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Introduction

Theory of foliated Riemannian manifolds has been studied by many authors in
the name of fibred spaces ([3]) or foliated manifolds ([8], [14]) by use of
Riemannian submersions ([7]). K. Ogiue ([5], [6]) studied relations between an
almost contact structure and an almost complex structure induced in the base space
of fibering. On the other hand, A. Morimoto ([4]) defined an almost complex
structure in the product of two almost contact spaces. Y. Tashiro and the present
author ([12]) have recently induced an almost complex structure in the total space
of a fibred Riemannian space, the base space and each fibre of which are almost
contact, and investigated relations among their structures.

The purpose of this paper is to study fibred spaces with almost contact metric
structure induced from the base space with almost complex structure and each fibre
with almost contact metric structure of general dimensions. A typical example of
these is the Hopf fibering π: S4n + 3(l)^>QP(ή) with totally geodesic fibre S3 (cf. [2],

In §1, we shall summarize fundamental properties and known results of the
fibred Riemannian space. We shall induce, in §§2 and 3, an almost contact metric
structure on the total space by use of the almost complex structure on the base space
and almost contact metric structure on each fibre and discuss relations of them. §4 is
devoted to the study of space form and we shall prove that the base space is locally
Euclidean if the total space is Sasakian space form with conformal fibres. An
example having this property will be given. In the last section, we shall investigate
relations between the integrability of the almost complex structure and the
normality of the induced almost contact metric structure on the total space by use of
Nijenhuis tensors.

The author expresses his hearty thanks to his teacher Y. Tashiro who suggested
this problem and gave him many valuable advices.

§1. Fibred Riemannian spaces

Let {M, M, g, π} be a fibred Riemannian space, that is, {M, g} is an m-
dimensional total space with Riemannian metric g, M an n-dimensional base space,
π: M-*M the projection with maximum rank n. The fibre passing through a point
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PeM is denoted by M(P) or generally M and the metric tensor g is projectable.

Manifolds, geometric objects and mappings we deal with are supposed to be of

class C00 and to be connected. Throughout this paper the range of indices are as

follows:

ft, I,;, k,l=l, 2,..., m,

α, b, c, d,e=l, 2,..., n,

α, /?, y, (5, ε = n + 1,..., m,

Λ, £, C, D,E=l, 2,... , m,

P , β , K , S = l , 2 , . . . , m , m + l ,

The summation convention on repeated indices will be used with respect to their

own ranges.

We take a coordinate neighborhoods (ϋ, zh) in M and (U, xa) in M such that

π(O)=U9 where zh and xfl are coordinates in Ό and U respectively. Then the

projection π: M^M can be expressed by equations

(1.1) xa = xa{zh)

which are differentiable functions of coordinates zh in ΰ with Jacobian (dxa/dzi) of

maximum rank n. Take a fibre M such that Mf] Όφφ. Then there are in Mf] Ό local

coordinates ya, and (xα, >̂ α) form a coordinate system in U.

If we put

(1.2) Ef^dxf/dz* and C α = 5z*/fl/,

then E" are components of a local co vector field Ea defined in ΰ for each fixed index

a, and Ch

a are those of a vector field Cα for each fixed index α. The vector fields Cα

form a natural frame tangent to M(P) and

(1.3) £/•<;', = 0.

We put g = (gji) in (ί7, zΛ) and (g3i) = {gjiy
1. The components of the induced

metric tensor g of the fibre M are then given by

(1.4) gyβ = gJiC
J

γc
i

β.

If we put

(1.5) gch = g^cE\ and (gba) = (gbaΓ\

then gf = (gcb) is the projection of g and the metric tensor of the base space M. We
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obtain

τ?h _ fjhin p b
^ a — 9 Qab^i »

and we put

C α — n naβΓh
c i — GihQ c β-

The frame (Ea, Ca) is dual to (Eb, Cβ). We write {EB) for (Eb9 Cβ) and (EΛ) for (£α,

Cα), if necessary.

