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1. Introduction

This paper deals with interior (exterior) Dirichlet and (Neumann) boundary

value problems (b.v.p.) for the real Monge-Ampere (M.A.) equation:

(1) det uXiXj = /(|x|)0(|Diι|) in Bt (or Be),

where Bi = {xe Rn; \x\ < R}, Be = {xe Rn; \x\ > R}9 f ^ 0, g(\p\) ^ 0.

When we investigate this problem we have in mind the fact that the

equation of Gauss curvature of every C2-smooth surface is given by

(2) det uXiXj = K(x)(l + \Du\2)(n+2)/2

i.e. is of type (1) (g(t) = (1 + t2f+2)/2).

Unfortunately the growth of the right-hand side with respect to \Du\ leads

to the nonexistence results for the Dirichlet b.v.p. even in the case when the

Gauss curvature is positive. More precisely, it was shown in [12, 16] that for

every C = const and every ε > 0 there exists C00-function φ, \φ\ < ε for which

the Dirichlet problem for (2) with data C + φ on the boundary has no classical

convex solution. For this reason only constant boundary data will be con-

sidered. This enables us to investigate arbitrary growth of g(\p\). Further on

our basic assumption is g(\p\) ^ g0 = const > 0 since the more interesting geo-

metric applications satisfy this condition. The degeneration of g(\p\) leads to

quite complicated effects like bifurcation of the solutions (see the appendix).

We propose complete results for existence, uniqueness and regularity of the

classical convex solutions of the M.A. operator with constant data in a ball

(Bh Be). It is interesting to point out that in this case each classical solution

turns out to be a radially symmetric one.

2. Statement of the main results

Because of the lack of space we shall formulate and prove only interior

Dirichlet (Dt) and exterior Neumann (Ne) problems for equation (1). By the

same methods we can prove similar results for (De) and (Λ )̂. Further on the

short notations
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will be used and the summation convention αIJwl7 = £ " _/=i aijuu *s understood.

Thus we will study the following b.v.p.:

- ^ = C on dBe,

M-oo

where v is the unit inner normal to dBe, S(\x\) is the sphere {y e Rn,\y\ =

\x\} and C, C l 5 C2 are constants.

The first result of our paper is

PROPOSITION 1. Consider b.v.p. (Dt ) ((Ne)) and suppose that f(\x\) ^ 0,

g(\p\)^go>0, feCfc) (feC(Be)\ geCx(Rn). Then every C 2 ( ^ ) (C2(Be))

convex solution of (Df) ((Ne)) is radially symmetric.

Now we can formulate the following existence and uniqueness results.

THEOREM 2. Suppose f(\x\) e C"'1^), n ^ 2 , 0 < α ̂  1, / ^ 0, ge C 1 ^")*

g(\p\) ^ g0 = const > 0. Then the problem (Df) has a unique convex solution

u G C2a/n(Bi) iff inequality (3) holds, i.e.

(3) Γ (t»-1/g(t))dt> Γ V
Jo Jo

Moreover, if fe Cn'a(Bi) then u e C2Λ<x+l)ln{Bi).

THEOREM 3. Suppose f{\x\) e Cn~ι(Be\ n ^ 2, / ^ 0, g(\p\) e C 1 ^ " ) ,

g(\p\) ^ g0 = const > 0. 77ieπ the problem (Ne) has a unique convex solution

u e C2(Be) iff

Γ 0 0 , Γ C l

Cj ^ C ^ 0 , t" 7(ί) </ί = (t" 1

JR JC

Γ00 / f °° \
> < 00 ,

βwd for C = 0, /(ί) = (ί - RT^fM where 0 ^ fx e C(Be).

Moreover, if C = 0 αwd / /uzs a C"" l f β (C n β) smooth zero extension in Rn

then u e C2^ln(Be) {C2Λa+1)ln(Be)).
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If C>0 and fe C fc(^)(C°°(ζ)), g e Ck(Λ")(C°°(Jf")) ίteπ u e C* + 2 ( ϊy

The result in Theorem 2 is the best possible one as the following examples

show.

