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§ 1. Introduction

For a prime p, a space X is called a mod p (homotopy associative) H-space
if its localization X(p) at p is a (homotopy associative) //-space.

Consider the product space S of odd spheres :

(*) s = Snι x ••• x S"« x (S3)* x (S1)0 (ni\ odd integers >5).

Then S is a mod p //-space for any p> 3, and so is S for p — 2 if and only if each
n, is 7, by Adams [1, 2]. Moreover S is a mod p homotopy associative //-space
for any p>5 by [2], and so is S for p = 2 if and only if α=0 by Goncalves [4;
Th. 1]. In case of p = 3, the special unitary group 5(7(3) is 3-equivalent to S5 x S3

by Serre [9 Prop. 7] hence we have the following typical example :

(1.1) (55)β x (S3)b x (Sl)c for a < b is a mod 3 loop space.

Now the main result of this paper is stated as follows :

THEOREM 1.2. S in (*) is a mod 3 homotopy associative H-space if and

only if each nt is 5 and a<b, i.e., S is a mod 3 loop space in (1.1).

We sketch here the proof of the theorem, which is based on the methods
of Zabrodsky [14], and is done by continuing to the preceding studies in [5, 6].
We assume that the localization S(3) of S in (*) is a homotopy associative //-space.
In the mod 3 Steenrod algebra, we have a decomposition

&n = Σy=o &3J*j when n, = 2n + 1, n = 3's, 3 ̂  5 and s > 2,

where «^m is the mod 3 reduced power operation. This decomposition associates
an unstable secondary operation φ in the diagram

^-JL»*(Z/3,6ιι-2)
I/ "

K(Z/3, 2n-l) U ΠJ-o *(*/3, 6n- 1-4-3').
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Here /ι = ΓΊ}=o αy» rh ιs trιe homotopy fiber of Λ, ξ is an //-map corresponding to
the factor S'J'j}, | is a lift of ξ, and φ£ is shown to be an //-map. Now, by [13;
2.5.1], we have the obstruction Θ(φξ) for φξ to preserve the homotopies of

homotopy associativity (i.e., to be an Λ3-map); and we can lead a contradiction
by calculating θ(φξ) in two different ways. By this way, we have proved that

(1.3) [5; Th. A] nt = 2 3*<'> - 1 (e(i)>\) for each i.

On the other hand, by considering the projective 3-space of S(3) and by

studying the Hubbuck operations 5* and Qq on certain quotient algebra of its
cohomology with coefficient in Z(3), we have also proved that

(1.4) [6] a < b holds if each nt is 5.

Therefore we shall prove Theorem 1.2 by showing the following

(1.5) If e = e(ι) = max {e(j)} > 2 in (1.3), then we have a contradiction.

In this case, for n = 3e, we have the diagram

3, 6/1-2)

-1-4-3')

,2/7-1+4-3'),

instead of the above one. Here f=βx Πy=o ^3J witrι the Bockstein operation
/?, and h is the secondary operation due to Shimada-Yamanoshita [10] or
Liulevicius [7], which associates an unstable tertiary operation φ (see Proposition
2.4). Moreover ξ is a suitable lift of ξ given in Proposition 3.4, which assures

that φξ is an //-map and θ(φξ) is calculated in two ways to show (1.5). Now
we prepare in §4 the ladder Toda bracket due to Zabrodsky [12], and prove

Proposition 3.4 in §5.
The author wishes to thank Professor M. Sugawara for his critical reading

of the manuscript and useful suggestions.

§ 2. Unstable tertiary operation

In this paper, we assume that spaces have base points * which are non-
degenerate, and that (continuous) maps preserve them, unless otherwise stated.

For any space X, we use the Moore path (or loop) spaces
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PX = {(w, r) I re [0, oo) and w: [0, oo)->X with w(0 = w(r) (ί>r)} ,

LX = {(w, r)ePX|w(0) = *}, ΛX = {(w, r)ePX | w(0) = w(r)}, and

ΩX = {(w, r)ePX \ w(0) = w(r) = *}. (w in PX is non-based.)

We define the maps c: X->PX and *f : PX->X (0<ί< oo) by

c(χ) = (the constant map to x, 0) and ef(w, r) = w(min {ί, r}),

and take * = c* as the non-degenerate base point for &X (<g = P, L, A or Ω).
Moreover we define

for a map /: X - >Y by (^/)(vv, r) == (/vv, r).

In PX, we define the path-multiplication (w, r1 + r2) = (w1, r1) + (w2, r2)of(w ί, r^e
PX with e00w1=β0w2 by vv(0 = w1(ί) for ί<r t, =w2(ί-r1) for t>ri; and the
inverse path (w', Γj)= — (w,, r^ by w/(0 = Wι(max {r!-i, 0}).

