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1. Introduction

This note is concerned with the problem of nonexistence of entire solutions for
the differential inequality

1) Au = k(x)e", xeR",

where n= 2, A is the n-dimensional Laplacian and k(x) is a nonnegative continuous
function in R". An entire solution u(x) of inequality (1) is defined to be a real-
valued function of class C?(R") which satisfies (1) at every point of R". The following
result was established by Oleinik [5]:

THEOREM 0.  Suppose that k(x)= 60(|x|)|x| =2 for large |x|, where || denotes the
Euclidean length, 0(t)— o0 as t— oo and 0(t)t 2 is a nonincreasing function of t. Then
inequality (1) has no entire solution.

The purpose of this note is to improve and extend this result. First, we derive
nonexistence criteria for (1), sharper than Oleinik’s, on the basis of the consideration
of certain ordinary differential inequalities. Then we attempt to obtain an extension
of Theorem 0 to more general elliptic inequalities of the form (16). For other related
results, we refer the reader to the papers [2, 3, 4, 6] and the references contained
therein.

2. Results

First, we introduce the notation
k. (r)=min,, - k(x) for r=0,
and for an entire solution u(x) of (1), we put

1

ﬁ(r)=a:rﬁj'x|=ru(x)dS for rg(),
where w, denotes the surface area of the unit sphere in R", i.e., #(r)is the spherical

mean of u(x) over the sphere |x|=r. An improvement of Theorem 0 in the two-
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dimensional case is given by the following theorem.

THEOREM 1.  Let n=2. Suppose that there exists a constant o€ (0, 1/2) such that
) f rrt2e 1k, (r)]%dr=c0 forall ¢>0.

Then inequality (1) has no entire solution.
To prove this theorem, the next lemma is needed.
LeEMMA 1. Consider the ordinary differential inequality
©)] @)Y za@)e, 12120,

where p(t) is a positive continuous function for t=t,, and a(t) is a nonnegative
continuous function for t 2 t,. Let v(t) be a continuous function for t 2 t,. Suppose that
there exists a constant a€(0, 1/2) such that

0 [a(t)]aecu(t)
4 ————dt=00 or all ¢>0.
@ | B s
Then inequality (2) has no solution y(t) which is defined for large t and satisfies
®) p@)y ()2 C, and y(1)2 Cyo(r)

for some positive constants C, and C, there.

Proor oF LEMMA 1. Suppose the contrary. Let y(z) be a solution of (3)satis-
fying (5) for ¢ 2 ¢, 2 t,. Motivated by Wong [7], we put w(¢)=p(t)y’(1)e’®. Then we
have

w(t)= (p(t)y (1)) + p(t)e [y (1)1?
2 a()e™® + p()e Ly (1)1
a(r)e’®

(1)y'(1)

=w(t) +y’(t)), t2t,

which implies

[a() T Ly (1) >
p(]* ’

where C=a"%(1—a)*~!>0. We rewrite this inequality as

IO [p(r)y ()] -2~
(01

w(t) 2 Cw(1) 121,

’

©) w (1) 2 Cw(n)]+o- L2

where 6 >0 is chosen so small that
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0+2x=<1 and d<a,
which is possible, by our assumption. From (5) and (6) it follows that

[a(t)]aecz(a—é)u(t)

1™~

for some C>0. Dividing (7) by [w(¢)]! * and integrating over [z, o), we have

™ w ()2 Clw()]

t._Z.tb

dt < o0,

J‘oo [a(t)]aecz(a-&)v(t)
. PO

which contradicts (4). This completes the proof of Lemma 1.

PRrOOF OF THEOREM 1. Let u(x) be an entire solution of inequality (1). It is
easily seen from Jensen’s inequality that the spherical mean u(r) of u(x) satisfies the
following:

8) (rd' (r)) 2 rk, (r)e'® for r>0,

#(0)=0 and #(r)=0 for r>0.
It follows that there are positive constants C,, C, and R such that
) ri'(r)2C, and u(r)=C, logr for r=R

However this is impossible, since applying Lemma 1 to (8), we see that condition (2)
precludes solutions #(r) of (8) satisfying (9).

In the case of n= 3, the method used in the proof of Theorem 1 does not work
effectively. A slight improvement of Theorem 0 of different nature will be given
below.

