On Lie algebras in which every subalgebra is a subideal

Masanobu HONDA (Received December 2, 1987)

Introduction

Heineken and Mohamed [4] have constructed a Fitting, metabelian group with trivial centre in which every subgroup is subnormal. In Lie theory, Unsin [10] has constructed a Fitting, metabelian Lie algebra with trivial centre in which every subalgebra is a subideal. As in group theory, the class \mathfrak{D} of Lie algebras in which every subalgebra is a subideal is one of the typical classes of generalized nilpotent Lie algebras.

Recently Brookes [2] has proved that a hyperabelian group in which no nontrivial section is perfect and in which every subgroup is subnormal, is soluble ([2, Theorem A]), and he has concluded that a hypercentral group in which every subgroup is subnormal, is soluble ([2, Corollary A]). Subsequently, generalizing [2, Theorem A], Casolo [3] has proved that a group in which no non-trivial section is perfect and in which every subgroup is subnormal, is soluble ([3, Theorem]). The purpose of this paper is to present the Lie-theoretic analogues of [2, Theorem A and Corollary A] and [3, Theorem].

We shall first prove that $\mathfrak{D}\cap \acute{E}(\lhd)\mathfrak{A}\cap (\acute{E}\mathfrak{A})^Q \leq \mathfrak{E}\mathfrak{A}$ (Corollary 1), where $\acute{E}(\lhd)\mathfrak{A}$ is the class of hyperabelian Lie algebras, $(\acute{E}\mathfrak{A})^Q$ is the largest Q-closed subclass of the class of hypoabelian Lie algebras and $\mathfrak{E}\mathfrak{A}$ is the class of soluble Lie algebras. The group-theoretic analogue of this result is also true and is a slight generalization of [2, Theorem A]. We shall secondly prove that over any field \ref{t} of characteristic zero $\mathfrak{D}\cap (\acute{E}\mathfrak{A})^{QS} \leq \mathfrak{E}\mathfrak{A}$ (Theorem 2), where $(\acute{E}\mathfrak{A})^{QS}$ is the largest Q-, s-closed subclass of the class of hypoabelian Lie algebras and is equal to the class of Lie algebras in which no non-trivial section is perfect.

1.

Throughout this paper we always consider not necessarily finite-dimensional Lie algebras over a field t of arbitrary characteristic unless otherwise specified. Notations and terminology are based on [1]. But for the sake of convenience we list the terms that we use here.

Let L be a Lie algebra over a field f and n be a non-negative integer. By $H \leq L$ (resp. $H \lhd L$, $H \Leftrightarrow L$, $H \lhd {}^nL$, $H \sin L$), we mean that H is a subalgebra (resp. an ideal, a characteristic ideal, an *n*-step subideal, a subideal) of *L*. If *H* si *L*, then there exists the least integer *n* with respect to $H \triangleleft {}^{n}L$, which we denote by si (L:H) in [5]. For $H \leq L$, H^{L} denotes the smallest ideal of *L* containing *H*. For a positive integer *n*, L^{n} denotes the *n*-th term of the lower central series of *L*. Angular brackets $\langle \rangle$ denote the subalgebra generated by their contents.

A class \mathfrak{X} is a collection of Lie algebras together with their isomorphic copies and the 0-dimensional Lie algebras. \mathfrak{A} (resp. E \mathfrak{A} , \mathfrak{A}^n , RE \mathfrak{A} , \mathfrak{E} , \mathfrak{F} , \mathfrak{H} , \mathfrak{N} , \mathfrak{N}_n , \mathfrak{Z}) is the class of Lie algebras which are abelian (resp. soluble, soluble of derived length $\leq n$, residually soluble, Engel, finite-dimensional, Fitting, nilpotent, nilpotent of class $\leq n$, hypercentral). \mathfrak{D} is the class of Lie algebras in which every subalgebra is a subideal. For a positive integer s, $\mathfrak{D}_{s,s}$ is the class of Lie algebras L such that $\langle x_1, \dots, x_s \rangle \prec^s L$ for all $x_i \in L$ $(1 \leq i \leq s)$.

