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In the present paper we are concerned with integration of functions with
values in mixed topological spaces. The theory of Lebesgue integral on a
general measure space has been extended to the case of functions taking their
values in Banach spaces by Birkhoff [1], Bochner [3], Pettis [17] and others
[12]. These vector integration theories have been extended further to the case
of locally convex spaces by Phillips [18] and Rickart [20]. Mixed topological
spaces form an important class of locally convex spaces. These spaces have
many interesting properties and are very abundant. The mixed topological
structures often appear in various problems from analysis as well as the theory
of partial differential equations, and it is expected that the theory of integration
in mixed topological spaces is not only significant from the theoretical point of
view, but also it has considerable practical applicability.

A mixed topological space is a locally convex space (£, τ) equipped with a
bornology on E. A subset B of E is called a ball in E if it is an absolutely
convex subset which does not contain a nontrivial subspace. By a bornology
on E we mean a family 0b of balls in E with the four properties below: (a) 0b is
a covering of £, (b) λB e Λ for B e 0b and λ > 0, (c) for B, C e Λ there exists
D e J with B + C c D, and (d) if B e 0b and C is a ball contained in B then
C G 0b. If in particular there exists a countable subfamily {Bn} of 0b such that
any element B e 0b is contained in some Bn, then 0b is said to be of countable
type. To the locally convex space (£, τ) there corresponds a bornology 0bτ

called the von Neumann bornology on E that is the family of all τ-bounded,
absolutely convex subsets of E. In this paper we restrict ourselves to a
bornology 0b on E satisfying the compatibility condition

and assume that there exists a countable subfamily {Bn} of 0b such that any
element B e 0b is contained in some Bn and any Bn is τ-closed. Now to the
triplet (£, 0b, τ) one can introduce a new locally convex topology that is finer
than the original topology τ and denote it by y = y[β, τ]. This topology y is
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defined as the finest locally convex topology on E which coincides with τ on
each set belonging to J!. The γ is called the mixed topology and, in this sense,
(£, 0&, τ) is called a mixed topological space. The space (£, γ) inherits various
topological properties from (£, τ), while there are interesting differences between
γ and τ. One of the significant properties of γ is for instance property (B) in
the sense of Pietsch, and these properties make the mixed topological spaces
abundant.

This work is strongly affected by the recent results due to Thomas [23]
and Blondia [2]. In general, it is hardly possible to develop an integration
theory for weakly measurable functions. However, in the case of locally con-
vex Souslin spaces, the concept of weak measurability is equivalent to that of
strong measurability. Noting this fact, Thomas gave useful criteria for Pettis
integrability of functions with values in locally convex Souslin spaces. He also
introduced a new notion of integrability called total summability and showed
that Fubini's theorem is valid for the class of such integrable functions. We
shall advance our integration theory from the same point of view as in his
work. On the other hand, Blondia considered a notion of integral by semi-
norm and developed an integration theory in connection with the works
of Schmets [8], Grothendieck [10] and Saab [21]. He studied in [2] the
relationships between the strong (Bochner type) integrals, the integrals by
seminorm and the Pettis integrals. We shall also treat this problem in mixed
topological spaces.

The objective of this paper is therefore threefold. First we advance an
integration theory in mixed topological spaces. Secondly, we investigate the
relationships between the above-mentioned three kinds of integrals in both of
mixed topological spaces and mixed topological Souslin spaces. Thirdly, we
exhibit how the three kinds of notions of integrability as well as measure
theoretic properties of the integrals in mixed spaces can be interpreted in terms
of the original topology τ and the bornology J*.

Section 1 contains preliminaries and some fundamental facts which are
used in the subsequent sections. In particular, it is shown that every mixed
topological space has property (B) in the sense of Pietsch; this fact plays an
important role in our argument. In Section 2 we state some fundamental
theorems such as Nikodym's boundedness theorem and the Vitali-Hahn-Saks
theorem for locally-convex-space-valued measures. Here we also study vector
measures with values in mixed topological spaces. Section 3 presents a Vitali
type convergence theorem and its consequences for integrals by seminorm and
Pettis integrals in locally convex spaces. Our results here extend the results
obtained by Musial [16] for vector measures with values in Banach spaces.
Section 4 is the main section of this paper. Here, we develop an integration
theory in a mixed topological space (£, y\β, τ]) and investigate properties of
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the three kinds of integrals in (£, y\_0b, τ]) under various assumptions on the

system (£, J*, τ).