THEOREM 2. Let n=3. Suppose that there exists an integer m22 such that
(10) lim inf,, ,r? log* r-log? r---log™ r-k,(r) >0,

wherelog' r=logr, log***r=log(log’r),v=1,2,.... Then inequality (1) has no entire
solution.

ProOF. Let u(x) be an entire solution of (1). As was stated in the proof of
Theorem 1, the spherical mean #(r) satisfies

(11) (" (r)) 2k, (r)e® for r>0,
#(0)=0 and @'(r)=0 for r>0.

For economy of notation we use the letter C to denote various positive constants.
By (10) and (11) we have
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Ccri3
1 Tl (r)) 2
(12) ("t (r)) 2 fogrlogir-Tog"r for large r,

say r=r,>0. Now we show that (12) also holds when m is replaced by m—1 in this
expression. Integrating (12) on [r,, ] with use of integration by parts, we find

o "2 _, (log's---log™sy
iz ———— e C,
w(r)z <log1r---log"‘r C+ J:os (logxs-"log'”s)zds +

which implies

wr)= for large r,

rlog*r---log™r
say r=r, =r,. An integration of the above yields
(13) i(r)= C+ Clog™*'r > log(log™r)’

for r=r,=r,, where we may assume that 6e(0,1) without loss of generality.
Combining (13) with inequality (11) and using (10), we have

cr3
log'r---log™ 1r-(log™r)* ¢

(r" ' (r))y =

for r=r,. Integration by parts of the above gives

C
rlog!r---log™ r-(log™r)! —°

w(r)z

for r=r;=r,, whence it follows that
(14) ii(r) = C(log™r)
for r=r, =r;. From inequality (11) combined with (14), we obtain

cr3 _exp[C(log"r)’]
log!r---log™ ™ 'r log™r

and so

cr3
n—1-s ">
(r u(r))=log1r---log"‘"1r
for r=r5;=r,. Thus (12) also holds even if m is replaced by m—1.
Repeating the above reduction, we finally conclude that there exists an e€(0, 1)

such that

(15) u(r) 2 C(logry
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for r=r*>0. now we put v(x)=1(|x|)/2. Then v(x) is defined in the whole space R",
and satisfies in view of (11) and (15)

Cexp[C(log|x[)*]
|x|*1og|x]

. pt(x)

Av(x) 2

for large |x|. Applying Theorem 0, we are led to a contradiction immediately. This
completes the proof.

ExamPLE 1. When n=2, some improvements of Theorem 0 have been
obtained by Ni [4]. One of them asserts that if

ky(r)2

Plogr for large r

for some C>0, then inequality (1) has no entire solution. But according to our
Theorem 1, the same conclusion holds under a weaker condition that

C
> ___
k,(r)= (logr)’ for large r

for some C>0 and ¢=1.

Now let us attempt to extend Theorem O of Oleinik for more general elliptic
inequalities of the form

0%u ou
=Y"._.a.. n__b. > u n
(16) Lu Z"’_la”(x)a_)cié;;+Z'_1b'(x)6_xi“k(x)e’ xeR",

where n22, x= (x;), a;j(x), b;(x) are continuous for all , j, and the symmetric matrix
(a;;(x)) is positive definite for each xeR". As in [5] we begin with the following
lemma.

LEMMA 2. Let R>0, x°= (x?)eR" and ko =inf , _ ., <rk(x)>0. Suppose that
u(x) satisfies Lu 2 k(x)e* in|x — x°| £ R and that there exists a constant T (x°, R) such
that

T(x° R) 2 Sup, xo-y, —r2i=1(@; () +b:(») (x?—») (x? =)

and
0 2 n 0 0
T (x°, R)gsquﬁ—y.=RWZ;‘,;‘=1“UU’) (¥ —»i) (xj —¥i)s
where y=(y;). Then, we have

"% < 4T (x°, R)/(koR?).
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Proor. We adapt the argument due to Oleinik [5]. Put
a=4T (x°, R)R*/k,
and define
V(x)=a/(R*~r*)?,  where r=|x—x"].

Then V (x) satisfies

a7 LlogV (x)]1<k(x)V(x), |x—x°|<R
In fact,
_LV(x) 1 n av ov
L[logV (x)]= 7(';)— - ,*,z—(x—)Zi,F 1 aij(x)é;i‘ 5_x]

=4(R*—r*) "2 (Xt 1 (@) + by(x) (x;—x7)) (R*—r?)