Denoting by <£β the Lie derivation with respect to the vector field Cβ9 we have

(1.6) J?βE
a = 0, <?βCa = 0,J?βEb=-Pbβ*Ca, J?βC" = Pcβ"Ec,

where Pcβ

a are local functions in U

Denote by V the Riemannian connection of the total space {M, g}. It is known

that V is projectable and the projection V is the Riemannian connection of the base

space {M, #}, components of which are given by

We have the following equations (see [3], [12]):

( 1 ? ) %E\ = ΠbEjcE\ - Lcb"EfC\ + Lb%C/Eh

a - hfbC/Ch

a9

%C% = Lc

a

βEfEh

a - (Vc - Pcβ")EjcCh

a + hyβ

aC/E\

(1 8)

where Lcb

α, hyβ

a and / ^ are local functions in U and

Lc

a

β = Lcb*gbagφ hy\ = hyβ

ag**gba.

Putting Vc = E*e% and Vy = CJ

yVp we obtain

(1.9) %Eb = Lb

a

yEa-hy"bCa, %Cβ = hyβ

aEa + ηβCa

by use of (1.7). Hence /ιy/?

α are components of the second fundamental tensor with

respect to the normal vector Ea of each fibre M, Γyβ are coefficients of the

Riemannian connection V of the induced metric g in M and Lcb

a are coefficients of

the normal connection of M. Therefore we see that

(1.10) V = V>

(1.11) Γyβ = (l/2)g«\dygβε + dβgyε - dεgyβ)

and
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(1.12) L c f t

α+ 1 ^ = 0.

Denoting by ££c the Lie derivation with respect to Ec, we have

&cE
a = 0, &CC* = 2Lcb"Eb - Pcβ*Cβ.

§2. Almost contact structure in a fibred Riemannian space

We consider a fibred Riemannian space M such that the base space M is an

almost complex space and that each fibre M is an almost contact space. Denoting

the almost complex structure of M and its lift in the total space Mby J which is

independent of the fibre and the almost contact structure of each fibre Mby (φ, ζ, η)

which is in general dependent on points of the base space M. The structure

satisfies the equations

= 0, η(ξ)=l.

If we define

(2.1)

%A being the transposed matrix of A, then we can easily see that

= O, ή(ζ)=U

where / is the identity map of degree m. Therefore {φ, ζ, ή) is an almost contact

structure on the fibred Riemannian space M, which will be called the induced one.

We state the following:

PROPOSITION 2.1. Let M be an almost complex space and each fibre M is an

almost contact space. Then the fibred Riemannian space M admits an almost contact

structure.

Moreover, if M is an almost Hermitian manifold with the almost Hermitian

metric g and(M, g) is an almost contact metric manifold, then the Riemannian

metric g on the fibred Riemannian space is defined by

and (φ, <f, ή, g) becomes an almost contact metric structure.

By means of (1.7), (1.8) and (2.1), we can derive the equations
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(2.3) <?e$βb = (VcJb

e)Ee + (Ljφβ° - Lca"Jb°)CΛ,

(2.4) (Vcφ)C, = (Lc\φJ - Lc°Ja

b)Eb + (*VcφJ)Cy,

(2.5) $yφ)Eb = (**VyJb°)Ea + (hy\φ/-h/aJb°)Cμ,

(2.6) (Ϋy#)C, = (hyβ"φJ-hya

aJa

b)Eb + (VγφJ)Cβ,

(2.7)

(2.8)

(2.9)

(2.10)

where we have put

(2.11) VAe = 5CJ/ + Γci V - ^ J . ,

(2.12) *VĈ J = δ^, ' +.Qetf.
t - Qj

(2.13)

(2.14)

(2.15)