Let \mathfrak{X} be a class of Lie algebras. L is called an \mathfrak{X} -algebra if $L \in \mathfrak{X}$. An ascending \mathfrak{X} -series $\{L_{\alpha}: \alpha \leq \rho\}$ of L is a family of subalgebras of L such that

- (a) $L_0 = \{0\}$ and $L_\rho = L;$
- (b) $L_{\alpha} \triangleleft L_{\alpha+1}$ and $L_{\alpha+1}/L_{\alpha} \in \mathfrak{X}$ for any ordinal $\alpha < \rho$;
- (c) $L_{\mu} = \bigcup_{\alpha < \mu} L_{\alpha}$ for any limit ordinal $\mu \leq \rho$.

L is called a hyper \mathfrak{X} -algebra if L has an ascending \mathfrak{X} -series $\{L_{\alpha}: \alpha \leq \rho\}$ such that $L_{\alpha} \lhd L$ for all $\alpha \leq \rho$. The class of hyper \mathfrak{X} -algebras is denoted by $\mathfrak{E}(\lhd)\mathfrak{X}$. In particular, $\mathfrak{E}(\lhd)\mathfrak{A}$ is the class of hyperabelian Lie algebras. For an ordinal α , $L^{(\alpha)}$ denotes the α -th term of the transfinite derived series of L. We use $L^{(*)}$ to denote the intersection of all the $L^{(\alpha)}$'s. L is said to be hypoabelian if $L^{(*)} = \{0\}$. $\mathfrak{E}\mathfrak{A}$ is the class of hypoabelian Lie algebras. $L \in \mathbb{R}\mathfrak{E}\mathfrak{A}$ iff $L^{(\omega)} = \{0\}$. It follows that $\mathbb{R}\mathfrak{E}\mathfrak{A} \leq \mathfrak{E}\mathfrak{A}$. \mathfrak{X} is s-closed (resp. Q-closed) if $H \in \mathfrak{X}$ (resp. $L/H \in \mathfrak{X}$) whenever $H \leq L$ (resp. $H \lhd L$) and $L \in \mathfrak{X}$. We use \mathfrak{X}^Q (resp. \mathfrak{X}^{QS}) to denote the largest Q-closed (resp. Q-, s-closed) subclass of \mathfrak{X} .

As in group theory, we say that H/K is a section of L if $K \triangleleft H \leq L \cdot L$ is said to be perfect if $L^2 = L$. Then we have

LEMMA 1. $L \in (E\mathfrak{A})^{QS}$ if and only if no non-trivial section of L is perfect.

PROOF. Let \mathfrak{X} be the class of Lie algebras in which no non-trivial section is perfect. Since perfect hypoabelian Lie algebras must be 0-dimensional, we have $(\mathfrak{E}\mathfrak{A})^{QS} \leq \mathfrak{X}$. Let $L \in \mathfrak{X}$ and suppose that $L^{(*)} \neq \{0\}$. Since $L^{(*)}$ is a non-trivial section of L, $L^{(*)} = (L^{(*)})^2 < L^{(*)}$, a contradiction. It follows that $\mathfrak{X} \leq \mathfrak{E}\mathfrak{A}$. Since \mathfrak{X} is Q-, s-closed, we have $\mathfrak{X} \leq (\mathfrak{E}\mathfrak{A})^{QS}$.

In this section we shall present the Lie-theoretic analogues of [2, Theorem A

and Corollary A].

We begin with the following

THEOREM 1. Let $L \in \mathfrak{D}$. If L has an ascending \mathfrak{A} -series $\{L_{\alpha} : \alpha \leq \rho\}$ such that $L_{\alpha} \prec L$ and $L/L_{\alpha} \in \mathfrak{M}$ for all ordinals $\alpha \leq \rho$, then $L \in \mathfrak{M}$.

PROOF. Assume that $L \notin \mathfrak{E}\mathfrak{A}$. Then there is the least ordinal $\mu \leq \rho$ with respect to $L_{\mu} \notin \mathfrak{E}\mathfrak{A}$. Clearly $\mu > 0$. Since $L_{\alpha} \in \mathfrak{E}\mathfrak{A}$ for all $\alpha < \mu, \mu$ is a limit ordinal. The method of proof is essentially that used by Brookes in proving [2, Theorem A]. We aim to construct a sequence $\{H_i\}_{i=1}^{\infty}$ of subalgebras of L_{μ} , strictly ascending sequences $\{n(i)\}_{i=1}^{\infty}$ and $\{s(i)\}_{i=1}^{\infty}$ of positive integers and a sequence $\{\alpha(i)\}_{i=1}^{\infty}$ of ordinals $< \mu$, which satisfy the following conditions:

(i) for each i > 1, H_i is a finitely generated subalgebra of $L_{\mu}^{(n(i-1))}$;

(ii) for each i > 1, $s(i) = si (K_{i,n(i-1)}/K_{i,n(i)}) (H_i + K_{i,n(i)})/K_{i,n(i)})$, where $K_{i,j} = L_{\mu}^{(j)} + L_{\alpha(i-1)} (j=1, 2, \cdots);$

(iii) for each $i \ge 1$, $\langle H_1, \dots, H_i \rangle \le L_{\alpha(i)}$.

We set $H_1 = \{0\}$, n(1) = s(1) = 1 and $\alpha(1) = 1$. Let i > 1 and suppose that those have been constructed up to the (i-1)-th terms. For convenience sake, we set n = n(i-1), s = s(i-1) and $\alpha = \alpha(i-1)$. Clearly $K_{i,1} \ge K_{i,2} \ge \cdots$. Suppose that $K_{i,j} = K_{i,j+1}$ for some $j \ge 1$. Then $(L_{\mu}/L_{\alpha})^{(j)} = K_{i,j}/L_{\alpha} = K_{i,j+1}/L_{\alpha} = (L_{\mu}/L_{\alpha})^{(j+1)}$. It follows that $(L_{\mu}/L_{\alpha})^{(j)} = (L_{\mu}/L_{\alpha})^{(*)} \le (L/L_{\alpha})^{(*)} = \{0\}$. Hence $L_{\mu}/L_{\alpha} \in \mathbb{R}$. Since $\alpha < \mu$, $L_{\alpha} \in \mathbb{R}$. Therefore we have $L_{\mu} \in \mathbb{R}$, a contradiction. Thus we obtain $K_{i,1} > K_{i,2} > \cdots$.

By using [1, Theorem 7.2.5], we can find a positive integer *m* such that $\mathfrak{D}_{s,s} \leq \mathfrak{N}_m$. Define n(i) = n + m + 1. Let ψ_i denote the natural map $K_{i,n} \to K_{i,n}/K_{i,n(i)}$. Suppose that si $(\psi_i(K_{i,n}): \psi_i(X)) \leq s$ for all finitely generated subalgebras X of $L_{\mu}^{(m)}$. Then we have $\psi_i(L_{\mu}^{(n)}) = \psi_i(K_{i,n}) \in \mathfrak{D}_{s,s} \leq \mathfrak{N}_m$. Hence $\psi_i(K_{i,n(i)-1}) = \psi_i(L_{\mu}^{(n+m)}) = \psi_i(L_{\mu}^{(n)})^{(m)} \leq \psi_i(L_{\mu}^{(n)})^{m+1} = \{0\}$ and therefore $K_{i,n(i)-1} = K_{i,n(i)}$. This is a contradiction. Thus there exists a finitely generated subalgebra H_i of $L_{\mu}^{(m)}$ such that si $(\psi_i(K_{i,n}): \psi_i(H_i)) > s$. Define $s(i) = \mathrm{si}(\psi_i(K_{i,n}): \psi_i(H_i))$. It is clear that $\langle H_1, \dots, H_i \rangle$ is a finitely generated subalgebra of L_{μ} . Since μ is a limit ordinal, there exists an ordinal $\alpha(i) < \mu$ such that $\langle H_1, \dots, H_i \rangle \leq L_{\alpha(i)}$. Therefore the *i*-th terms have been defined. Thus $\{H_i\}$, $\{n(i)\}, \{s(i)\}$ and $\{\alpha(i)\}$ can be inductively constructed.