+237 = 1a;5(x) (x;—x?) (xj_x?))
S4HR*—r*) (T (x° R) (R®—r*)+2%} ;- 1a(x) (x;—x7) (x;—x7))
<4(R*—r?)"%(T (x°% R) (R*—r*)+ T (x° R)r?)
=4(R*—r?)72T (x°% R)R*<k(x)V (x), |x—x° <R

Next we put v(x)=¢"> and assert that

(18) o(x)< V(x), |x—x°| <R

Suppose the contrary. Since logv(x)—logV (x)— —o0 as [x—x°|—>R, logv(x)
—log V (x) takes a positive maximum in [x — x°| < R at some point x'. Clearly v(x’)
>V (x'). Noting that L [logv(x)]=k(x)v(x) in |x —x°| < R and using (17), we find

L[logv—logV] (x)= k(') [v(x)—V (x')]>0.

But this contradicts the fact that x’ is a point of maximum of logv(x)—logV (x).
Thus (18) holds. By putting x=x° in (18), we have the desired conclusion.

THEOREM 3. Suppose that there exist functions T (r) and m(r) such that

(19) T (r) = sup e Yi=1@; () +b;0) (x;—y:))s
yYi=r/2 )
(20) T(r)z supm—I;.I:::/z,x*y mZi,j=laij(y) (xi—y:) (xj_yj)’

1) inf, 25 % s3r2k(x) 2 m(r) >0
for large r, say r= R,, and

(22) T (r)/(m(r)r>)>0 as r—oo.
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Then inequality (16) has no entire solution.

Proor. Let u(x)be an entire solution of (16). Consider a point x such that |x]
= R,. Applying Lemma 2 to the ball {y: |y — x| <|x|/2} and taking account of the fact
that |y — x| <|x|/2 implies |x|/2 <|y| < 3|x|/2, we find

) < 167 () .
- (lnf|x|/2§ 371 §3|x|/2k(y)) ‘xlz

and hence
e“® < 16T (Ix])/(m(|x])\x|?)
This shows that €“®—0 as |x|—o00. On the other hand, it is easy to see that

ou ou

L[e™M]= e"""(L u(x)+ 27 5= 1 a(x Vo ) 20, xeR"

ox;

Hence by the maximum principle e“¥ =0 in R", and this contradiction proves our
assertion.

COROLLARY. Suppose that there exist constants a, b, c>0 and o, B, 6€R such
that o>max{a, f+1} and

ayx)Saxf, ) =bixlP, 1<i, j=n
k(x)z clx|" "2
for sufficiently large |x|. Then inequality (16) has no entire solution.

Proor. It is easily seen by our assumption that the function T (r)=C,(r*
+rf* V) satisfies (19) and (20) provided C, >0 is large enough, and that the function
m(r)=C,r°~? satisfies (21) and (22) provided C,>0 is small enough. Thus
according to Theorem 3, inequality (16) has no entire solution.

ExawmpLE 2. Consider the equation
(23) Lu=f(x)e", xER", nzx3,

where L is the same operator as in (16). Suppose that a;;(x), b;(x) and f'(x) are locally
Holder continuous in R". Suppose moreover that the limits a; j=hm o a;i(x)
exist and the matrix (a;;) has at least three positive eigenvalues, that b;(x)=o(|x| ')
as |x|— o0, and that

@4 If(x) <Clx|~27*  for large |x]

for some C, u>0. Then by applying Friedman’s existence theorem [1, Corollary 2],
equation (23) is shown to have a bounded entire solution. Actually there exists a
bounded function w(x) such that
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Lw(x)=—(1+|x])"27*,  xeR"

and it is easily verified that the functions u, (x)=w(x)— C; and u,(x)= —w(x)—C,,
respectively, become a supersolution and a subsolution of (23) satisfying u;, (x)
=u,(x) in R" provided C,, C,>0 are sufficiently large. Therefore the well-known
supersolution and subsolution method ensures the existence of an entire soslution
u(x) of (23) such that u,(x)<u(x)<u,(x) in R".

On the other hand, if (24) is replaced by the condition that

fx)2Clx|~***  for large |x|

for some C, u> 0, with the other conditions being kept to hold, then by Corollary,
equation (23) admits no entire solution.
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