1. Preliminaries

Throughout this paper, only standard terminologies in the theory of locally

convex spaces are used. Also, we assume without further mention that locally

convex spaces under consideration are Hausdorff.

Let £ be a vector space. A ball in E means an absolutely convex subset of

E which does not contain a nontrivial subspace. If B is a ball in £, we write

EB for the linear space (J*= 1 nB of B in E. On EB one can define a natural

norm || || by

| |x | | s = inf {λ > 0: x e λB) for xeEB.

If in particular (EB, \\m\\B) is a Banach space, B is called a Banach ball. If B is a

closed ball in E with a locally convex topology, the Hahn-Banach theorem

implies that | |x| |B = sup {|<x, x'>|: x' e B0} for all x e £ , where B° denotes the

polar of B. Hence we see that the function x -• ||x| |B is lower semi-continuous

on E.

For a vector space E, a (convex) bornology on £ is a family 0b of balls in E

such that (a) Λ is a covering of E\ (b) for B e & λ > 0, λB e 0b\ (c) for B, C e Λ

there exists D e J with B + C c D; (d) if B e ^ and C is a ball contained in J5,

then C e 0b. We call such a pair (£, 0b) a bornologίcal space. A subset B oϊ E

is 0b-bounded if it is contained in some ball in J^. A ftαsis for ^ is a subfamily

^ ! of @t such that each £ e 0& is contained in some Bx e 0&x. A bornological

space (£, ̂ ) is said to be complete if ^ has a basis consisting of Banach balls.

<% is said to be of countable type if 0b has a countable basis. If (£, τ) is a

locally convex space, then the family 0$τ of all τ-bounded, absolutely convex

subsets of E forms a bornology on E. This ^ τ is called the von Neumann

bornology. In many applications $ is taken as the von Neumann bornology

defined by an appropriate norm on E. This & is of countable type, since the

family (nB)neN, B being the unit ball of E, gives a basis.

We often denote by Eτ a vector space E equipped with a locally convex

topology τ. In this paper we consider a vector space E with a locally convex

topology τ which is compatible with a bornology 0b of countable type in the

following sense:

(*) 0ft c 0&τ and ^ has a basis of τ-closed sets .

In this case we can choose a basis (Bn) for 0b with the following two properties:

(a) Bn + Bna Bn+1 for each n\ (b) each Bn is τ-closed .
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Let °ll = (Un)neN be a sequence of absolutely convex τ-neighbourhoods of zero

and let

U + •'• + VnnBn).

Then the set of all such sets y(^l) forms a base of neighbourhoods of zero for a

locally convex structure on E and this is denoted by γ {β, τ] (or simply by γ if

no confusion arises). In the case where & is the bornology defined by a norm

on £, we write y[| | | | ,τ] for the structure y\β, τ]. In this paper a triplet

(E, 0&, τ) satisying the compatibility condition (*) is called a mixed space and the

locally convex topology y\β, τ] is called a mixed topology. The following

statements give characteristic and useful properties of γ (as for the proof and

more about the mixed topology, we refer to the book of Cooper [5]): (1) γ is

the finest linear topology on E which coincides with τ on the sets of 0b\ (2) a

subset B of E is ^-bounded if and only if it is y-bounded; (3) a sequence (xn) in

E converges to x in Ey if and only if (xn) is ^-bounded and xn -> x in Eτ.

A Saks space is a triplet (£, | | | | , τ ) of a vector space, a locally convex

topology τ on £, and a norm || || on E such that the unit ball B||.|| of (£, || ||) is

τ-bounded and τ-closed. A Saks space (£, || | |,τ) is complete if B^\\ is τ-

complete; in this case (£, || ||) is a Banach space. Let (£, || ||, τ) be a Saks space

and let Sf be a defining family of seminorms for τ which is closed for finite

suprema and is such that || || = sup Sf (See [5, Lemma 3.1]). Then for any

pair of sequence (pn) in tf and (λn) in (0, oo) with λn\ oo, p(x) = supnpn(x)/λn is

a seminorm on E. The family of all such seminorms defines a locally convex

topology y [ | | | | , τ ] on E. The following result states the relationship between

the topologies y[| | ||, τ] and y[|| ||, τ].