EXAMPLE 1. Consider the problem

i n B £ = { | x | < 2 } ,

u = C on dBt,

where fp(ή = 0 for 0 ^ t ^ 1 and /p(ί) = (r - 1)" for 1 ̂  ί ^ 2. If p = n -

1 + α, 0 < α ̂  1, then / p e Cn~ltΛ(Bi). According to the formula for the unique

convex solution u of the problem (D, ) proposed in the proof of Theorem 2 we

have that ueC 2 ' α / "(B;)\C 2 ' α / π + ε (5 ) for every ε > 0. If p = n + α, then / p e

C"'α(^) but the solution u e C 2 ' ( a + 1 ) / n (^)\C 2 ' ( a + 1 ) / n + £ (5;) .

The next example shows that the further regularity of / and g does not

imply further regularity of the solution.

EXAMPLE 2. Consider the problem

\u = C on dBi.

The right-hand side is infinitely smooth but the solution

u(χ) = C + (n/(2n + 2)) (n/(n + 2)) 1 / π( |x | 2 + 2 / π -

is of the class C 2 ' 2 / n (^)\C 2 ' 2 / π + ε (β;) for every ε > 0.

Let us now give some sufficient conditions for further regularity of the

solutions.

PROPOSITION 4. Suppose 0 ^ /( |x |) e C 0 0 ^ ) , g{\p\) e C°°(/?n), g(\p\) ̂ go =

const > 0. Then the solution of (Df) belong to C 0 0 ^ ) if

(5) \x\(Γ r-'fiήdtYeC^Nj),

where Nj is a neighborhood (ngbh) of the set I = {x e ϊ^; j£' i""Y(i) at = 0}.

REMARK 1. The solution u of (D,) belongs to C°°(^\/) if fe C°°(^),

g e C°°(/?w). Condition (5) guarantees the infinite smoothness of u in a ngbh

of /. For wide classes of equations, for example when /( |x |) = |x | 2 m/i( |x |),

/iίO) > 0, g G C00, condition (5) is also necessary for C00 regularity (since (5) is

equivalent to the condition m/n is an integer).
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P R O P O S I T I O N 5. Suppose 0 ^ / ( | x | ) e C°°(βJ, g(\p\)e C°°(/?Λ), g{\p\)

const > 0. Then the solution of (Ne) with C = 0 is C™(Be) if

a \
^ tn-ιf{t)dt\ eC°(NE)9

where NE is a ngbh of the set
_ fW

E = {xeBe; tn~1f(t)dt = θy
JR

COROLLARY. The Dίrichlet problem (Dt) for equation (2) has a unique

classical solution iff

The uniformly elliptic M.A. operator (i.e. when the right-hand side is
positive) in strictly convex bounded domains has been studied by [1, 4, 6, 9]
and others. As for the degenerate case existence of generalized (C°, C1Λ/n or
C1 '1) solutions was proved (see [2, 14, 15]).

In [11] existence of radially symmetric Ck(Bi) solutions of the problem (Df)
under the stronger conditions g = 1, / has a zero of finite order at the origin
was proved. The equation (2) of surfaces having prescribed Gauss curvature
is not contained in the class of operators considered in [11]. The precise
regularity results (Theorem 2, Prop. 4) can not be obtained by the methods
developped in [11].

The above observations stimulated our investigations of the degenerate
M.A. operator in a ball with constant data.

We hope that our results will be useful in further investigations of the
classical solvability.

Very little is known about the solvability of b.v.p. for M.A. operator in
unbounded domains even in the uniformly elliptic case. In this direction we
were influenced by the papers of Kusano and Usami [7] and Kusano, Naito
and Swanson [8] where radially symmetric solutions for nonlinear Laplace
operators were obtained. More precisely, we use the ideas of the above men-
tioned authors in order to state the exterior Neumann problem (Ne) and to
obtain results for the uniqueness of the convex classical solutions.

Acknowledgements are due to D. Palagachev for a useful discussion.

3. Proofs of the main results

We shall prove at first the radial symmetry of the classical convex solutions
of (Dt) and (Ne).
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PROOF OF PROPOSITION 1. We shall give a detailed proof of the Dirichlet

problem (Z>f) and we shall only point out the differences occuring for the

problem (Ne).