(2.16) %φ/ = dyφ/ + Γζμφ/ - Γ>aφf,

(2.17) Vyξ" = d^ + Γ%ξ\

(2.18) V ^ = ^ - Γ y > α ,

(2.19) <V = V-Ve

An almost contact metric structure is said to be contact if

, Ϋ)

for any vector fields X and ? in J& ([10]).
If we put 9(X, Ϋ )=g(φX, Ϋ_),I?{X, Ϋ )=g(φX, ? ) and Ω(JT, Y) = g(JX, Y )

for vector fields X, Y in M and X, Y in M, then we get

(2.20) {dϋψ = rfΩ,

(2.21)

(2.22)

(2.23) (d9)Ec®Cβ®Ca = V e^, + ̂ y c ^ / + K\φyβ,

(2.24)
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(2.25)

(2.26)

(2.27)

(2.28) (dή)y = dή

by use of (2.1) and (2.3)^(2.10), where AH and Av are horizontal part and vertical

part of a form A respectively. If the induced structure (φ, ζ, ή, g) is contact, then we

obtain d&=0, (dή)Ec®Eb = 2Jcb, (dή)Ec®CΛ = 0 and (dή)Cy®Cμ=φyμ. Therefore we

can state

PROPOSITION 2.2. A necessary and sufficient condition for the induced almost

contact metric structure on M to be contact is that the base space M is almost

kaehlerίan, each fibre Mis contact, and the equations * Vbήγ = hy

a

bήa and Lcb

aή<x = Jcb

hold.

If the induced almost contact metric structure on M is X-contact, that is,#(X, Y)

we obtain

(2.29) $Ec = (Lcb«ήa)Eb

(2.30) $Cy = (hy

a

bηa)Eb

and state the following with the aid of (2.1).

PROPOSITION 2.3. The fibred almost contact space M is a K-contact manifold if

and only if the following conditions are satisfied:

(1) M is almost Kaehlerian,

(2) each fibre M is a K-contact manifold,

(3)

(4)

(5) Lcb*ήa = Jcb.

§3. Fibred Sasakian manifold

By means of (2.3) ~ (2.10), components of the covariant derivation V<{> and

are given by

(3.1)

(3.2) (VS)Ec®Eb®CΛ = Ljφβa - LcaxJb

a,
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(3.3) (W)EC® Ca®Eb = Lcbyφj - Lc\Jab,

(3.4) Vd

(3.5) v ^ /

(3.6) (W)C,®£ 6 ® C, = hy\φλμ - hyμaJb

a,

(3.7) m)Cy®Cx®Eb = hyβbφ/ - hyx°Jab,

(3.8) V$

(3.9)

(3.10)

(3.11)

(3.12)

In this section, we assume that the induced almost contact structure ($, ζ, η, g)
on M is Sasakian and call such an Λ? a fibred Sasakian space.

It is well known ([1, p. 73]) that an almost contact metic structure {φ,ζ,η,g) is
Sasakian if and only if the equation

(3.13) <Vs$)Ϋ= -~9(X, Ϋ)ξ+ η(Y)X

holds for arbitrary vector fields X and Ton M. Then it follows from (3.1)~(3.12) and
(3.13) that we have the equations

(3.14)

(3-15) LjφβΛ-LcaJb°=-ηx9cb,

(3.16) *Vc&/ = 0,

(3.17) Ld%Jb

d-Lb

d

yJd° = 0,

(3.18) V^/-V-V = 0,

(3.19) Vyφ/ = ϊxδξ-ξl>gya,

(3.20) Lcbxξ° = Jcb,

(3.21) *V/α = 0,

(3.22) C? = °-
(3.23) Vy? = $f.