PROPOSITION 1.1 ([5, Proposition 1.4.4]). Let (£, || ||, τ) be a Saks space and

suppose that either

(a) for every x e £ , ε > 0 , p e y , there are elements y, z e E so that x = y + z,

p(z) = 0 and \\y\\ ^ p(x) + ε,or

(b) #||.|| is τ-compact.

Then γΠΊ^ = γί\\'lτl

We next consider the duality theory for (£, 7). A mixed space E has three

dual spaces: the topological dual of the locally convex space (E, τ), E'τ\ the

topological dual of the locally convex space (£, y), E'γ; the space of linear forms

on E which are bounded on the sets of ^ , E'@. It is obvious that E'τ a E'y a

E'@ and these spaces are regarded as a locally convex space with the topology of

uniform convergence on the τ-bounded sets, that on the y-bounded sets, and

that on the sets of ^ , respectively. Since 31 is of countable type, E'@ is

metrizable and it is also complete. Hence it is a Frechet space. Moreover we

have the following result:
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PROPOSITION 1.2 ([5, Proposition 1.1.17]).

( i ) E'y is a locally convex subspace of E'@\

(ii) E'γ is the closure of E'τ in E'% and so is a Frechet space.

A locally convex space (£, τ) is said to be a (df)-space if it is sequentially

evaluable (i.e., every null sequence in (E\ β(E\ E)) is equicontinuous) and admits

a fundamental sequence of bounded sets. It is known [15, Theorem 12.4.1]

that the strong duals of such spaces are Frechet spaces. A locally convex space

(E, τ) is said to be tfo-evaluable, if every bornivorous barrel in E that can be

represented as the intersection of a sequence of closed and abolutely convex

O-neighbourhoods in (£, τ) is itself a O-neighbourhood in (£, τ). A (d/)-space

which is also K0-evaluable is traditionally said to be (DF)-space. Let (£, τ) be a

locally convex space possessing a fundamental sequence # = (£„) of bounded

sets. The symbol τ6 stands for the finest locally convex topology on E which

coincides with τ on every Bn, ne N. If in particular τ = τ*, then (£, τ) is called

a (gDF)-space (for "generalized (DF)-space"). Every (DF)-space is a (gDF)-

space and it is easily verified [15, p. 257] that every (gDF)-space is also a

(d/)-space. Let (£, J>, τ) be a mixed space. Since y\β,τ\ is the finest locally

convex topology on E which coincides with τ on the sets of J^, we see that

γ = y ?̂ where ^ denotes a countable basis of &. Hence γ is a (gDi^-space, and

so a (d/)-space.

Let (E, τ) be a locally convex space and ^(τ) the family of τ-continuous

seminorm on E. We denote by ljs{Eτ} the space of absolutely summable

sequences in £, regarded as a locally convex space with the family of seminorms

{p'.pe &(τ)}, where p: (xn) -• X π e ^P(^ π ) A locally convex space (£, τ) is said

to have property (B) if for each bounded subset © of the space /^{£τ}

there exists an absolutely convex closed bounded subset B in E such that

Σn=i \\Xnh ^ !> f o r e a c h W π E i v e S . It is known ([19, Theorem 1.5.8]) that

metrizable locally convex spaces and (d/)-spaces have property (B). Since

mixed topological spaces are (d/)-spaces, we obtain the following result which

plays an important role in the subsequent discussions.

PROPOSITION 1.3. Let (E, &, τ) be a mixed space. Then Eγ has property

(B).

For Saks spaces, it is already known in [5, Proposition Π.6.9] that the

mixed topology y has property (B).