We now set $H = \langle H_i: i = 1, 2, \dots \rangle$ and $r = \operatorname{si}(L_{\mu}: H)$. Since the sequence $\{s(i)\}$ is strictly ascending, there is a positive integer t such that r < s(t). Let ψ denote the natural map $L_{\mu} \rightarrow L_{\mu}/K_{t,n(t)}$. Then evidently $\psi|_{K_{t,n(t-1)}} = \psi_t$. Let i be a positive integer. If $i \leq t-1$, then $\psi(H_i) = \{0\}$ since $\langle H_1, \dots, H_i, \dots, H_{t-1} \rangle \leq L_{\alpha(t-1)} \leq K_{t,n(t)}$. If $i \geq t+1$, then $\psi(H_i) = \{0\}$ since $H_i \leq L_{\mu}^{(n(i-1))} \leq L_{\mu}^{(n(t))} \leq K_{t,n(t)}$. Hence we have $\psi(H)$ $= \langle \psi(H_i): i = 1, 2, \dots \rangle = \psi_t(H_t) \leq \psi_t(K_{t,n(t-1)})$. Since $\psi(H) \lhd^r \psi(L_{\mu}), \psi(H) = \psi_t(H_t)$ $\lhd^r \psi_t(K_{t,n(t-1)})$. Thus $s(t) = \operatorname{si}(\psi_t(K_{t,n(t-1)}): \psi_t(H_t)) \leq r < s(t)$. This is the final contradiction. Therefore we have $L \in \mathbb{E}\mathfrak{A}$. Masanobu Honda

COROLLARRY 1. $\mathfrak{D} \cap \acute{\mathbf{e}}(\triangleleft) \mathfrak{A} \cap (\acute{\mathbf{e}} \mathfrak{A})^{\mathbf{Q}} \leq \mathfrak{e} \mathfrak{A}$.

REMARK. The proof of Theorem 1 can carry over in group theory without difficulties. Therefore the group-theoretic analogues of Theorem 1 and Corollary 1, which are slight generalizations of [2, Theorem A], are also true.

COROLLARY 2. Let \mathfrak{X} be a class of Lie algebras. If $\mathfrak{Z} \leq \mathfrak{X} \leq \mathfrak{E}(\lhd)\mathfrak{F}$, then $\mathfrak{D} \cap \mathfrak{X} \leq \mathfrak{E}\mathfrak{A}$.

PROOF. By [1, Lemma 8.1.1] we have $\Im \leq (\widehat{E}\mathfrak{A})^{Q}$. It follows from Corollary 1 that $\mathfrak{D} \cap \Im \leq \mathbb{E}\mathfrak{A}$. Since $\mathfrak{D} \leq \mathfrak{E}$, by [6, Theorem 8] we have $\mathfrak{D} \cap \acute{E}(\lhd)\mathfrak{F} = \mathfrak{D} \cap \mathfrak{E} \cap \acute{E}(\lhd)\mathfrak{F}$ = $\mathfrak{D} \cap \mathfrak{Z}$.

In Theorem 1 the assumption that $L \in \mathfrak{D}$ is essential. In fact, the following proposition shows that in Theorem 1 we cannot replace the assumption that $L \in \mathfrak{D}$ by the assumption that $L \in \mathfrak{F}t$.

PROPOSITION 1. Over any field \mathfrak{k} , there exists a non-soluble, Fitting Lie algebra L having an ascending \mathfrak{A} -series $\{L_n : n \leq \omega\}$ such that $L_n \triangleleft L$ and $L/L_n \in \operatorname{RE}\mathfrak{A}$ for all $n \leq \omega$.

PROOF. We here consider the McLain Lie algebra $L = \mathcal{L}_t(N)$ over $\mathfrak{k}(cf. [1, p. 111])$, where N is the set of positive integers with natural ordering. Then L has basis $\{a_{ij}: i, j \in N, i < j\}$ with multiplications $[a_{ij}, a_{kl}] = \delta_{jk}a_{il} - \delta_{li}a_{kj}$. It is well known (cf. [1, p. 119]) that $L \in \mathfrak{F}t$. We can easily verify that $L^{(n)} = \langle a_{ij}: j - i \ge 2^n \rangle \neq \{0\}$ $(n = 0, 1, \cdots)$ and $L^{(\omega)} = \bigcap_{n < \omega} L^{(n)} = \{0\}$. Therefore $L \in \mathbb{RE}\mathfrak{A} \setminus \mathbb{E}\mathfrak{A}$. For each positive integer n, we set $L_n = \langle a_{ij}: i \le n \rangle$ and $K_n = \langle a_{ij}: n < i \rangle$. Then it is not hard to see that $L_n \lhd L = L_n + K_n$ and $L_n \cap K_n = \{0\}$. Set $L_0 = \{0\}$ and $L_\omega = L$. For any positive integer n, we have $L_n/L_{n-1} = \langle a_{nj} + L_{n-1}: n < j \rangle \in \mathfrak{A}$. Since $L = \bigcup_{n < \omega} L_n$, $\{L_n: n \le \omega\}$ is an ascending \mathfrak{A} -series of ideals of L. Furthermore, it can be easily seen that for any positive integer n, $L/L_n \cong K_n \cong L \in \mathbb{R}\mathfrak{A}$.