We define a homotopy to be a map //: X->Py(with //* = *) denoted by

/f:^ - >PY. fQ~fn9 for ft = e,H:X - >Y 0 = 0, oo);

and then we denote also by /0~/oo". X->y or fox^f^x (xeX). We note that
this is the same as the usual homotopy preserving base points since they are
non-degenerate. In case of

//: X - > P2Y = P(PΓ) with (Pet)H = c(e2

tH) (f = 0, oo),

we call H a homotopy between homotopies e0H and e^H fixing the end points.
For any spaces X and 7, we have the natural homotopy equivalence

ε: &X x &Y^ &(XxY) (J^ = P, L, A or Ω)

given by ε((w, r), (t?, s)) = ((w x v)Δ, max {r, s}) (J : the diagonal map).
Now we define //-spaces and the related notions (cf. [13; Ch. I-II]). An

H-space is a pair (X, μ) of a space X and a map μ: X x X - » X with μ|X v X = F
(the folding map), μ is called an H-structure or a multiplication for X. We
also call X an //-space simply if μ is specified, and denote μ(x, >>) by x y. If
(Xί? μf) are //-spaces, then so are (&Xι, (JSfμ^ε) and (Xj x X2, (μί x μ2)(l x Tx 1))
(1 : the identity map, T: the twisting map).

A homotopy associative H-space, or an HA-space, is a triple (X, μ, α) of an
//-space (X, μ) and a homotopy α: X x X x X - > P X ; μ(μx l)~μ(l xμ) with
α(*, x, y) — (x.(x9 *, > )̂ = α(x, y, *) = cμ(x, y). α is called an HA-structure for X.
We also call X or (X, μ) an //A-space simply if (μ, α) or α is specified. In
particular, if μ(μ x l) = μ(l x μ) and α = cμ(μ x 1) hold, then (X, μ, α) (or X, (X, μ))
is called an associative H-space. If X f are associative //-spaces, then so are

V and X! x X2.
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An H-map between //-spaces (Xh μ f) ( / = ! , 2) is a pair (/, F) of a map

/: Xί-+X2 and a homotopy F: Xl xX^PX2\ jw2(/x/)~//Ί with F | A Ί vA^ =
cfP. F = Ff is called an H-structure for/. We call/an //-map if Ff is specified.

For //-maps (/„ F,): (X,-, /ι ί)->(Λ'f+l, μi+l) (/=! , 2), the composition (/2, F2)
(/n F1) = (/2/1, F): (X1? jW1)-^(X3, μ3) is an //-map with the composed Pi-
structure F = F2(fί x/,) + (F/2)F1 : X, x X^PA^.

An HA-map between //^-spaces (X, , μ, , α, ) (/=!, 2) is a triple (/, F, A) of
an //-map (/, F): (X1 ? μί)-*(X2, ^2) and a homotopy

X : X, x X, x X, - > P2X2; α2(/x/x/) -

with (Pe0M = (Pμ2)(Fxc/) + F(^ 1xl), (PO^ = (P^2)(c/xF) + F(l x μ j and

Λ(*, x, jO = Λ(x, *, >^) = /4(x, y, *) = (PF)(cx, cy). /I is called an HA-structure
for (/, F). In particular, if (Xh μ, , α f) are associative //-spaces and μ2(/x/) =

//i!, F = φ,, α2(/x/x/) = (P/)αι and A = c(Pf)aί hold, then (/, F, X) (or/,
(/ F)) is called a homomorphism.

Note that ί/?e /oop space ΩY of Y is an associative H-space by the path-

multiplication, and Ωf: ΩYl->ΩY2 of a mapf: Yι-+Y2 is a homomorphism.
Let (Xh μ,) (/= 1, 2) be //-spaces. Then for any map/: Xί-+X2, we have

d(f): X, Λ Xl - > X2 with μ2W)pr xfμJA - μ2(/x/)

(pr : X x ••• x X-+X Λ ••• Λ X is the projection). d(/) is called the H-deviation of
/, because /is an //-map if and only if d(f)~*.

Moreover, let (Xh μf, α, ) ( / = 1 , 2 ) be ///4-spaces and (/, F): (Xj, μ^-*
(X2, μ2) be an //-map. Then we have the map θ: Xv xXl x Xί-+AX2 defined by

ff(x, y, z) = <*2(fx,fyjz) + c/χ.F(j;, z) + F(x, μt(j;, z)) - (P/)αj(x, j, z)

— F(μ,(x, y), z) — F(x, y)-cfz ( is induced from μ2).

Since 5(*, x, ^) = ̂ (x, *, y) = θ(x, y, *) = F(x, y) — F(x, ^)^*, we get a map, which
is unique up to homotopy,

0 = 0(/ F): ΛΊ Λ Xl Λ AΊ - , ΩX2 (due to Zabrodsky [13; 2.5])

such that 9~θ': Xl xXt xXί-+AX2 fixing the end points, where #'(x, y, z) =

θ(x,y,z) ((fx fy) fz). We call 0 = 0(/, F) the HA-deviation of an //-map
(/, F), because (/, F) has an //X-structure if and only if θ~* by definition. We

denote 0(/, F) by θ(f) when F is specified.