A topological space P is said to be Polish if there is a metric on P defining

the topology of P and P, equipped with this metric, forms a complete separable

metric space. A Hausdorff topological space E is said to be Souslin if there is a

Polish space P and a continuous mapping from P onto E. The following are

Souslin spaces (see L. Schwartz [22] and M. De Wilde [6] for the detailed
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arguments: (a) Borel subsets of a Souslin space, (b) a product (hence a projective

limit) of a sequence of Souslin spaces, (c) countable intersections or countable

unions of Souslin subspaces of a Hausdorff topological space, (d) countable

topological sums (hence an inductive limit) of a sequence of Souslin spaces, and

(e) continuous images of a Souslin space (hence a quotient of a Souslin space).

Since a Polish space is separable, every Souslin space is separable. In fact,

many of well-known separable linear topological spaces are Souslin spaces.

Separable Banach or Frechet spaces are Polish. The topological dual E with

the topology of uniform convergence on compact sets of a separable Frechet

space £ is a Souslin space. In particular, (£', σ(E\ E)) is Souslin. Most of

function spaces and their strong duals which appear in the distribution theory

are Souslin. Souslin spaces have the following useful properties: (1) If £ is a

Souslin space and Eτ is the space E equipped with a weaker Hausdorff topology

τ, Eτ (which incidentally is a Souslin space) have the same Borel sets as those

in E; (2) any finite positive Borel measures on a Souslin space are Radon

measures; (3) any separating family (fi)ieI of continuous functions on a Souslin

space has a countable subfamily which still separate the points of the space.

The following fact is elementary but important for our subsequent

discussions.

PROPOSITION 1.4. Let (£, ̂ , τ) be a mixed space. Then the following are

equivalent:

(1) 0& has a basis (Bn) such that Bn equipped with the relative topology

induced from τ is a Souslin space for ne N;

(2) Eτ is Souslin;

(3) Eγ is Souslin.

PROOF. The implication (1)=>(2) is obvious from the third stability prop-

erty (c) of Souslin spaces mentioned above. We then prove the implication

(2)=>(3). Let Ey be a Souslin space and (Bn)neN a countable basis of the

bornology 0b. Since Bn are all τ-closed, each one is also a Souslin space with

the topology induced by τ. Since γ and τ coincide on each £„, Bn equipped

with the relative topology induced from y is a Souslin space for ne N. Since

(Bn) is a covering of £, Eγ is also a Souslin space. Finally, we show that (3)

implies (1). Since Bn are τ-closed, they are y-closed, and hence Souslin with

respect to the relative topology induced on Bn by γ. Again, using the fact that

γ and τ coincide on each Bn, we see that each Bn is Souslin with respect to the

relative topology induced by τ. q.e.d.

2. Vector measures in mixed topological spaces

Fundamental results in measure theory can be extended to vector measures

in locally convex spaces. In this section we make an attempt to investigate
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some basic properties of mixed-space-valued measures in terms of the borno-

logy and the original topology.

Let (£, y) be a locally convex space and E'y its topological dual. We

denote by 0>(y) the family of all y-continuous seminorms on E. Let Up be the

p-unit y-closed ball, that is, Up = {x e E: p(x) ^ 1} for p e ^(y). The polar of a

set V of E is denoted by V°, namely, V° = {x' e E'y: |<x, x'>| ^ 1 for all x e V).

A function v from a field 3F of subsets of a set S to a locally convex space

E is said to be a finitely additive vector measure, or simply a vector measure, if

Aί and A2 are disjoint members of 3F then v(Ax u ^ 2 ) = v(^ x) -f v(y42). If in

addition v((J^=1 ,4n) = Σ™=1 v(An) holds in the original topology y of £ for all

sequences (An) of disjoint members of 3F such that (j£=i 4̂W e ^ , then we say

that v is a y-countably additive vector measure, or simply, v is y-countably

additive.

Let Ae^F and let Π(A) denote the set of all finite measurable partitions of

A. If A = 5, we simply write 77 for 77(5). Furthermore, let v: & -• E be a

vector measure and let p e ^(y). Then the p-varίatίon of v is the extended

nonnegative function |v|p( ) whose value at Ae 3* is defined by

Iv 1,(4) =

Moreover, v is said to be of y-bounded variation if |v|p(S) < oo for all p e

The psemivariation of v is the extended nonnegative function ||v||p( ) whose

value at A e 3F is given by

where |<v, x'>|( ) is the variation of the scalar-valued measure <v, x'>. More-

over, v is said to be of y-bounded semίvariation if ||v||p(S) < +oo for all p e 0*(y).