3.

In this section we shall consider \mathfrak{D} -algebras over a field t of characteristic zero and present the Lie-theoretic analogue of [3, Theorem]. The method of proof is essentially that used by Casolo in proving [3, Theorem].

We need the following

LEMMA 2. Let L be a Lie algebra over a field \mathfrak{t} of characteristic zero. If $\{0\} \neq L \in \mathfrak{D} \cap (\mathfrak{k}\mathfrak{A})^{QS}$, then L has a non-trivial abelian ideal.

PROOF. We denote by n(L) a minimal member of $\{si(L:\langle x \rangle): 0 \neq x \in L\}$ and show the result by using induction on n(L). If n(L) = 0, then L is 1-dimensional and

658

so the result is true. Let $n(L) \ge 1$. There is a non-zero element x of L such that $n(L) = \operatorname{si}(L: \langle x \rangle)$. Set $H = \langle x \rangle^L$. Then $\{0\} \ne H \in \mathfrak{D} \cap (\check{\mathbf{E}}\mathfrak{A})^{QS}$. Since si $(H: \langle x \rangle) = n(L) - 1$, we have n(H) = n(L) - 1. By inductive hypothesis, H has a non-trivial abelian ideal A. Let F be the Fitting radical of H. Since $A \le F$, $F \ne \{0\}$. By [1, Corollary 6.3.2] we have F ch $H \lhd L$, so that $F \lhd L$. As in the proof of [9, Lemma 4.2], we can show that $F \in \check{\mathbb{E}}(\lhd)\mathfrak{A}$. It follows from Corollary 1 that $F \in \mathfrak{D} \cap \check{\mathbb{E}}(\lhd)\mathfrak{A} \cap (\check{\mathbb{E}}\mathfrak{A})^Q \le \mathfrak{E}\mathfrak{A}$. Since $\{0\} \ne F \in \mathfrak{E}\mathfrak{A}$, there is a positive integer m such that $F^{(m-1)} \ne \{0\}$ and $F^{(m)} = \{0\}$. Since $F^{(m-1)} \operatorname{ch} F \lhd L$, $F^{(m-1)}$ is a non-trivial abelian ideal of L.

THEOREM 2. Over any field \mathfrak{t} of characteristic zero, $\mathfrak{D}_{\cap}(\mathfrak{e}\mathfrak{A})^{QS} \leq \mathfrak{e}\mathfrak{A}$.

PROOF. Let $L \in \mathfrak{D} \cap (\mathfrak{k}\mathfrak{A})^{QS}$ and let M be any non-zero homomorphic image of L. Since $\{0\} \neq M \in \mathfrak{D} \cap (\mathfrak{k}\mathfrak{A})^{QS}$, by Lemma 2 M has a non-trivial abelian ideal. Owing to [7, Lemma 1.1], we have $L \in \mathfrak{E}(\lhd)\mathfrak{A}$. Thus by Corollary 1 we obtain $L \in \mathfrak{D} \cap (\mathfrak{k}\mathfrak{A})^Q \leq \mathfrak{E}\mathfrak{A}$.

It can be easily deduced from Theorem 2 and Lemma 1 that over any field \mathfrak{k} of characteristic zero, if no non-trivial \mathfrak{D} -algebra is perfect, then every \mathfrak{D} -algebra is soluble.

4.

In group theory Smith [8] has constructed a non-nilpotent, hypercentral, metabelian group in which every subgroup is subnormal. In Lie theory, however, it is still an open question whether every hypercentral \mathfrak{D} -algebra is nilpotent. In this section we shall show that in order to give the answer to this question it is sufficient to consider whether every hypercentral, Fitting, metabelian \mathfrak{D} -algebra is nilpotent.

