pf_1)\omega g - \nu h_0 g \sim L(f_1h_1)\eta + (Pf_1)\omega g - \nu h_0 g = \psi h. \quad q. e. d.$$

§5. Proof of Proposition 3.4

By the consturction given in §2, we have the diagram

$$\Omega^{2}K_{1} \xrightarrow{i_{1}=j_{\mathfrak{g}_{h}}} E_{2} = E_{\Omega h} \xrightarrow{\varphi} \Omega^{2}K' = K(\mathbb{Z}/3, 6n-2)$$

$$\downarrow r_{2}=r_{\mathfrak{g}_{h}}$$

$$(5.1) \qquad \Omega^{2}K_{0} \xrightarrow{j_{0}=\Omega j_{f}} E_{1} = \Omega E_{f} \xrightarrow{\Omega h} \Omega K_{1} = \prod_{i=-1}^{e-1} K(\mathbb{Z}/3, m_{i}-1) \xrightarrow{\Omega g} \Omega K'$$

$$\downarrow r_{1}=\Omega r_{f}$$

$$S \xrightarrow{S_{0}} \Omega K = K(\mathbb{Z}/3, 2n-1) \xrightarrow{\Omega f} \Omega K_{0} = \prod_{i=-1}^{e-1} K(\mathbb{Z}/3, l_{i}-1)$$

for f, g, h and φ in (2.3) and Proposition 2.4 (ii) and s_0 with $s_0^* \varepsilon_{2n-1} = \xi_1$ in Lemma 3.2.

Hereafter assume that $n = 3^e$ and $e = e(1) \ge 2$. Then:

LEMMA 5.2. s_0 is an H-map, and there are maps

$$s_1: S \longrightarrow E_1$$
 and $d_0: S \land S \longrightarrow \Omega^2 K_0 = \prod_{i=-1}^{e-1} K(\mathbb{Z}/3, l_i-2)$

such that $r_1s_1 \sim s_0$, $d(s_1) \sim j_0d_0$, $d_0^*t_1 = 0$ for $t = l_i - 2$ ($i \neq 0$), and

$$d_0^* \iota_{2n+2} \in PH^{2n-1}(S; \mathbb{Z}/3) \otimes PH^3(S; \mathbb{Z}/3) \quad (l_1 - 2 = 2n + 2),$$

where PH* denotes the primitive module of H*.

PROOF. s_0 is an *H*-map since ξ_1 is primitive; and we fix an *H*-structure *F*: $S \times S \rightarrow P\Omega K$ for s_0 .

The mod 3 Steenrod algebra \mathscr{A} acts on $H^*(S; \mathbb{Z}/3)$ trivially. Hence $s_0^*(\Omega f)^* \iota_t = 0$ for all t by the definition of f in (2.3). Thus $(\Omega f)s_0 \sim *$. By choosing a homotopy $v: S \rightarrow L\Omega K_0$; $* \sim (\Omega f)s_0$, we define

 $d: S \wedge S \longrightarrow \Omega^2 K_0$ by $d(x, y) \sim vx \cdot vy + (P\Omega f)F(x, y) - v(x \cdot y)$.

Then by [14; 1.2.1] and [13; 2.5.2], we see that

$$(1 \otimes \bar{\mu} - \bar{\mu} \otimes 1)d^* \iota_t = \theta((\Omega f)s_0)^* \iota_t = \theta(s_0)^* (\Omega^2 f)^* \iota_t = 0$$

for any t ($\bar{\mu}$ is the one in (3.7)). Thus $d^* c_t$ represents some element in $\Gamma = \operatorname{Ext}_{H_*}^{2i}(\mathbb{Z}/3, \mathbb{Z}/3)$ for $H_* = H_*(S; \mathbb{Z}/3)$. Here Γ is isomorphic to $\bigoplus \{\mathbb{Z}/3\}$ generated by $\xi_i \otimes \xi_j | 1 \le i \le j \le a+b \}$, since $H^* = H^*(S; \mathbb{Z}/3)$ is given in Lemma 3.2 (ii). Therefore, by dimensional reason, $d^* c_t = 0$ in Γ for $t \ne 2n+2$, and $d^* c_{2n+2}$ in Γ is represented by a class in $PH^{2n-1} \otimes PH^3$. Thus there are $a_t \in H^t$ for $t = l_i - 2$ ($-1 \le i < e$) such that

$$d^* c_t = \overline{\mu} a_t$$
 if $t \neq 2n + 2$, and $d^* c_t - \overline{\mu} a_t \in PH^{2n-1} \otimes PH^3$ if $t = 2n + 2$.