Let 3F be a field of subsets of the set S and let v: &* -• E be a vector

measure. The measure v is said to be y-strongly additive if for any sequence

(An) of disjoint members of 3F the series Σ™=1 v(An) converges with respect to

the topology y. A family {vα: α e A} of y-strongly additive vector measures

from 3F to E is said to be uniformly y-strongly additive, if for any sequence (An)

of disjoint members of !F and any p e έP(y) one has l im π _ o o p(^ = π v α (A m )) = 0

uniformly for oce A.

Let v: & -> E be a vector measure and μ a finite nonnegative real-valued

measure on 3F. If l im μ ( A )_ 0 |v|p(v4) = 0 for each p e ^(y), then v is said to be

absolutely μ-continuous with respect to γ; if limμ{A)^0 p(v(A)) = 0, then v is said to

be μ-contίnuous with respect to y.

We now give some results concerning (£, y)-valued measures which

extend basic results for the case of normed spaces given for instance in [7] and

[13].
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PROPOSITION 2.1. Let v : 3F -• E be a vector measure. Then for A e 3F and

for p G ^(y), one has

\\v\\p(A) = sup {piΣi^MΛd): (Ad e Π(A), \εt\ g 1} ,

and

sup {p(v(B)): A ^ Be ^}^\\v\\p(A)

^ 4 sup {p(v(B)): A 3 B e ^}.

Consequently a vector measure is of y-bounded semivariation on S if and

only if its range is y-bounded in E.

PROOF. Since p(x) = sup {|<x, x'>| :x' e C/p

0} for x e £ and p e ^ ( y ) , we

can apply the same argument as in [4, Proposition 1.1.11] to get the desired

assertion. q.e.d.

In view of this proposition a vector measure of y-bounded semivariation

may be called a y-bounded vector measure.

PROPOSITION 2.2. Any one of the following statements about a collection

{vα: α G A) of E-valued measures defined on afield £F implies the others.

( i ) The set {vα : α e A} is uniformly γ-strongly additive.

(ii) For every equicontinuous subset H of E'y the set {(va, x'} :<xe A,

x' e H} is uniformly y-strongly additive.

(iii) For every sequence (An) of disjoint members of &9 limnp(va(An)) = 0

holds uniformly in α e A for every p e 0>(y).

(iv) For every sequence (An) of disjoint members of &, limM ||vα||p(Xπ) = 0

uniformly in ae A for every p e ^(y).

(v) For every equicontinuous subset H of E'y the set {|<vα, x '> | : α e A,

x' e H) is uniformly y-strongly additive.

PROOF. It is obvious that (i) implies (ii) and (ii) implies (iii). To prove

that (iii) implies (iv), suppose (iv) fails under (iii). Then there exists p e £P{y\

δ > 0 and a sequence (An) of pairwise disjoint members of 3F for which

supα ||vjp(i4π) > 5(5 > 0 holds for all n. Hence for each n there is oc(ή) e A such

that

(1) H v α ( π ) | | p μ j > 5 ( 5 > 0 .

On the other hand, for each n, there is Bn G $F such that An ID Bn and

(2) 4 s u p {p(va(n)(B) :B^An}-δ< 4p(va{n)(Bn)).

By Proposition 2.1, the above relations (1) and (2), we have δ < supα/?(vα(2?J),

which contradicts (iii). This shows that (iii) implies (iv).
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We next prove that (iv) implies (v). Suppose that {|<vα, x'>|( ): α € Λ9

x'eϋp} is not uniformly strongly additive for some pe^(y). Then there

exists a disjoint sequence (An) in !F and a δ > 0 such that for each m one has

Thus there is an increasing sequence (m(j)) of positive integers such that for

ally-

sup {ΣS£SU l<vβ, x'>\(ΛΛ):<xeΛ9x'e U°p)

= sup{Kva9x'}\(\J^:{)]+ίAn):oieΛ,xfeU^^δ>0.