Contracting (3.18) with respect to y and μ, we get hxβ

ag'xβ=0, that is,each fibre
M is a minimal submanifold of Si.
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On the other hand, if we take the skew-symmetric part of (3.15), then we obtain

(3.24) Ljφβy = 0

by use of (3.17) and the skew-symmetry of L. Hence we can easily get

(3.25) W = Jcbξy

by use of (3.20) and (3.24), and see that the structure tensor L does not vanish

everywhere. Moreover, the relations (3.15) and (3.17) are fulfilled by the equation

(3.25). Therefore we can state the following

THEOREM 3.1. Let (/, g) be an almost Hermitίan manifold on M and M be an

almost contact metric manifold. Then the induced almost contact metric structure on

M is Sasakian if and only if the structure (/, g) is Kaehlerian, M is Sasakian and the

equations (3.16), (3.18) and (3.25) hold. In this case, each fibre M is a minimal

submanifold of M.

A necessary and sufficient condition for M to have isometric fibres (resp.

conformal fibres) is hyβ

a = 0 (resp. hγβ

a = gyβA
a, where A = AaEa is the mean curvature

vector along each fibre in M).

COROLLARY 3.2. If a fibred Sasakian space M has conformal fibres, then M has

isometric and totally geodesic fibres.

PROOF. It is easily seen that the conditions hyβ

a = gyβA
a and gyβhyβ

a = 0 imply

Moreover, considering the equations (3.21) and (3.25), we directly have the

following:

COROLLARY 3.3. In a fibred Sasakian space M, the structure tensor L is parallel

on M in the sense of * VdLcfc

α = 0.

§4. Fibred Riemannian manifold with space form

In this section, first of all, we recall curvature properties of the fibred

Riemannian space. The curvature tensor K of M is defined by

(4.1) % Ί

for any vector fields X, Ϋ and Z in M. If we put

K(ED, EC)EB = KDCB

aEa + KDCB

aCa,

then KDCB

A are components of the curvature tensor K with respect to the frame {Ea
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Cx}. Denoting by Kkji

H components of K in (0, zh), we have the relations

(4.2) KDCB

A = KkJi

hEk

DEi

cE'BEh

A.

Taking account of (1.7), (4.1) and (4.2), we get the following structure equations
of the fibred Riemannian space Λ? ([12]);

(4.3) Kdcb° = Kich" -

(4.4) Rdcb* = - VA

(4.5) £ Λ , = *VcVa

(4.6) κdyb° = V A % - VA% +

(4.7) R i 1 b = -

(4.8) « ί y i = Lay

(4.9) W v V

(4.10) Kay/ = Rht' + V V. - W . ,

where we have put

(4.11) κdcb° = ddr% - dcrdh + r°ierϊb - r°ceπdb,

(4.12) *VdLcb* = 3dLcb* - ΓdcLeb" - ΓdbLJ + Qd*Lcb\

(4.13) *VdLc°β = ddLc% + Γa

deLc% - Γe

dcLe°β - Qdβ'Lc\.

(4.14)

(4.15)

(4.16)

(4.17) **VδLb"β= W ί - /1Λ*. +

(4.18) * V Λ / = aaΛy/ - rjy v - n

(4.19) ** W » = θΛ% + ̂ Λ ' * - ^

(4.20) Lδyb" = δ,Vy - 3Λ"4 + V A %

Now we assume that the induced Sasakian structure on M is of constant $-
sectional curvature Tc. Then the curvature tensor K has the form [5];

(4.22) K(X, f)2 = {(* + 3)/4}{β(ί 2 ) 1 - ^ ( 1 , Z)Ϋ)
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- g(Ϋ, Z)η{X)ζ + 9(%

Therefore the equations (4.3) ~ (4.10) give rise to

(4.23) Kdcb" = {(£+ 3)/4} (gcbδd - gd&) + {(£- l)/4}(Jc6J/ - JibJc"

(4.24) *VcLdb« - *VdLcb" = 2Ldc%'b,

(4.25) *Vchβ"d - *Vdhβ'c + 2**Vμ*« + Ld:Lc% - LJL/β

(4.26) *V(JLi)

α

v = L/ £ h/ 6 - Lib%t"