Now we take a map $\omega: S \to \Omega^2 K_0$ with $\omega^* \iota_t = a_t$, and define $d_0: S \land S \to \Omega^2 K_0$ by

$$d_0(x, y) \sim (\omega + v)x \cdot (\omega + v)y + (P\Omega f)F(x, y) - (\omega + v)(x \cdot y)$$

238

Then $d_0(x, y) \sim d(x, y) + \omega x \cdot \omega y - \omega(x \cdot y)$ since + is homotopy commutative in $\Omega^2 K_0$. Hence $d_0^* t_t = d^* t_t - \overline{\mu} \omega^* t_t$, and so d_0 satisfies the last conditions in the lemma by the definition of a_t and ω . Moreover, by using the natural homotopy equivalence $\varepsilon: E_{\Omega f} \rightarrow \Omega E_f$ (see §2), we put

$$s_1 = \varepsilon(s_0 \times (\omega + v))\Delta \colon S \longrightarrow E_{\Omega f} \longrightarrow \Omega E_f = E_1$$

Then $r_1 s_1 \sim s_0$ and we see that $d(s_1) \sim j_0 d_0$ (cf. [13; 2.2.1 (b)]).

The above lemma implies that

(5.3)
$$d_0^* \iota_{2n+2} = \sum_{i=1}^b \zeta_i \otimes \xi_{a+i}$$
 for some $\zeta_i \in PH^{2n-1}(S; \mathbb{Z}/3)$.

Therefore by the proof of Lemma 3.2 (ii), there are maps

(5.4)
$$\psi_i: S \longrightarrow \Sigma = S_{(3)}^{2n-1}$$
 with $\psi_i^* \zeta = \zeta_i$ for $1 \le i \le b$,

where $\zeta \in H^{2n-1}(\Sigma; \mathbb{Z}/3)$ is a generator. Consider the maps

(5.5)
$$\sigma_i: S \longrightarrow K(\mathbb{Z}_{(3)}, 3)$$
 with $\sigma_i^* \tilde{\iota}_3 = \tilde{\xi}_{a+i}$ for $1 \le i \le b$, and
 $\tau: \Sigma \land K(\mathbb{Z}_{(3)}, 3) \longrightarrow \Omega^2 K_0$ with $\tau^* \iota_t = 0$ $(t \ne 2n+2), \tau^* \iota_{2n+2} = \zeta \otimes \tilde{\iota}_3$,

for the fundamental class $\bar{\iota}_3$ and its mod 3 reduction $\tilde{\iota}_3$. Then Lemma 5.2 together with (5.3–5) implies the following

LEMMA 5.6.
$$d_0 \sim \tau(\psi_1 \wedge \sigma_1) \cdot \tau(\psi_2 \wedge \sigma_2) \cdots \tau(\psi_b \wedge \sigma_b)$$
.

Now we consider the special maps

$$K_3 = K(Z_{(3)}, 3) \xrightarrow{\eta_1} K_7 = K(Z/3, 7) \xrightarrow{\eta_2} K_{12} = K(Z/3, 12)$$

with $\eta_1^* \iota_7 = \mathscr{P}^1 \tilde{\iota}_3$ and $\eta_2^* \iota_{12} = \mathscr{P}^1 \beta \iota_7$. Then $(\eta_2 \eta_1)^* \iota_{12} = (\mathscr{P}^2 \beta + \beta \mathscr{P}^2) \tilde{\iota}_3 = 0$. Thus we have the maps

$$F_1 \xrightarrow{p_1} K_3 \xrightarrow{\eta} F_2 \xrightarrow{p_2} K_7$$
 with $p_2 \eta = \eta_1$

where p_2 is the homotopy fiber of η_2 and p_1 is that of η . Then:

LEMMA 5.7. $\pi_t(F_1) = 0$ for $t \ge 11$, $p_1^* \colon \tilde{H}^*(K_3; \mathbb{Z}/3) \to \tilde{H}^*(F_1; \mathbb{Z}/3)$ is 0 for $* \neq 3$, and there are maps $\tilde{\sigma}_i \colon S \to F_1$ with $p_1 \tilde{\sigma}_i \sim \sigma_i$ for σ_i in (5.5) $(1 \le i \le b)$.