Suppose w, v e C2(Bi) are convex solutions of b.v.p. (Dt). Let ε > 0 be a

positive constant and let us consider the function

w = u + ε{eaW/2 - eaR2/2).

If λί9 . . . , λn are the eigenvalues of the Hessian matrix {uXiX.(x)}, by rotation of

the coordinate system we obtain the inequalities

det wx.x. = det (diag λ{ + (said + εα 2x ix /)ββ | x | 2 / 2

= (λ, + εaeaWl2)...{λn + εaeaWl2)

+ Σ Wi + e α £ β W 2 / 2 ) . . . μ H + εα

x μ ί + 1 + εaeaWl2)...{λn + εαeα

-f- εα e ^ Λ i ^i-i^i Λi+i λn
i = l

In the above inequalities we use the well-known inequality for the geo-

metric and arithmetic means. Since λ1λ2... λn = f(\x\)g(\Du\) it follows that

det wu/g(\Dw\) - det V^DΌ]) > εalfW ^ - K2\x\f^)

+ aΣλx Vi*?λ ί + 1 Kl e W2

where the constants Kl9 K2 do not depend on ε and a if the inequality

εaeaR2/2 ^ 1 holds. Consequently for the linear operator L = Λijd2/dXidXj

(Aij = ^Bij(t)dt, Bij are the cofactors of the matrix (ίw + (1 - t)v)x.x.) we

obtain the inequality

(7) L(w -v)> εaU{n'1)ln'{Kx - K2\x\f^n) + aΣλ1...λi^1xίλi+1...λn]

at the point y e Bt where w — υ attains its maximum.

In the set BAB0, Bo = {x e Bf; X x - X 2 |x |/ 1 / M > 0} the matrix {w0} is

strictly positive since /( |x |) > K3 > 0 so that λt > K4 = const > 0, i = 1, 2, . . . ,

n with constant K 4 independent of ε and a. Moreover, |x| > K5 = const > 0

in Bi\B0 and we have the estimate: L(w — v) > 0 for y e Bi\B0 when a is a

sufficiently large constant independent of ε. In the set Bo it follows trivially that

the right-hand side of inequality (7) is nonnegative, i.e., L(w — v) > 0 for y e Bo.

Since w — v < 0 on dBt from the maximum principle we have w — v < 0, i.e.

u — v < εeaR2 for 0 < ε < (e~aR2/2)/a. Letting ε - > 0 w e obtain u < v in ί̂ . In

the same way the inequality v < u holds in Bh i.e., u = v in I?;.
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In order to prove the radial symmetry of the convex solutions of (Ne) we

will show that u < v in Be. Suppose that

sup (u — v) = (u — v)(z) = b > 0 (|z| < oo from the boundary data).
Be

We consider the auxiliary function w = u + εeα|* | 2/2 in the annulus H =

{x e Rn; R < \x\ < Ro}, where Ro > R is such that z e H and sup|w - v\ < 6/2

on {|x| = Ro}. Since J l l Z J z = Uχ _ ^ + εaReaR2'2 > 0 on {|x| = K}, where v

is the unit inner normal to dBe, it follows that w — v does not attain its

maximum on dBe. Moreover, (w — υ)(z) > b and sup|w — t ; | < 6 o n { | x | = Λ0}

if 0 < ε < (6/2) e~aR°/2 so that w — v attains its maximum at the interior point

z0 e H. In the same way as above we obtain the inequality L(w — v)(z0) > 0 if

0 < a is sufficiently large (a is independent of ε) and ε < (e~aR°/2)/aR0. This fact

contradicts our assumption, i.e., u < v in Be. In the same way the inequality

v < u in Be holds, i.e., u = v in £ e . The observation that the b.v.p. (Dt ) and (Ne)

are invariant under the action of the orthogonal group SO(ή) completes the

proof of Proposition 1.

PROOF OF THEOREM 2. Necessity. There are no difficulties to check that

every C2(Bf) convex solution which according to Proposition 1 is radially

symmetric satisfies the ordinary differential equation:

(8) * V " " 1 = rn~lf{r)g{v') in [0, K] ,

ι/(0) = 0 , Ό(R) = C .