We note that Θ(f0, F0)^θ(fao, FJ for two //-maps (fi9 Ft):(Xl9 μ^
(X2, μ2), if they are homotopic as //-maps, i.e., if there are homotopies

H:Xl - >PX2', /0-/CO and C: Xl x X, - >P 2 X 2 ; F0 - F,,
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with (Pe0)G = (Pμ2)(HxH), (Peao)G = Hμl9 and G| Xl v Xί = cH7. Moreover,
we note that Θ(Ωg)~* for any map g: Yί-^Y2.

Now, for a given map h : X-*Y, let

ΩY -A_>EA = {(x, O e X x L Y I fix = * / } -Iί-> X -A_> y

denote the fiber sequence given by rΛ(x, /) = x and jh( /) = (*, /), i.e., rΛ is the
homotopy fiber of h and jΛ is the fiber of rh. Then for the fiber sequence

we see that EβΛ is an associative H-space with ίλe multiplication induced from
the ones of ΩX and ΩY9 and jΩh and rΩh are homomorphisms. Also we note

that there is a natural homotopy equivalence ε: EΩh^ΩEh with (Ωrh)ε~rΩh.

Moreover, let ^ e Hr(K(Z/3, ί)ί ZfS) be the fundamental class, and let
σ: H*(X\ Zlty-tH'-^QX; Z/3) be the cohomology suspension. Then:

PROPOSITION 2.1. For 0/t en ^ e H2n(X\ Z/3)

X JU y-^-> X(Z/3, 6n) wiίΛ (gh)*c6n = α3,

there is an H-map φ: EΩh^>Ω2K(Z/3, 6n) with φjΩh = Ω2g and

0(<P)**6 -3 = ±b®b®b for b = r%hσaεH2»-*(EΩhι Z/3),

where θ(φ): EΩhΛEΩhΛEΩh-+K(Z/39 6n — 3) is the HA-deviation of φ.

PROOF. Consider K = K(Z/3, 2π), K' = K(Z/39 6n) and the maps

X JL> K-t+K' with f*c2n = a and k*c6n = t\n = ^"r2π .

Then (gh)*c6n = (kf)*c6n'9 hence we can take k and /to satisfy kf=gh. Thus we
have the commutative diagram

(*) J^ J/

Ω2Kf -L+E -ϊ-> ΩK-^ ΩKf

(E = EΩk, r = rβk, j=jΩk, f=ΩfxLΩg\EΩh) of the fiber sequences, consisting of

the associative H-spaces and the homomorphisms. Moreover we have a
homotopy

η: ΩK - >LΩK'; * - Ωk (Ω/C = X(Z/3, 2n-l), ΩK' = X(Z/3, 6π-
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since (Ωk)*c6n_ί = 0>nc2n-l=Q. This defines w: ΩKxΩK->Ω2K' by w(x, y) =
(ηx) - (ηy) — η(x - y), and w': ΩK/\ΩK-+Ω2K' with w ' p r ~ w since w | / C v / C ~ * .
Now as is shown in the proof of Zabrodsky [14; 1.3], we can take η so that

w'~*, i.e., there is a homotopy

(ηx) - (ηy) ~ η(x y) (x, y e ΩK) fixing the end points.

Using these / and η, we define

φ = ψj: EΩh - > E - > Ω2K' = K(Z/3, 6n-2)

by ψ(χ, l) = l-ηx for (x, l)eE<=ΩKx LΩK' . Then

ψj = 1 and φjΩh = ψfjΩh = ψjΩ2g = Ω2g\

and ψ:E-*Ω2K' is an //-map by the //-structure F:ExE^PΩ2Kf, where
F((x, /), (y, m)) is given by

(l-ηx) (m-ηy) ~ l-m - (ηx)-(ηy) ~ l m - η(x y).

Hence φ = ψ f i s an //-map, and

(**) 0(^)~W)(/Λ/Λ/) (by [13; 2.5.2]).

Therefore the equality Θ(φ)*c6n_3= ±b®b®b follows from

(2.2) 0(ι/0 ~ *: E Λ E Λ E - > Ω3X' = /C(Z/3, 6π - 3) .

In fact, by the lower fibration in (*), we see that H6n~3(E Λ £ Λ £ ;

with a generator c®c®c for c = r*ί2π-ι Thus Θ(ψ)*c6n_3= ±c®c®c by (2.2),
which implies the equality by (**) and/*c = rj5Λ(Ω/)*ί2π_1 = b.

To prove (2.2), suppose contrarily that θ(ψ)~*. Then the //-map ψ: £->
Ω2X' has an ///4-structure, or is an Λ3-map in the sence of Stasheff [1 1 II, Def.
4.4]. Thus, by [11 II], we have a map

\l/3 : P3E - > BΩ2Kf = ΩBΩK' ^ ΩK' with ψ - ψ3 : E - > ΩΩK' c Ω2K'

for the projective ί-space PtE (t^2) of the associative //-space E = EΩk9 where
^3 is the adjoint of <A3ε3: ΣEdP3E-+ΩKf for the usual loop space ΩK' (which is
homotopy equivalent to ΩK' by ΩK'^ΩK').