PROOF. By definition, $\pi_t(F_2) = 0$ for $t \ge 12$, and $\pi_t(F_1) = 0$ for $t \ge 11$. Moreover we see the second assertion since $p_1^* \mathcal{P}^1 \tilde{\iota}_3 = 0$.

Fix *i* with $1 \le i \le b$. Then by the proof of Lemma 3.2 (ii), σ_i is factored through as $S \xrightarrow{\sigma} S^3_{(3)} \xrightarrow{\sigma} K_3$, $\sigma_i \sim \sigma \sigma'$. $\eta \sigma \sim *$ since F_2 is 6-connected; hence $\sigma \sim p_1 \tilde{\sigma}$ for some $\tilde{\sigma} \colon S^3_{(3)} \to F_1$. Thus $p_1 \tilde{\sigma}_i \sim \sigma_i$ for $\tilde{\sigma}_i = \tilde{\sigma} \sigma'$. q.e.d.

LEMMA 5.8. For the diagram (5.1), there is a map

q. e. d.

$$\alpha_2: \Sigma \wedge F_1 \longrightarrow E_2 \quad (\Sigma = S_{(3)}^{2n-1})$$

with $r_2 \alpha_2(\psi_i \wedge \tilde{\sigma}_i) \sim j_0 \tau(\psi_i \wedge \sigma_i)$: $S \wedge S \rightarrow E_1$ and $\varphi \alpha_2 \sim *: \Sigma \wedge F_1 \rightarrow \Omega^2 K'$.

PROOF.
$$(\Omega h) j_0 = \Omega(hj_f): \Omega^2 K_0 \to \Omega K_1 = \prod_{i=-1}^{e-1} K(\mathbb{Z}/3, m_i-1)$$
, and so

$$((\Omega h)j_0\tau)^* \iota_t \in PH^{2n-1}(\Sigma; \mathbb{Z}/3) \otimes PH^*(K_3; \mathbb{Z}/3) \quad \text{for } t = m_i - 1$$

by (5.5). On the other hand, it is well known that

$$H*(K_3; \mathbb{Z}/3) = \Lambda(\tilde{\iota}_3, \mathcal{P}^{(i)} \cdots \mathcal{P}^{(0)} \tilde{\iota}_3 | i \ge 0) \otimes \mathbb{Z}/3[\beta \mathcal{P}^{(i)} \cdots \mathcal{P}^{(0)} \tilde{\iota}_3 | i \ge 0],$$

 $(\mathcal{P}^{(i)} = \mathcal{P}^{3^i})$. Thus, by dimensional reason, we see that

$$((\Omega h)j_0\tau)^* \mathfrak{c}_t = c\zeta \otimes (\beta \mathcal{P}^1 \tilde{\mathfrak{c}}_3)^{n'} \quad (c \in \mathbb{Z}/3, \, n' = 3^{e-1}) \qquad \text{for } t = m_{e-1} - 1,$$

and $((\Omega h)j_0\tau)^*\iota_t=0$ otherwise. Define a map $\tilde{\tau}: \Sigma \wedge K_7 \rightarrow \Omega K_1$ by

$$\tilde{\tau}^* \iota_t = c\zeta \otimes (\beta \iota_7)^{n'}$$
 for $t = m_{e-1} - 1$ and $\tilde{\tau}^* \iota_t = 0$ otherwise.

Since $\eta_1^* c_7 = \mathscr{P}^1 \tilde{c}_3$ and $p_2 \eta = \eta_1$ by definition, these imply that

$$(\Omega h)j_0\tau \sim \tilde{\tau}(1\wedge \eta_1) = \tilde{\tau}(1\wedge p_2)(1\wedge \eta).$$

Therefore we have the homotopy commutative diagram

$$\begin{split} \Sigma \wedge F_1 \xrightarrow{1 \wedge p_1} \Sigma \wedge K_3 \xrightarrow{1 \wedge \eta} \Sigma \wedge F_2 \\ & \downarrow^{j_0 \tau} \qquad \qquad \downarrow^{\tilde{\tau}(1 \wedge p_2)} \\ \Omega^2 K' \xleftarrow{\varphi} E_2 \xrightarrow{r_2} E_1 \xrightarrow{\Omega h} \Omega K_1 \xrightarrow{\Omega g} \Omega K'. \end{split}$$