LEMMA 3. Let $L \in \mathfrak{D} \cap \mathfrak{A}^2$ and $H, K \leq L$. Then:

(1) If $H \in \mathfrak{N}$, then $H^L \in \mathfrak{N}$.

(2) If H, $K \in \mathfrak{N}$, then $\langle H, K \rangle \in \mathfrak{N}$.

PROOF. (1) Since $L \in \mathfrak{D}$, H si L. There are non-negative integers r and s such that $H^{r+1} = \{0\}$ and $H \lhd {}^{s}L$. Set n = r + s. Then it is clear that $[L, {}_{n}H] = H^{n+1} = \{0\}$. Set $A = L^2$. Since $H \le H + A \lhd L$, we have $H^{L} \le H + A$. By modular law $H^{L} = H + (H^{L} \cap A)$. Since A is an abelian ideal of L, by using induction on k we can easily see that for all non-negative integers k, $(H^{L})^{k+1} = H^{k+1} + [H^{L} \cap A, {}_{k}H]$. It follows that $(H^{L})^{n+1} \le H^{n+1} + [L, {}_{n}H] = \{0\}$. Hence $H^{L} \in \mathfrak{N}$.

(2) By (1) H^L , $K^L \in \mathfrak{N}$. Therefore by Fitting's theorem (cf. [1, Theorem 1.2.5]) we have $H^L + K^L \in \mathfrak{N}$. Since $\langle H, K \rangle \leq H^L + K^L$, $\langle H, K \rangle \in \mathfrak{N}$.

PROPOSITION 2. $\mathfrak{D} \cap \mathfrak{F} \cap \mathfrak{A}^2 \leq \mathfrak{N}$ if and only if $\mathfrak{D} \cap \mathfrak{F} \leq \mathfrak{N}$.

PROOF. Assume that $\mathfrak{D} \cap \mathfrak{F} \cap \mathfrak{A}^2 \leq \mathfrak{N}$ and let $L \in \mathfrak{D} \cap \mathfrak{F} \cap \mathfrak{A}^2$. Then by

Masanobu Honda

Lemma 3 (1) we have $L = \sum_{x \in L} \langle x \rangle^L \in \mathfrak{F}t$. Therefore $L \in \mathfrak{N}$. It follows that $\mathfrak{D} \cap \mathfrak{Z} \cap \mathfrak{A}^2 \leq \mathfrak{N}$. Since the class $\mathfrak{D} \cap \mathfrak{Z}$ is s-, q-closed, by using [1, Proposition 7.1.1 (d)] we see that $\mathfrak{D} \cap \mathfrak{Z} \cap \mathfrak{A}^n \leq \mathfrak{N}$ for all positive integers *n*. Hence $\mathfrak{D} \cap \mathfrak{Z} \cap \mathfrak{E} \mathfrak{A} \leq \mathfrak{N}$. Therefore, by using Corollary 2, we have $\mathfrak{D} \cap \mathfrak{Z} \leq \mathfrak{N}$. The converse is trivial.

References

- [1] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] C. T. B. Brookes: Groups with every subgroup subnormal, Bull. London Math. Soc. 15 (1983), 235–238.
- [3] C. Casolo: On groups with all subgroups subnormal, Bull. London Math. Soc. 17 (1985), 397.
- [4] H. Heineken and I. J. Mohamed: A group with trivial centre satisfying the normalizer condition, J. Algebra 10 (1968), 368-376.
- [5] M. Honda: Joins of weak subideals of Lie algebras, Hiroshima Math. J. 12 (1982), 657-673.
- [6] T. Ikeda and Y. Kashiwagi: Some properties of hypercentral Lie algebras, Hiroshima Math. J. 9 (1979), 151–155.
- [7] Y. Kashiwagi: Supersoluble Lie algebras, Hiroshima Math. J. 14 (1984), 575-595.
- [8] H. Smith: Hypercentral groups with all subgroups subnormal, Bull. London Math. Soc. 15 (1983), 229-234.
- [9] S. Tôgô, M. Honda and T. Sakamoto: Ideally finite Lie algebras, Hiroshima Math. J. 11 (1981), 299-315.
- [10] W. Unsin: Lie-Algebren mit Idealisatorbedingung, thesis, Univ. of Erlangen-Nürnberg, 1972.

Niigata College of Pharmacy