Now 1/^3 cna be extended to ψt: PtE-+ΩK' for all t. In fact, the obstruction
for ψt to be extended to ^ f + 1 is in H6n-l-'(Xt; Z/3) for Xr = E Λ . . Λ £ (ί+1

copies) by [1 1 II, 8], which is 0 for t > 3 since E is (2n — 2)-connected. Therefore
we have a map

Ψn = Bψ' PooE = BE - > ΩK' with (A - ί^oo ^ ̂ oo
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Since ψj= 1, this shows that ψ^Bj^l for the fiber sequence

QK' -SL> BE J*+ BΩK c* K JL, K' ^ BQK'

(up to homotopy equivalences) obtained from the lower one in (*). Thus (Br x

ψΛ)Δ: BE^KxΩK', and we have a section s: K-+BE with (Br)s~l. So k~
k(Br)s~*, which contradicts k*c6n = c\n^^. Hence (2.2) is proved. q. e. d.

Tn the rest of this section, we construct a particular tertiary operation.
Let e> 1 be a fixed integer, and consider the maps in the diagram

+K' = K(Z/3, 6n)

(2.3) Jr,

K=K(Z/3, 2n) -A *0 = Πf=lι ΛΓ(Z/3, /,)

for n = 3e, / _ 1 = 2 n + l, // = 2n + 4 3ί (/>0) and w^Sn-/,, such that

and h*cm. = Vi for some classes V i E H m i ( E f ; Z/3) with

We note that the equalities for/* and the definition of r7 imply

^0, jSα = 0 and 0>la = 0 for t <

which assure the existence of such vt by Shimada-Yamanoshita [10; Th. 5.1-2]
or Liulevicius [7; Th. 4.5.1]; hence h exists. Then (gh)*c6n = a3, and Proposition
2.1 implies the following

PROPOSITION 2.4. (i) πt(EΩh) = 0 for t > 6n - 2.

(ii) There is an H-map φ: EΩh-+Ω2Kf with φjΩh = Ω2g and

Θ(φ)*c6m.3 = ±u®u®u for u = r^h(Ωrfγt2n.^H^^(EQh\ Z/3).

§3. Reduction of (1.5)

Note that if a connected space X is an //Λ-space. then so is its universal cover-
ing space, which has the homotopy type of Y when X=Yx(Sl)c for a simply
connected space Y. Then (1.5) follows from the following

PROPOSITION 3.1. For the localized sphere S"3) at 3, and integers n f = 3

(i>a(>l))and n l = 2 3β<<>-l (i<a) with e(\)>e(2)>-~>e(a)>\, assume

that S = Πfίo s"i) is an HA-space. Then e(\)=\.
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Hereafter, we study S under these assumptions.

LEMMA 3.2. (i) //*(5; Z(3)) * Λ(ξί9.. , ξa+b) and //*(5; Z/3) ̂
ζa+b) by primitive elements ζ{ and ξt such that dim |; = dim ξj—Wf and ξi is the
mod 3 reduction of ξ^

(ii) Moreover, ξt can be chosen to be a generator of Hni(S"^; Z(3)) for

any i.

PROOF, (i) is seen in the same way as Borel [3; Th. 4.1-2, Prop. 4.3].
(ii) If xe//'(5; Z(3)) ( t : odd) is a monomial of generators

Z(3)), i.e., x = cCί(1) < ί ( 0(l</(l)< <ί(/)<0 + b, ceZ(3)), then

\\ι V Pr v ΓT' ^"Ό) Pr . A 'Ψx- & » l l y=ι ύ(3> » Λ y =7 = 1 ^(3) - ^(3) > °(3)

(c is the map of degree c) satisfies φ*ζ = x for a generator £e// f(S{3 ); Z(3)).
If x = X j H ----- hx w e// r (5; Z(3)) with monomials xy of £t , then

S{3)

satisfies ψ*ζ = x, where //m = M / ^ m - ι χ l ) is the iterated multiplication of μ = μ2

of the //-space S(3). Thus we see (ii) by taking x = |ί . q. e. d.

Let ρ'(t): S'(0-*Π?Ϊ2 5o) be the ^-connected fibration (i.e., S'(ί) is t-

connected and p'(t) is a fibration inducing an isomorphism on πn for n > r), and put

p(t) = 1 x p'(f): S(f) = S 3) x 5X0 — 5 = Π?=+f %

LEMMA 3.3. I f t < 2 n ^ - 1, ί/ίβn S(0 is an HA-space and ρ(t) is an HA-map.

PROOF. If t<n}, then p(t) is the /-connected fibration by definition. Thus

the ///4-structure for S can be lifted to that for S(ί), and the lemma holds.
Suppose inductively that the lemma holds for t with nί — \<t<2nl — l.

Let ψ1: S'(t)-*K(πt+ί(S'(t)), /+!) be the map inducing an isomorphism on π f + 1.
Then by the definition of p'(0's, the homotopy fiber of ψ' is p' \ S'(t+ \)^Sf(t)
with p'(t)p' = p'(t+\). Thus p(t+ \) = ρ(t)(\ x ρ')9 and 1 xp': S(t+ l)-^S(r) is
the homotopy fiber of

φ = ψ' Pr2: 5(0 - > 5X0 - > K = X(πf+1(5'(0), ί+ 1).