Here $(1 \wedge \eta)(1 \wedge p_1) \sim *$ by definition. Moreover, by the definitions of g and h in (2.3), $(gh)^* \iota_{6n} = r_1^* \iota_{2n}^3$ and so $\Omega(gh) \sim *$. Also

$$\tilde{\tau}^*(\Omega g)^*\iota_{6n-1} = \mathscr{P}^{n'}(c\zeta \otimes (\beta \iota_7)^{n'}) = c\zeta \otimes (\mathscr{P}^1\beta \iota_7)^{n'} = (1 \wedge \eta_2)^*(c\zeta \otimes \iota_{12}^{n'});$$

hence $((\Omega g)\tilde{\tau}(1 \wedge p_2))^* \iota_{6n-1} = 0$. Thus $(\Omega g)\tilde{\tau}(1 \wedge p_2) \sim *$. Therefore we can apply Proposition 4.1 to get two maps

$$\alpha_2: \Sigma \wedge F_1 \longrightarrow E_2$$
 with $r_2\alpha_2 = j_0\tau(1 \wedge p_1)$ and $\tilde{\alpha}_2: \Sigma \wedge K_3 \longrightarrow \Omega^2 K'$

with $\tilde{\alpha}_2(1 \wedge p_1) \sim \varphi \alpha_2$, because ψ in Proposition 4.1 for the above diagram is equal to φ by a suitable homotopy $\Omega(gh) \sim *$ (see the proof of Proposition 2.1).

Now we have the first homotopy for α_2 using Lemma 5.7; and the second one because $p_1^*=0$ in dimension $\neq 3$ by Lemma 5.7, $\Omega^2 K' = K(\mathbb{Z}/3, 6n-2)$ and $6n-2\neq 2n+2$. q. e. d.

PROOF OF PROPOSITION 3.4. By Lemma 5.2, we see that

240

Mod 3 homotopy associative H-spaces

$$d((\Omega h)s_1) \sim (\Omega h)d(s_1) \sim (\Omega h)j_0d_0 = \Omega(hj_f)d_0 \sim *,$$

because Ωh and $\Omega(hj_f)$ are given by some mod 3 Steenrod operations of positive degree which are trivial on $H^*(S \wedge S; \mathbb{Z}/3)$. Therefore $(\Omega h)s_1: S \to \Omega K_1 = \prod_{i=-1}^{e-1} K(\mathbb{Z}/3, m_i-1)$ is an H-map. Thus for any $t=m_i-1$, $((\Omega h)s_1)^*t_i$ is primitive, and so it is 0 by dimensional reason. Hence $(\Omega h)s_1 \sim *$, and we have a lift

$$s: S \longrightarrow E_2 = E_{\Omega h}$$
 with $r_2 s = s_1$, i.e., $r_1 r_2 s \sim s_0$ and $s^* u = \xi_1$.

Now we consider the maps

(5.9)
$$S \wedge S \xrightarrow{\delta_1} Y = (\Sigma \wedge F_1)^b \xrightarrow{\delta_2} E_2 = E_{\Omega h} \quad (\Sigma = S_{(3)}^{2n-1})$$

given by $\delta_1 = (\prod_{i=1}^{b} (\psi_i \wedge \tilde{\sigma}_i))\Delta$ and $\delta_2 = \alpha_2 \cdots \alpha_2$ (b times), where ψ_i , $\tilde{\sigma}_i$ and α_2 are the maps in (5.4) and Lemmas 5.7-8. Then

$$r_2\delta_2\delta_1 = r_2(\alpha_2(\psi_1 \wedge \tilde{\sigma}_1) \cdots \alpha_2(\psi_b \wedge \tilde{\sigma}_b))$$

$$\sim j_0(\tau(\psi_1 \wedge \sigma_1) \cdots \tau(\psi_b \wedge \sigma_b)) \sim j_0d_0 \sim d(s_1) \sim r_2d(s)$$

by Lemmas 5.8, 5.6 and 5.2, since $r_2 = \Omega r_h$ and $j_0 = \Omega j_f$ are *H*-maps. Thus

(5.10)
$$j_1d + \delta_2\delta_1 \sim d(s): S \wedge S \longrightarrow E_2$$
 for some $d: S \wedge S \longrightarrow \Omega^2 K_1$.