Therefore the sequence (Bj) of pairwise disjoint members of !F defined by

Bj=

satisfies

This contradicts (iv), and thus (iv) implies (v). It is obvious from Proposition

2.1 that (v) implies (i). q.e.d.

COROLLARY 2.3. The following statements about a vector measure v defined

on afield !F are equivalent'.

( i ) v is y-strongly additive.

( i i ) For every equicontinuous subset H of E'γ9 {<v, x ' ) : x ' e H } is uniformly

y-strongly additive.

(iii) v is y-strongly bounded, i.e., \\mnv(An) = § for any sequence (An) of

disjoint members of $F.

0 v ) IIvlip is y-strongly bounded for every p e έP(y). Namely, if (An) is a

sequence of mutually disjoint members of 3F, then limπ ||V||P(J4Π) = 0 for every

P e 9{y\

( v ) For every equicontinuous subset H of E'y9 {|<v, x'>|: x' e H) is

uniformly y-strongly additive.

(vi) The limit limπv(y4Λ) exists for every nondecreasing monotone sequence

(An) of members of 3F.

(vii) The limit limnv(An) exists for every nonincreasing monotone sequence

(An) of members of !F.

PROOF. The equivalence (i) through (v) is clear from Proposition 2.2.

The equivalence between (vi) and (vii) follows from the identity v(A) + v(S\>4) =

v(S). To see that (i) implies (vi), let (An) be a nondecreasing sequence of

members of £F. Then \imnv(An) = viA^+ \imnYj

n

r^}1v(Am+1\Am) exists since

the sequence (Am+1\Am) consists of disjoint members of !F. This proves that (i)
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implies (vi). Finally, we demonstrate that (vi) implies (i). Suppose (vi) holds.

Let (An) be any sequence of disjoint members of 3F. Then limwv((J^= 1,4m)

exists by (vi). Thus limnv(AM) = limn [v(U«m=1 ΛJ - v({Jn

m-=\ Λ J ] = 0. This

proves that (i) holds. q.e.d.

COROLLARY 2.4. A y-strongly additive vector measure on a field 3F is

y-bounded.

PROOF. Let f be a field of sets and v: 3F -> E a y-strongly additive

measure. Suppose | |v | |p(S)= +oo for some p e ^ ( y ) . Then one can choose

Bι e & such that p{v{BJ) ^ 1 + 2p(v(S)). Since v ^ ) = v(S) - v{S\Bx\ it

follows that pMBJ) - p(v(S)) £ p{v(S\Bx)). Thus piv^BJ) ^ 1. Now ||v||p
is subadditive on disjoint sets so either ||v|| ,,(!*!) or H v H ^ S ^ ) is infinite.

If 1^11^(5!)= +oo, put A1=B1; otherwise, let Ax = S\BX. In either case,

| |v | | p(i4 1)= +oo and p(v(Ax)) ^ 1. Replacing S by Aγ in the above line of

reasoning, we see that there is an element A2 of $F contained in Aγ such that

IMIpO^) = + 0 0 a n ( i p(v{A2)) ^ 2. Iterating this procedure, we obtain a non-

increasing sequence (An) of member of 3F such that IMIjXdJ = +oo and

p(v{An)) ^ n. Thus limπv(Aπ) does not exist, and an appeal to Corollary 2.3(vii)

shows that v is not y-strongly additive. q.e.d.

THEOREM 2.5. Suppose {vα: α e A} is a uniformly y-bounded and uniformly

y-countably additive family of E-valued measures defined on a σ-field Σ. If

μ : Σ -> [0, oo) Ϊ5 a countably additive measure and va is μ-continuous with respect

to y for each (x e A, then for every p e 0*(y) we have

limμ ( i 4 )_0 supαe^/?(vαμ)) = 0 .

PROOF. First we note that {vα :oce A} is uniformly y-countably additive if

and only if the family {<vα, x'> : x' e (7°, ue A} is uniformly y-countably addi-

tive for every p e ^(y). Hence it suffices to prove the statement on scalar-

valued countably additive measures. To this end, assume that {μa:aeA} is a

bounded family of uniformly countably additive scalar-valued measures defined

on Σ. Define v: Σ -> /°°(v4) by the equation

v(A)(oc) = μa(A), for A e Σ and α e A .