Therefore, if ^ is an H/l-map, then the lemma holds for t+ 1 by [13; 2.5.3].

Now d(ι/0~*: 5(θΛ5(0->K for the //-deviation d(ι/0 since «!-!</<
2nx — 1 and 5(0 A 5(0 is (2nt — l)-connected. Hence ψ is an //-map. Moreover

Θ(ψ)~*: 5(θΛ5(θΛ5(0-»ΩA: for the //yl-deviation θ(^) since 5(0 Λ 5(0 Λ 5(0
is (3n, — l)-connected. Thus φ is an HA-map and the lemma is proved by
induction. q.e.d.
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Now Proposition 3.1 follows from the following

PROPOSITION 3.4. For S in Proposition 3.1, consider

'̂ ; Z/3) (n = 3«, * = *(!), ii! =2n-l)

and the HA-map ρ = p(4n — 3): 5 = S(4n — 3)->S given in Lemmas 3.2-3.

Furthermore, consider u e H2n~*(EΩh\ Z/3) and the H-map

φ: EΩh - > Ω2K' = K(Z/3, 6n-2) with 0(φ)%,,_3 = ± u ® u ® u

given in Proposition 2.4 (ii). If e>29 then there are a space X and maps

S^S-^X-^EΩh and s: S - > EΩh

such that /^(pAp)^*, φλ2~*9 d(s)~λ2λl and s*u = ξί.

COROLLARY 3.5. In Proposition 3.4, the compositions

φ = φs: S - > Ω2Kr and p = sp: S - > EΩh

are H-maps so that the composed H-maps φp, φp: S-+Ω2Kf are mutually

homotopic as H-maps (hence θ(φp)~θ(φρ) as is noted in §2).

PROOF OF PROPOSITION 3.1 FROM PROPOSITION 3.4 AND COROLLARY 3.5.

Suppose e = e(l)>2. Then, by these results, the //^-deviation

θ(φ): S Λ S Λ S - > Ω3K' = K(Z/3, 6n-3)

of the //-map φ is calculated as follows :

θ(ρ)~* since p is an HA-map and θ(ρ)~*: SΛS/\S-+ΩEΩh by Prop-

osition 2.4 (i) since S is (2n — 2)-connected. Thus

θ(φ)(p Λ p Λ p) - 0(φp) - θ(φp) - θ(φ)(p Λ p Λ p)

by [13; 2.5.2]. Hence it follows from Proposition 3.4 that

θ(φ)*c = (s*®s*®s*)θ(φ)*c mod Ker(p*(g)p*®p*) (ί = c6π_3)

= ± s*u ® s*u ® s*u = ± ξl ® £, ® ξ,.

Also by Lemma 3.2 (ii) and the definition of p, there is a homology class f e

#2«-i(S; Z/3) with <r, {j> = l and <ί, Kerp*> = 0; hence

(3.6) <ί®ί®ί, fl(φ)*ί> = ± <ί, ξ,y = ± 1.

On the other hand, φ*r6π_26//6π~2(5; Z/3) is primitive since φ is an //-

map; and H*(S; Z/3) has no even dimensional primitive classes by Lemma 3.2 (i).
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Hence φ*c6n.2—^ and φ~*. This implies by Zabrodsky [14; 1.2.1] that

Θ(φ)*c = (l®μ-μ®l)z for some ze//*(SΛS; Z/3),

where μα = μ*α— l®α — α®l for the multiplication of μ of S. Thus

(3.7) <r®ί®r, 0(φ)*0> = <ί®ί®ί, (l®μ-μ®l)z>

ί, (l®μ*-μ*®l)z> =

Here ί2 = ίf is the Pontrjagin product in //*(S; Z/3) given by μ, which is com-

mutative by Milnor-Moore [8; 4.20] since //*(S; Z/3) is primitively generated by

Lemma 3.2 (i). Therefore ί2 = 0 since dim t is odd; and the last in (3.7) is 0,

which contradicts (3.6). q. e. d.

PROOF OF COROLLARY 3.5 FROM PROPOSITION 3.4. Let

vί: S Λ S - > LX\ * ~ λλ(ρ/\ρ\ v2: X - > LΩ2Kf; * ~ φλ2 and

ω: S Λ 5 - > P£βΛ; d(s) - A 2 Λι

be homotopies given by Proposition 3.4. Then φ is an //-map with the //-

structure F^: S x S->PΩ2K' given by

F,(x, y) = F^(sx, sj^) + (Pφ)(ζ(sx, sy) + ω(x9 y) cs(x y))

- Fφfaλ^x, y) s(x y)) - v2λl(x, y) cφs(x y) 9

and so is p with Fβ: S x S^PEΩh given by

Fβ(x9 y) = ζ(px9 py) + (ω(px9 py)-(Lλ2)vλ(x9 y ) ) (Ps)Fp(x9 y)9

where Fφ: EΩhx EΩh^PΩ2Kf and Fp: SxS-*PS are those of φ and p, and

ζ: 5 x S-+PEΩh is a homotopy sx - sy~d(s)(x, y) - s(x - y).