(4.27)

(4.28) Lδyb" = V

(4.29) **V,V

(4.30) K a r / = {(^+ 3)/4} (gγβδ$ -

- ΦyβΦt* + ΦtβΦ

Denoting by k and K the scalar curvature of M and M respectively, we have

(4.31) k = n(n + 2) (£+3)/4,

(4.32) k~=(s-l)

by means of (3.25), where s = dim ΛΪ. Combining the equations (3.25) and (4.23),

we can see that

(4.33) KΛcb

a = ( £ + 3) (gcbδd - gdbδ"c + /,,"J r t - J'Ja - 2JdcJb

a)/4.

Hence we have

THEOREM 4.1. If the induced Sasakian structure on M is of constant φ-sectinal

curvature k~, then the manifold M with Kaehler structure (J, g) is of constant

holomorphic sectional curvature k~+ 3.

Next, consider the case where M is a fibred space with conformal fibres. Then,
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by Corollary 3.2, each fibre M is totally geodesic and the second fundamental form h

of M vanishes identically. Hence the equation (4.25) reduces to

(4.34) 4 J d c ^ α = - ( £ - l ) J d c ^ α

and we have £== - 3 . Thus the equations (4.22), (4.28), (4.30), (4.32) and (4.33) are

reduced to

(4.35) Z(X,Y)Z = - η{Xfi(Z)Ϋ+ η(Y)η(Z)X - g(X, Z)η(Ϋ)ξ

+ g{% Z)η(X)ξ- S(% Z)φX + ΰ(X9 Z)φY

(4.36) Lδyb

a = 2φδyJh\

(4.37) Kδyβ" = ηyηβδ"δ - ηδηβδ* + gγβηδξ< - gδβηyξ* - φyβφδ"

(4.38) E=-(5-l),

(4.39) Kdcb

a = 0

respectively. However, by use of Theorem 3.1, the equation (4.36) is valid if the space

M is Sasakian. Thus we have the following

THEOREM 4.2. Let M be a fibred Sasakian space with confor malfibres. IfM is a

space of constant φ-sectional curvature £, then

(1) the total space is a Sasakian space form with Ίc= — 3,

(2) the base space M is a locally Euclidean space, and

(3) the fibre M is a Sasakian space form with constant φ-sectional curvature

- 3 .

Conversely, if the base space M is a locally Euclidean space and each fibre M is a

Sasakian space form with constant φ-sectional curvature —3, then M is a Sasakian

space form with constant (β-sectional curvature —3.

EXAMPLE. Euclidean plane E2 with coordinates (xu x2) and flat metric has an
almost complex structure

'

Now, we consider the Euclidean space E3 with Cartesian coordinates (yl9 y2, z) and

define φ9 ξ, ή, g by
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y2 0 l+y2
2

Then E3 with (^, <f, /y, ̂ ) becomes a Sasakian space form with constant ^-sectional
curvature —3 (cf. Sasaki [9]), and we denote it by E3( — 3).

Next we consider a symmetric tensor field in the 5-dimensional Euclidean
space E5 with Cartesian coordinates (xl5 x2, yl9 y2, z) define g by

0

x2y2

0

-x2

0

1

0

0

0

x2y2

0

0

0

0

1

0

0

-y2

0

1 /

Then g is a positive definite Riemannian metric. The inverse matrix of g is given by

0 0 0

g L = <

0

0

1

0

0 0

x2

0

0 0

x2 0

1

0

0

1

0 1+Xi
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Then E5 becomes a Sasakian space form E5( — 3) with constant ^-sectional
curvature —3 by taking the following tensors as its structure tensor;

/ o 1 0 0 0

- 1 0 0 0 0

0 0 0 1 0

0 0 - 1 0 0

0 0 0 0 0 '