By the uniform countable additivity of {μα: α e A), it is readily seen that v is a

countably additive vector measure. Moreover, v(A) = 0 whenever μ(A) = 0.

Hence by [7, Theorem 1.2.1] v is μ-continuous, i.e.,

l i i ϊ i μ U ) -, o sup α |μ α μ) | = 0 ,

which is the desired result. q.e.d.
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THEOREM 2.6 (Nikodynΐs Boundedness Theorem). Let {vα: α e A) be a

family of E-valued bounded vector measures defined on a σ-field Σ. If

supΛeΛ p(va(A)) < +00 for AeΣ and p e 0>(y), then the family {va:oceA} is

uniformly y-bounded, i.e.,

supα6y< ||vJp(S) < +00 for each p e 0>(y).

PROOF. For pe^(y), cceA and AeΣ the identity sup {|<vα(y4), x'}\:

x' e Up} = p(va(A)) holds. Hence we can apply the same argument as in [7,

Theorem 1.3.1] to the family {<vα, x'> : α e A, x' e Up } of scalar-valued mea-

sures on Σ. q.e.d.

THEOREM 2.7 (Vitali-Hahn-Saks-Nikodym). Let Σ be a σ-field of a set S and

(vn) a sequence of y-strongly additive E-valued measures on Σ. If limwvn(i4)

exists in y-topology for each AeΣ, then the sequence (vn) is uniformly y-strongly

additive.

PROOF. Since limπvn(A) exists for each AeΣ, an appeal to Theorem 2.6

implies that the sequence (vM) is uniformly y-bounded. Assume for the moment

that limnvn(A) = 0 for all AeΣ. If (vn) is not uniformly y-strongly additive,

then there exists an equicontinuous sequence (x'n) in E'y such that the sequence

of scalar measures (<vπ, x^>) is not uniformly strongly additive. Moreover, (x'n)

is a σ ( F r £)-bounded sequence, and so limπ (yn{A), x'n} — 0 for A e Σ. We then

define v : Σ -• c0 by

for all AeΣ. The set function v is a co-valued bounded measure on Σ. From

[7, Theorem 1.4.2] it follows that the measure v is strongly additive. We see

from the definition of the norm of c 0 that (<v, x'n}) is a uniformly strongly

additive sequence, a contradiction. We now consider the general case in which

limπvn(A) exists for all AeΣ. If the sequence (vn) is not uniformly y-strongly

additive, then by Proposition 2.2 there exist a sequence (An) of disjoint members

of Σ and p e ^(y) such that

\imnsupmp(vm(An))>0.

By choosing an appropriate subsequence and relabeling, one may assume that

p(vn(An)) > δ for all n and some δ > 0. Furthermore, by making use of the fact

that each vn is y-strongly additive, we have (by choosing another subsequence if

necessary)

p(vn(An))>δ and p(vn(An+i)) < δ/2

for all n. Now set σn = vn+ί — vn. Since limπvM(A) exists for all AeΣ, one has

limnσn(A) = 0 for all AeΣ. On the other hand,
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p(σn(An+i)) ^ P(vn+ΛAH+1)) - p(vn(Λn+1))

>δ-δ/2 = δ/2.

Hence limπ supm (σm(An)) > 0 and (σn) is not uniformly y-strongly additive. But

according to the first past of the proof, (σj must be uniformly y-strongly

additive because it tends setwise to 0. This contradiction completes the proof.

q.e.d.

COROLLARY 2.8 (Vitali-Hahn-Saks). Let (vn) be a sequence of E-υalued

γ-countably additive measures such that limπ vn(A) = v(A) exists for each Ae Σ.

If μ is a nonnegative real-valued countably additive measure such that each vn is

μ-continuous with respect to y, then the sequence (vn) is uniformly μ-continuous

with respect to y in the sense that limμ{A)^0p(vn(A)) = 0 uniformly in neN for

each p e ^(y). Consequently v is μ-continuous with respect to y.