Now the homotopy (Lv2)v! : S /\S-*L2Ω2K' gives us a homotopy

v2λl(ρ Λ p) ~ (L(φλ2))vl fixing the end points.

Also the one SxS-+P2S, defined by (x, ^)->(PFv)((LA2)v,(Jc, J), cs(px py))9

gives us a homotopy

-F^/i^px, pj;), sίpx-pj^-ίL^/^v^x, y) . Cφs(px - py)

~ — (/>(/>)((LA2)v1(Jc, j) cs(ρx - py)) fixing the end points.

By these homotopies, we can define the homotopy F^(p x p) + (Pφ)Fp~Fφ(p x p)+

(Pφ)Fβ\ SxS-+PQ2K' between the composed //-structures of φp and φp,

so that this and the stationary homotopy H = cφp: S-+PΩ2K'', φp — φp show

φp ~ φp as //-maps. q. e. d.
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Therefore we have proved that Proposition 3.4 implies Proposition 3.1,
which implies (1.5) and Theorem 1.2.

§ 4. Ladder Toda Bracket

In this section we discuss a simple case of the ladder Toda bracket introduced

by Zabrodsky [12].
Consider the following diagram of spaces and maps :

ΩX2 ^—E-^X^l^X^^

,/!, g, g0, h0 and ht are given maps with

/i/o ~ *» 0o0 ~ *> hι9o~foho and

r is the homotopy fiber of /0, i.e., £ = £/0 = {(x, /)e A^xU^ |/0x = eα,/} and
r(x, /) = x, and ^ is the map defined by

ψ(x, /) = (L/Ί)/ - vx by a fixing homotopy v: X0 - > ZJf2; * ~/!/0.

Then we prove the following

PROPOSITION 4.1. 77κ?re are maps h: Y^E and h': Y0-+ΩX2 with

rh = h0g and h'g ~ ψh.

PROOF. By using homotopies η: Y-^LYl', *~g0g, ω: YQ-^PXl\

f0h0 and ζ : Yί-+LX2:> *~fιhl9 we define h and h' by

h = {h0g x ((Lhjη + ωgf)}^ and Λ' = ζg0 + (P/Ί)ω - vJι0 .

Then rh = h0g. Moreover ^f^h^^^g^g: Y-*LX2 fixing the end points by
(Lζ)η: Y->L2X2. Therefore

h'g = ζg<>9 + Wι)ω^ - vΛ00 - Ltfthjη -h (PΛ)ω0 - v/ι0gr = ^Λ. q. e. d.

§ 5. Proof of Proposition 3.4

By the consturction given in §2, we have the diagram
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Ω2Kι /»=;«*, E2 = EΩh -V-+ Ω2K' = K(Zβ, 6n-2)

\r2=rΰh

(5.1) Ω2K0

Jo=Ωjf> E, = ΩEf -£*> ΩK^Πϊ^i K(Zβ,

for/, #, /? and φ in (2.3) and Proposition 2.4 (ii) and ^0 with sξc2n-\=ζ\ i
Lemma 3.2.

Hereafter assume that n = 3e and e = e(\)>2. Then :

LEMMA 5.2. s0 /s an H-map, and there are maps

s, : 5 - > £, ίiwrf d0: S Λ S - > Ω2/C0 =

SMC/I ί/7crί Γ^SJ^SQ, d(s})^j0dθ9 d*ct = Q for t = \{ — 2

dSc2Λt2ePH*"-i(S 9 Z/3)®P//3(S; Z/3)

where PH* denotes the primitive module of H*.

PROOF. s0 is an //-map since ξ{ is primitive; and we fix an //-structure F:
SxS->PΩK for 50.

The mod 3 Steenrod algebra st acts on //*(S; Z/3) trivially. Hence s$(Ωf)*ct

= 0 for all t by the definition o f / in (2.3). Thus (Ω/)s0~*. By choosing a
homotopy v: S->LΩ/C0; *~(Ω/)s0, we define

d: S A S - > Ω2/C0 by d(x, y) - vx vy + (PΩf)F(x, y) - v(x - y) .

Then by [14; 1.2.1] and [13; 2.5.2], we see that

(\®μ-μ®\)d*ct = θ((Ωf)s0)*ct = θ(s0)*(Ω2f)*tt = 0

for any f (/I is the one in (3.7)). Thus d*ct represents some element in

r = Extfr*(Z/3, Z/3) for //% = //J|t(S; Z/3). Here Γ is isomorphic to ®{Z/3
generated by ξi®ξj\l<i<j<sa + b}, since H* = H*(Sm, Z/3) is given in Lemma
3.2 (ii). Therefore, by dimensional reason, d*£, = 0 in Γ for f^2n + 2, and

^*^2π+2 in ^ is represented by a class in P//2π~1®P//3. Thus there are ateHl

for ί = /f — 2 (-l</<^) such that

d*ίf = /ϊflί if ί ̂  2Λ H- 2, and d*ct - flatePH2n~l ® P//3 if ί = 2n + 2.