1= '(0,0, 0,0, 2),

ή = (-x2, 0, -y2,0,

The vector fields

C 1 = (0,0, 1,0,0),

C2 = (0,0, 0,1,0),

C3 = (0,0, 0,0,1),

^=' (2 ,0 ,0 ,0 ,2*2) and

E2 = '(0,2, 0,0,0)

form a frame field in £5( — 3) and the Euclidean space {£5(—3), g} becomes a fibred
Riemannian space having E2 as the base space and E3( — 3) as the fibre. It is well
known that the Sasakian space form £3(—3) is a totally geodesic submanifold of E5

(— 3). A similar argument can be applied to the case of general dimensions and we
see that a Sasakian space form Em( — 3) has a fibred structure with Euclidean base
space E" and Sasakian space form Em~"( — 3) as fibre.

§5. Integrability and normality

In this section, we study relations between the normality of the almost contact
metric structures on M and M and the integrability of the almost complex structure
on M. Now consider the product manifold A? x E1, E1 being a 1-dimensional
Euclidean space. If we define on Λ? x E1 a tensor field F of type (1,1) with local
components FP

Q by

Ub" o o \
(5.1) 0 φ,' -ξ"

\ 0 ήβ 0
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in each {U x Eί

9 xp}, then we can see that F2 = — 1 on M x E1, that is, {M x E1, F}

becomes an almost complex manifold. Hence we can calculate the components of

Nijenhuis tensors NPQ

R of F as follows:

(5.2) Ncb

a = J/

(5.3) ftΛ' = O,

(5.4) # r t * = 0,

(5.5) ftcβ' = O,

(5.6) Ncβ' = Je'

(5.7) ftcβ*=Jc'

(5.8) Nγβ

a = 0,

(5.9) Nyβ" = Φy (βχΦβ" dβΦλ") Φβ (βλΦy" '

(5-10) fiίyβ* = φγ

λ(dληβ-dβηλ) - φβλ(dληy-dyηλ),

(5.11) K" = 0,.

(5 12) jv?»/ = Ja

d(ddζp) + ξy(Saφy

β),

(5.13) ^ f a

f=^Λ),

(5.14) V=°>

(5.16) Nsβ* = -ζydyήβ.

It follows from these equations that the components Ncb

a coincide with those of

the Nijenhuis tensor

of J on M, where X and Yare vector fields on M, and the components Nyβ

a, Nyβ

%,

N%pa and Λ?*̂ * coincide with the Nyβ

a

9 Nyβ*.9 N$β* and N$/ respectively which are

components of Nijenhuis tensor of M x E1 with an almost complex structure

(5.18)
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Moreover, by virtue of a formula (see [13], p. 191)

it is well known that if the components Nγβ

a vanish identically on M x E1, then the

other components Nyβ

 #, N$β* and N^y vanish. An almost contact structure on M is

said to be normal if the almost complex structure F on M x E1 is integrable ([9],

[10]), equivalently if NCB

A vanish identically. Consequently, we have

THEOREM 5.1. If the induced almost contact structure (φ, <f, η) on M is normal,

then the almost complex structure J on M is integrable and the almost contact

structure (φ, <f, ή) on M is normal.

Moreover, if the almost contact structure (φ, ξ, ή) on M is independent of the

base space, then all the components of NPQ

R vanish identically under the

assumptions that the almost complex structure J on M is integrable and that the

almost contact structure on M is normal. Finally we get

THEOREM 5.2. If the almost contact structure (φ, ξ, ή) on M is independent of the

base space, then a necessary and sufficient condition in order that the induced almost

contact structure on M is normal is that J on M is integrable and (φ9 ξ, ή) on M is

normal.

REMARK. If the almost contact structure (φ, ξ, ή) on M in the condition of

Theorem 5.2 is replaced by contact structure on M, then we can see that the same result

is valid but the fibred Riemannian space M is never locally trivial because the

integrability tensor L = (Lcb

a) does not vanish by means of the equation (3.25).
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