So the identity

(v'(r) ^ 0, v"{r) ̂  0 from the convexity of the solution u(x) = V{\x\), \x\ = r)

holds for r e [0, K] and

ΓR Λαo

ίfl"1/(ί)Λ< (ί""1

Jo Jo

Sufficiency. Let us introduce the functions

and

The differentiate function Gt is strictly monotonically increasing in (—oo, oo)

when n is odd and in [0, oo) when n is even, respectively; i.e. G > 0, so that the

inverse function G^1 is well defined and differentiable in (Gf(—oo), Gt (oo)) when
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n is odd and [0, G^oo)) when n is even, respectively. We will only check that
Gi is differentiable at the origin. From LΉospitaΓs rule we have

in-1)/n

= (l/ng(0)) lim W — — = (ngiO))-1'" > 0 .
V-o / VJo g(t) ) )

Therefore from (3) the function G^iFfr)) is well denned and continuous for
r G [0, K]. We will prove that

v = C-\ GfHFt

J\χ\
(Ft(t))dt

is a convex solution of (Df). An easy calculation shows that v(r) belongs to the
class CHCO, R]) and ι/(0) = 0, v(R) = C. Since Ft is differentiable outside the
set I = {xe¥i: j ^ 1 ί""1/^) at = 0} we have ι;(|χ|) e C2(^\/).

In order to obtain the C2 smoothness of ι?(|x|) we shall check it in a ngbh
of the set /. Let r0 = inf {r e [0, R];f(r) = 0} so that Ft(r) φ 0 for r > r0.
Hence it follows that Fte C2((rθ9 K]), Gf1 e C2 and v e C3((r0, K]). In the
interval [0, r0) (for r0 > 0) we have υ = const., i.e., the function v belongs to the
class C3([0,K]\{ro}).

(i) We will first consider the case r0 = 0 and will show that υ e C3, i.e.,
G, G C2 and Ft e C2 if /(0) > 0. In fact

n + J o

 s"~1(

in a sufficiently small ngbh of the origin since

1/π

> 0 and

ί:
/'(0) + /'(0)

In the same way we check that Gt e C2 as g(0) > 0.
Suppose /(0) = 0. Then for Ff(r) the estimate
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l/n

0 ^ Ft(r) ί K6 tn dt

holds. Since v'(0) = 0 it follows that u is twice differentiable at the origin and

ι/'(0) = 0.

In order to show that υ" is Holder continuous at 0 with exponent α/n,

0 < α ̂  1 it is enough to prove the estimate

l/n

Let us note that the direct application of FHospitaΓs rule does not lead to any

results when Ft has zero of sufficiently large order (including oo). That is why

we will adopt a different approach. For this purpose the following inequality

will be proved

\ tn~l

Jo
(9) rn-l/(n-l)fn/(n-l)(r) ^ 2K9 \ tn~lf(t)dt

J
for sufficiently small positive r. Let

ho(r) = r»-i/<"-i)/»/<»-i>(Γ) _ 2K9 tn~ιf{t)dt
Jo

and K9 be sufficiently large so that the inequality (n — l/(n — l))"" 1/^) ^

Kn

9~
ιr holds in a ngbh No of the origin (we remind that /(0) = 0). Then

h'Q(r) ̂  0 for r e No provided the inequality

(10) _?_Γi-i/<»-i>/'(Γ) _ K9/<»-2)/(»-D(Γ) ^ 0
n — 1

is fulfilled. From ho(0) = 0 and h'0(r) ^ 0 we immediately derive (9). It is clear

that (10) holds at the points r e No for which f'(r) ^ 0 or when n = 2. Suppose

that n > 2. Then at the points r e Nx cz JV0 for which /'(r) > 0, inequality (10)

is equivalent to the inequality

Mr) = r(Γ(r)yn-^n-v - 2Klof(r) ^ 0 .

Now M0) = 0 and h[(r) ^ 0 in Nx if

(11) ^^ff"(r)(fW1/iH'2) ~ KioΠr) g 0 .