Now we take a map ω: S-+Ω2K0 with ω*ct = at9 and define ί/0: SΛS-+Ω2K0 by

(PΩf)F(x9 y) -
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Then d0(x, y)~d(x, y) -f ωx - ωy — ω(x y) since 4- is homotopy commutative in
Ω2K0. Hence d$ct = d*ct — μω*ct, and so d0 satisfies the last conditions in the

lemma by the definition of at and ω. Moreover, by using the natural homotopy
equivalence ε: EΩf-*ΩEf (see §2), we put

st = ε(s0 x (ω + v))Δ : S - > EΩf - > ΩEf = Ev .

Then r1sί^ s0 and we see that d(s1)~./0d0(cf. [13; 2.2.1 (b)]). q.e. d.

The above lemma implies that

(5.3) dJ<2.+2 = Σ?=ιίι®{.+, for some ^ePH2^(S'9 Z/3).

Therefore by the proof of Lemma 3.2 (ii), there are maps

(5.4) fas - > Σ = S&-1 with ^*C = ί, for 1 < i < b,

where ζe H2n~l(Σ', Z/3) is a generator. Consider the maps

(5.5) σ,: S - > K(Z(3), 3) with σf?3 = ξa + i for 1 < / < b, and

τ: I Λ X(Z(3), 3) - > Ω2K0 with τ*ίr = 0( f^2n + 2), τ*c2n + 2 = C ® ?3,

for the fundamental class c3 and its mod 3 reduction c3. Then Lemma 5.2

together with (5.3-5) implies the following

LEMMA 5.6. dQ^τ(\j/l Λ σ 1 ) τ(ψ2 A(j 2) ..... τ(\l/bΛσb).

Now we consider the special maps

), 3) -£!-> X7 = X(Z/3, 7) -̂  K1 2 = X(Z/3, 12)

with η*cΊ = &}ϊ3 and ηϊcί2 = 0>lβcΊ. Then

Thus we have the maps

7 with

where /?2 is the homotopy fiber of f/2 and pj is that of η. Then:

LEMMA 5.7. π,(F,) = 0 /or ί>ll, p*: /?*(/C3; Zβ^fi^F^ Z/3) is 0 /or

3, and ίfterβ are maps <3y S-^Fl with p]Ldi^σi for σi in (5.5) (l

PROOF. By definition, π,(F2) = 0 for ί>12, and πr(F,) = 0 for t>\\.

Moreover we see the second assertion since pf«^1?3=0.
Fix i with i<i<b. Then by the proof of Lemma 3.2 (ii), σt is factored

through as S-̂ -> S 3̂) -£-» K3, σ, ~σσ'. ησ~* since F2 is 6-connected; hence

for some σ: S^3)->F1. Thus Pi^^^ for σ^σσ'. q.e.d.

LEMMA 5.8. For the diagram (5.1), ίftere is a map
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with r2a2(ΨιΛ°i)~Joτ(ΨiΛσi)'' SΛS-»£, and φα2~*: Σ/\Fl-+Ω2K'.

PROOF. (Ωh)j0 = Ω(hjf): Ω2K0->ΩKί=Γle

i-l} K(Z/3, m,- 1), and so

((Ωh)j0τ)*ctePH2n-l(Σ; Z/3) ® P//*(/C3; Z/3) for ί = m f - 1

by (5.5). On the other hand, it is well known that

H*(K3; Z/3) = Λ(?3, <^< /> ^<0>ί3 |/>0) ® Z/3[jS^<'> ^<0)?3|/^oL

(^(0 = ̂ 3^ Thus, by dimensional reason, we see that

((Ωh)j0τ)*ct = cζ®(β^l3Y' (ceZ/3, n' = 3e~l) for ί = m e _, - 1,

and ((Ωh)j0τ)*ct = Q otherwise. Define a map τ: Γ Λ KΊ-+ΩKί by

τ*ct = cζ (x) (βcΊ)"' for ί = m ί,_1 — 1 and τ*f f = 0 otherwise.

Since η*cΊ = ̂ lc3 and p2η = η\ by definition, these imply that

(Ωh)j0τ - τ(l Λ i y , ) = τ(\ Λ p 2 ) ( \ / \ η ) .

Therefore we have the homotopy commutative diagram

\joT

-E2-^—^ E, -®*ϊ-> ΩK,

Here (\/\ή)(\ Λ/?,)^* by definition. Moreover, by the definitions of g and h

in (2.3), (gh)*ten = rjc*2n and so Ω(gh)~*. Also

hence ((Ω^)τ(l Λ /?2))*ί6/J_1 =0. Thus (Ω^f)τ(l Λp 2 )~*. Therefore we can
apply Proposition 4. 1 to get two maps

α2: Γ Λ F t - > £2 with r2α2 =70τ(l A p j ) and α 2 : Σ Λ K3 - > Ω2X'

with ά2(l Λ Jp 1)^φα 2, because ^ in Proposition 4.1 for the above diagram is
equal to φ by a suitable homotopy Ω(gh)~* (see the proof of Proposition 2.1).