Here, by dimensional reason, we see that

(5.11)
$$d^* \iota_{t-1} \in DH^* \otimes \tilde{H}^* + \tilde{H}^* \otimes DH^* \text{ for any } t = m_i - 1,$$

where $H^* = H^*(S; \mathbb{Z}/3)$, and DH^* is the decomposable module of H^* . Consider the maps

$$S \xrightarrow{\gamma_1} S' = \prod_{i=2}^{a+b} S_{(3)}^{n_i} \xrightarrow{\gamma_2} \tilde{K} = \prod_{i=2}^{a+b} K(\mathbb{Z}/3, n_i),$$

where γ_1 is the projection and $\gamma_2^* \iota_{n_i} = \xi_i$ (in Lemma 3.2). Then we see that

(5.12) Im
$$[\gamma^*: \tilde{H}^*(\tilde{K} \wedge S; \mathbb{Z}/3) \rightarrow \tilde{H}^*] = DH^*$$

for $\gamma = (\gamma_2 \gamma_1 \wedge 1) \varDelta: S \longrightarrow \tilde{K} \wedge S.$

Thus by (5.10-12), there are two maps

(5.13)
$$d_1: \tilde{K} \wedge S \wedge S \longrightarrow \Omega^2 K_1$$
 and $d_2: S \wedge \tilde{K} \wedge S \longrightarrow \Omega^2 K_1$ with
 $d \sim d_1(\gamma \wedge 1) + d_2(1 \wedge \gamma): S \wedge S \longrightarrow \Omega^2 K_1$.

Furthermore, by putting e(i) = 1 for i > a, define

$$f_i: K(Z/3, n_i) \longrightarrow \tilde{K}_i = K(Z/3, n_i+1) \times \prod_{j=0}^{e(i)-1} K(Z/3, n_i+4 \cdot 3^j)$$

by $f_i^* c_i = \beta c_{n_i}$ for $t = n_i + 1$ and $f_i^* c_i = \mathcal{P}^{(j)} c_{n_i}$ for $t = n_i + 4 \cdot 3^j$; and consider the homotopy fiber

$$\tilde{r} \colon \tilde{E} \longrightarrow \tilde{K}$$
 of $\prod_{i=2}^{a+b} f_i \colon \tilde{K} \longrightarrow \prod_{i=2}^{a+b} \tilde{K}_i$.

Then

(5.14)
$$\pi_t(\tilde{E}) = 0 \text{ for } t \ge n_1 + 4 \cdot 3^{e-1} = 10 \cdot 3^{e-1} \quad (n_1 = 2n - 1, n = 3^e).$$

Furthermore $(\prod_i f_i)\gamma_2 \sim *$ since $\gamma_2^*(\prod_i f_i)^* c_i = 0$ for any t, and so we see that

(5.15)
$$\gamma_2 = \tilde{r}\tilde{\gamma}_2 \text{ for some } \tilde{\gamma}_2 \colon S' \longrightarrow \tilde{E}.$$

Moreover the mod 3 Steenrod algebra \mathscr{A} acts trivially on Im $[\tilde{r}^*: H^*(\tilde{K}; \mathbb{Z}/3) \rightarrow H^*(\tilde{E}; \mathbb{Z}/3)]$ by definition, and $\varphi_{j_1} = \Omega^2 g$. Thus

(5.16)
$$\varphi j_1 d_1(\tilde{r} \wedge 1 \wedge 1) \sim * \text{ and } \varphi j_1 d_2(1 \wedge \tilde{r} \wedge 1) \sim *.$$

On the other hand, $\rho: \tilde{S} \to S$ is defined by

$$\rho = \rho(4n-3) = 1 \times \rho'(4n-3): \tilde{S} = \Sigma \times S'(4n-3) \longrightarrow S = \Sigma \times S',$$

and S'(4n-3) is (4n-3)-connected. Therefore,

$$\tilde{\gamma}_2 \gamma_1 \rho = \tilde{\gamma}_2 \rho'(4n-3) \operatorname{pr}_2 \colon \tilde{S} \longrightarrow S'(4n-3) \longrightarrow S' \longrightarrow \tilde{E}$$

is homotopic to * by (5.14) and $4n-3 \ge 10 \cdot 3^{e-1}$. Thus

(5.17)
$$(\tilde{r} \wedge 1)\tilde{\gamma} = \gamma$$
 and $\tilde{\gamma}\rho \sim *$ for $\tilde{\gamma} = (\tilde{\gamma}_2\gamma_1 \wedge 1)\varDelta \colon S \longrightarrow \tilde{E} \wedge S$.