When n = 3 or / " M ^ 0 the above inequality follows trivially. Let us

suppose that n > 3. Then for r e N2 <= Nl9 f"(r) > 0, inequality (11) is equi-

valent to the following one:

h2(r) = r

( "- 2 ) / ( w - 3 ) (/"(r)) ( π - 2 ) / ( M - 3 ) - 2X 1 1 / / (r) ^ 0 .
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By induction for the functions

hm(r) = r<»-2)/(»-«-i)(/(m)(rW(»-m)/(»-m-i) _ 2Km+9f
(m-1)(r)

we will prove, when n > m, the inequality hm(r) ^ 0 at the points r e #„,_! =

{r e Nm_ 2;/ ( m~ 1 )(r) > 0}. For this purpose it is enough to prove that h'm(r) ^ 0,

i.e.,

ί\2) r(n-2)/(n-m-l)f(m+l)/r\ _ j£ /y(mWr\\(n-m-2)/(n-m-l) < Q

when reNm={re Λ ^ / ^ r ) > 0}. But for m = n-2 inequality (12) is of

the following type:

which trivially follows from the smoothness of /.

(ii) Let us now suppose that r0 > 0. Since / e C " 1 •"[(), K] and / = 0 in

[0, r 0 ] we have f(r0) = f'(r0) = ••• = / ^ " " ( Γ Q ) = 0 and \f^l\r)\ ^ C3\r - ro\"

in a ngbh No of r0. Therefore

( 2 )

ί cj Γ (ί - ror-1+"dtY" ^ C5\r - ro|<-+«>/".

Thus 0 ̂  - — i - ί - = ' v Λ " ^ C6\r - ro |"'" and »"(r0) = 0.
K 'Όl K 'Όl

Now we will show that v" is Holder continuous at r0 with exponent α.

For this purpose we will prove the estimate:

Γ r

(13) go(r) = p'^'^iήir - r o ) " α / ( π " υ - 2K'O t^fiήdt ^ 0
Jro

for r > r0, r e No where No is a ngbh of r0. Repeating the same procedure as

in (i) we obtain (13); the only difference being the using of the auxiliary

functions

9m(r) = U v)) m ~ 2 K w ( r — r 0 ) / (r)

instead of hm(r).

The smoothness of the function u{x) = υ(\x\) follows trivially from the

smoothness of v(r) e C2'α/"([0, K]) as well as v'(0) = 0. More precisely, u^x) =
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β + £\δiJ so that ̂ (0) = δiJυ"{0)' since w<;(x) " M<;(0) =

(5ij Γ (ι/'(s|x|) - v"(0))ds + 3 1 (ϋ"dχl) ~ V(s\x\))ds we immediately
Jo lxl Jo

obtain the Holder continuity of the second derivatives w0.

The proof that u(x) is a convex solution of (£),) is the same as in [11] and

we omit it.

SKETCH OF THE PROOF OF THEOREM 3. Necessity. Suppose u(x) is a

classical convex solution of (Ne). Then from Proposition 1 u(x) = v(\x\) is a

convex radially symmetric solution i.e. v' ^ 0, v" ^ 0 because of the positiveness

of the Hessian matrix {i^ }. Consequently 0 :g C = v'(R) ^ v'(co) = Cι. The

case C = Q is trivial as then v' = C i.e. v(\x\) = C\x\ + const and /(|x|) = 0.

As in the proof of Theorem 2 from (8) we obtain the identity

JRJR

Moreover, from (8) it follows that

ju"(0r + (l -θ)R)
•fίyΛ V / V / VJ U V

0 ^ /i e C(Be) if C = 0. Let us now introduce the functions

α \i/» / Γy

^Aήdt) ,
Then

v(r) = K + Ge~
1(i7

e(0) ^ a n ( i ^ e ^ 1 ^ ! 0 0 ) ) = Cx = ι/(oo).