Now we have the first homotopy for α2 using Lemma 5.7; and the second
one because p* = 0 in dimension ^3 by Lemma 5.7, Ω2K' = K(Z/3, 6n — 2) and

q.e.d.

PROOF OF PROPOSITION 3.4. By Lemma 5.2, we see that
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d((Ωh)Si) ~ (QA)Φι) - (QΛ)M> = Ω(hjf)d0 ~ *,

because Ωh and Ω(hjf) are given by some mod 3 Steenrod operations of positive

degree which are trivial on //%SΛS; Z/3). Therefore (Ωfys^: S-->ΩKl =

Π;=-ι K(Z/39 Wi-1) is an //-map. Thus for any f = m i - l , ((ΩΛ)s1)*ίr is
primitive, and so it is 0 by dimensional reason. Hence (Ω/ι)s1~*, and we have

a lift

s: S - > £2

 = £ΩΛ with r2s = s ι» i e » '"I'V ~ so and S*M = ξ t .

Now we consider the maps

(5.9) 5ΛS-^r=(lΛF1)
f e-^^2 = ̂ βΛ (Γ = S(V)

given by δi=(Yl^=ί(φi/\σi))A and <52

 = α2 ..... α2 (b times), where ψi9 σt and α2

are the maps in (5.4) and Lemmas 5.7-8. Then

r2δ2δί = r2(u2(ψί/\σl) ..... «2(^bΛ

^ JoWΨi Λ ^i) ..... τ(Ψb Λ σfr

by Lemmas 5.8, 5.6 and 5.2, since r2 = Ωrh anάj0 = Ωjf are //-maps. Thus

(5.10) j jd + ̂  - d(s): S Λ S - > E2 for some d: S Λ S - > Ω2X t .

Here, by dimensional reason, we see that

(5.11) d*tt-γeDH*®H* + //* ® D//* for any ί = m, - 1,

where //* = H*(S; Z/3), and D//* is the decomposable module of H*. Consider

the maps

where y! is the projection and ?*£„. = <!;,• (in Lemma 3.2). Then we see that

(5.12) Im[y*: //*(KΛS; Z/3)->H*] = D//*

for y = (γ2γί Λ l)/d : S - > X Λ S.

Thus by (5.10-12), there are two maps

(5.13) d ^ ^ Λ S Λ S - ̂ K! and d2: S Λ K Λ S - > Ω2/C t with

d- d i ί y Λ l ) + d 2 ( lΛ y): S Λ S - >

Furthermore, by putting e(i)=l for />α, define

/,: K(Z/3, nf) - > Kt = K(Z/3, Λ<+1) x
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by f f t t = βcn. for t = nt+l and f f c t = ̂ (j)cn. for t = ni + 4 ?>j\ and consider the

homotopy fiber

r:E— >R of Π&fi' K — > Πfo* «ι

Then

(5.14) π,(£) = 0 for / > w t + 4 3έ'-1 = 10-3*-1 ( w , = 2 / ι - l , /ι = 3')

Furthermore (ΓL/i)y2~* since y*(ΓL./ί)*^ = 0 f°r anv *» and so we see that

(5.15) y2

 = O>2 f°r some y 2 : S' - > £.

Moreover the mod 3 Steenrod algebra j/ acts trivial ly on Im [r*: //*(X; Z/3)->

//*(£; Z/3)] by definition, and φjl=Ω2g. Thus

(5.16) <PJ\dι(rΛ ] Λ 1) ~ * and φjιd2(\ Λ Γ Λ 1) ~ *.

On the other hand, p: 5-^5 is defined by

p = p(4w-3)= 1 x p'(4w-3): S = Γ x S'(4n-3) - >S = Σ x 5',

and S'(4n — 3) is (4n — 3)-connected. Therefore,

727 iP = y2p'(4n-3)pr2:S - > S'(4w-3) - > S' - > £

is homotopic to * by (5.14) and 4n — 3> \Q-3e~}. Thus

(5.17) ( r Λ l ) y = y and yp ~ * for γ = (y2y\ Λ 1)J: 5 - > E Λ S.

Now using 7, <5,, (52 in (5.9) and the above maps, we define

by A , = ( ( y Λ l ) x ( l A y ) x 3 t ) J and A 2 = ί / 1 J 1 (rΛ 1 Λ \)prl+jld2(\ Λ Γ Λ 1) pr2 +
(52pr3. Then, noticing that j\ and ^ are //-maps, we see that d(s)~λ2λί by

(5.10), (5.13) and (5.17), and φλ2^φδ2pr3 ~(<pα2 (pα2)pr3 ^* by (5.16) and
Lemma 5.8. Moreover, πf(F,) = 0 for t> 11 by Lemma 5.7, and S = IxS/(4n-3)
is (2n-2)-connected. Thus σ ίp-*:S-^F1 because 2n-2 = 2 3e-2> 11 by
the assumption e>2. Therefore

(Π?=ι

by (5. 17) and (5.9). This completes the proof of Proposition 3.4. q. e. d.
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