Now using Y, δ_1 , δ_2 in (5.9) and the above maps, we define

$$S \wedge S \xrightarrow{\lambda_1} X = (\tilde{E} \wedge S \wedge S) \times (S \wedge \tilde{E} \wedge S) \times Y \xrightarrow{\lambda_2} E_2 = E_{\Omega h}$$

by $\lambda_1 = ((\tilde{\gamma} \wedge 1) \times (1 \wedge \tilde{\gamma}) \times \delta_1) \Delta$ and $\lambda_2 = j_1 d_1(\tilde{r} \wedge 1 \wedge 1) \operatorname{pr}_1 + j_1 d_2(1 \wedge \tilde{r} \wedge 1) \operatorname{pr}_2 + \delta_2 \operatorname{pr}_3$. Then, noticing that j_1 and φ are *H*-maps, we see that $d(s) \sim \lambda_2 \lambda_1$ by (5.10), (5.13) and (5.17), and $\varphi \lambda_2 \sim \varphi \delta_2 \operatorname{pr}_3 \sim (\varphi \alpha_2 \cdots \varphi \alpha_2) \operatorname{pr}_3 \sim *$ by (5.16) and Lemma 5.8. Moreover, $\pi_t(F_1) = 0$ for $t \ge 11$ by Lemma 5.7, and $\tilde{S} = \Sigma \times S'(4n-3)$ is (2n-2)-connected. Thus $\tilde{\sigma}_i \rho \sim *: \tilde{S} \to F_1$ because $2n-2=2 \cdot 3^e-2 \ge 11$ by the assumption $e \ge 2$. Therefore

$$\lambda_1(\rho \land \rho) = ((\tilde{\gamma} \rho \land \rho) \times (\rho \land \tilde{\gamma} \rho) \times \delta_1(\rho \land \rho)) \varDelta \sim (\prod_{i=1}^b (\psi_i \rho \land \tilde{\sigma}_i \rho)) \varDelta \sim \ast$$

by (5.17) and (5.9). This completes the proof of Proposition 3.4. q. e. d.

242

References

- [1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
- [2] J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. Oxford
 (2) 12 (1961), 52-60.
- [3] A. Borel, *Topics in the Homology Theory of Fibre Bundles*, Lecture Notes in Math. **36** (1967), Springer, Berlin.
- [4] D. L. Goncalves, Mod 2 homotopy-associative H-spaces, Geometric Application of Homotopy Theory I, Lecture Notes in Math. 657 (1978), Springer, Berlin, 198–216.
- [5] Y. Hemmi, Homotopy associative H-spaces and 3-regularities, Mem. Fac. Sci. Kochi Univ. (Math.) 7 (1986), 17–31.
- Y. Hemmi, Certain 3-regular homotopy associative H-spaces, Mem. Fac. Sci. Kochi Univ. (Math.) 8 (1987), 5-8.
- [7] A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962).
- [8] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
- [9] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294.
- [10] N. Shimada and T. Yamanoshita, On triviality of the mod p Hopf invariant, Japan. J. Math. 31 (1961), 1-25.
- [11] J. D. Stasheff, Homotopy associativity of *H*-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275–292, 293–312.
- [12] A. Zabrodsky, Secondary cohomology operations in the module of indecomposables, Proceedings of the Advances Study on Algebraic Topology III (1970), Aarhus Univ., 657-672.
- [13] A. Zabrodsky, *Hopf Spaces*, North-Holland Mathematics Studies 22 (1976), Notas de Matemática (59).
- [14] A. Zabrodsky, Some relations in the mod 3 cohomology of H-spaces, Israel J. Math. 33 (1979), 59-72.

Department of Mathematics, Faculty of Science, Kochi University