So

Γ -i -i

v R

and lim (v(r) - Qr) exists if and only if {G;x{Fe{oo)) - G^(Fe(t)) dt < oo.
r-oo JR

Since 0 < a ^ (G"1)' ^b; a, b = const, then

(G^^F^oo)) - G^^F^ί))) έ/ί ^ α (^e(oo) - Fe(ί)) dt
JR JR

^aA s'^fis) ds dt ̂  0 ,
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αx > 0, using the elementary inequality

for Λ > B > 0 .

Sufficiency. Consider the case C = 0 at first. From condition (4) the

function

v(\x\)= [X G;\Fe(t))dt + C2 + C1R+ \ G;\Fe{ao))-G;\Fe{t))dt

is well defined and differentiable for |x| ^ R and satisfies the boundary condi-

tions. As it was shown in Theorem 2, G~x e C^CO, G^CJ]). To verify that

Fee ^ ( [ K , oo)) we use ΓHospitaΓs rule for r = R and the representation

f = (r- RT^Mr), 0 ^ /i e C(Be). The smoothness of Fe for r > R is due to

the fact that feCn~ι(Be) and to ΓHospitaΓs rule (see Theorem 2). Thus it

follows that v e C2([K, oo)) and then u e C2(Be).

To complete the proof of Theorem 3 when C > 0 we introduce the func-

tions G* = G^, F? = F? and note that (G*)' > 0 in [CXi]. Repeating the

same procedure as in the proof of necessity we conclude that the function

[r(G*rH
JR

v(r) = const + (G?Γι(Fe*(ή) dt
JR

satisfies the b.v.p. (Ne). Obviously F* e Ck+\ (G*)"1 e Ck+1 so that v e Ck+2(Be).

The C 2 α / n smoothness of the solution u can be proved in the same way as

it was done in Theorem 2.

PROOF OF PROPOSITION 4. At first we shall prove the smoothness of the

solution at the origin. From the representation

C ( t ) _ t r i r y i
ι ( ) L«β(0) Jo

g(β)g(st)

in a sufficiently small ngbh No = [0,δ) of the origin it follows that Gf e ^(NQ)

and that Gj can be extended as an odd C00 function in ( — δ, δ). From (5) we

have F{ e C°°(iV0) and can be extended as an odd function in ( — δ,δ). Thus

v'(r) = G^iF^r)) can be extended as an odd C00 function in ( — δ, δ\ and

consequently

= ί X GΓHFM) dt - Γ GΓHFtit)) dt + C
Jo Jo

ι?(|x|)

belongs to C°°(|x| < δ).

It is easy to check the smoothness of u for |x| > 0 as |x| e C°°(|x| > 0).
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The proof of Proposition 5 is similar and we omit it.

Appendix

We shall state now some open problems concerning the (D;) and (Ne) b.v.p..

At first we shall note that a new effect arises when the function g vanishes at 0.

It concerns the so-called bifurcation of the solutions.

EXAMPLE 3. Consider the (D,) b.v.p. and assume that g(\Du\) =

{Dufg^DuW g1 > 0, f(r) ψ 0. We claim that:

(i) if k^n- 1, fe Cn~k'ι(β^ gt e C\ g^go = const > 0 and
Λoo f-n-k-1 PR

——— dt > tn~ιf(t) dt, then there exist at least two convex solutions of
Jo 9 lit) Jo _
(Dt ), namely ux = const, u2 e C2{Bt\ ux ψ u2;

(ii) if k^n, g G C1, feC1 then u = const is the unique convex radially

symmetric solution of the problem (D )̂.

The elementary proof similar to the proof of Theorem 2 is left to the

reader.

PROBLEM 1. Investigate the (Dt) and (Ne) b.v.p. with a right-hand side /

depending on |x| = r, u and \Du\ and find conditions (necessary, sufficient) such

that the corresponding problems possess unique classical convex solutions.

Find out conditions when non-uniqueness arises.

PROBLEM 2. Let us consider an arbitrary strictly convex and bounded

domain Ω in Rn. It is not clear for which right-hand sides /(x, w, Du) ^ 0 and

fdu
for which data u\dςι, the b.v.p. (Di)((Ne)) has a unique convex classical

solution. It is worth while studying these problems even in a ball but in the

non-radially symmetric case.
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