PROOF. By Theorem 2.6 the sequence (vj is uniformly y-strongly additive.

Since vn is y-countably additive, the sequence (vj is uniformly y-countably

additive. Theorem 2.5 can then be applied to obtain the desired assertion.

q.e.d.

Now we assume that the locally convex topology y on E is the mixed

topology associated with a mixed space (£, ̂ , τ). We aim to characterize

various properties of Ey-valued vector measures in terms of & and τ.

PROPOSITION 2.9. Let v: !F -> E be a vector measure defined on a field £F.

Then v is y-strongly additive if and only if v{^) is 38-bounded and v is τ-strongly

additive.

PROOF. Assume that v is y-strongly additive. Then v is τ-strongly addi-

tive and we see from Corollary 2.4 that v(βF) is y-bounded. Therefore v(#") is

J -bounded in virtue of the property (2) of mixed topologies explained in

Section 1. Conversely, assume that v(J^) is ^-bounded and v is τ-strongly

additive. Let (An) be any sequence of disjoint members of 3F. Then in virtue

of Corollary 2.3 we have limπ v(An) = 0 with respect to τ. Since v(J^) is

^-bounded, limπ v(An) = 0 with respect to y by the property (3) of mixed

topologies. Hence, we see from Corollary 2.3 again that v is y-strongly

additive. q.e.d.

Similarly, we obtain the following result.

PROPOSITION 2.10. Let v.^^Ebea vector measure defined on a field 3F.

Then v is y-countably additive if and only if v(#") is $-bounded and v is

τ-countably additive.
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PROPOSITION 2.11. Let {vα: α e A] be a family of E-valued vector measures

defined on a field &*. Then {vα: α e A) is uniformly y-bounded if and only if

^-bounded.

PROOF. Since the sufficiency is obvious, we prove the necessity. To the

contrary, assume that ( J α e y ί vα(J
ZΓ) is not ^-bounded. Then for every n there

exists a(ή) e A and An e <F such that va{n)(An) φ Bn. Thus {va(n)(An)} is not

^-bounded, i.e., it is not y-bounded and hence supnp(va(n){An)) = +00 for some

p e έ?(y). Consequently we have supα ||vα||p(S) = +00. This is a contradiction.

q.e.d.

PROPOSITION 2.12. Let v.^^Ebea vector measure defined on a field &*.

Then v is of y-bounded variation if and only if there exists an absolutely convex

τ-closed and &-bounded subset B of E such that B contains v(^) and v\!F^>EB

*s of \\ \\B-bounded variation. If in particular (£, || ||, τ) is a Saks space, then v is

of y-bounded variation if and only if v is of \\-\\-bounded variation.

PROOF. Assume that v is of y-bounded variation. Then the set

{(v(A))Aeπ:π € 17} is bounded in ljv{Eγ}. Since Eγ has property (B) by

Proposition 1.3, there exists a τ-closed β e J such that ΣAeπ ||v(v4)||B ^ 1 for

each π e 77. This means that v\^^EB is of || Unbounded variation. Con-

versely, suppose that there exists an absolutely convex τ-closed and ^-bounded

subset B of E such that B contains v(^) and v.^ -> EB is of || Unbounded

variation. Then the inclusion map I :(EB9\\m\\B)->(E9γ) is bounded. Hence

for each p e 0>(y) there exists Mp > 0 such that p(x) ^ M p | | x | | β for each x e EB.

This means that if v is of || ^-bounded variation, then v is of y-bounded

variation. q.e.d.

3. Integration and convergence theorems

In this section, we treat the Vitali type convergence theorems from the

point of view of the three types (defined below) of integrals of functions which

take values in locally convex spaces. Throughout this section (S, 27, μ) is

supposed to be a fixed complete nonnegative finite measure space and (£, y) a

locally convex space.

We begin by introducing four notions of measurability of functions from S

into E.

( I ) A function / : S -• E is said to be y-strongly measurable if there exists

a sequence {fn)nGN °f measurable simple functions such that limΠ^00//I(s)

= /(s) μ-a.e. in y.

(II) (1) Let p e έP(y). A function f:S^Eis said to be measurable by p
if there exist SOtPcz S with μ(SOp) = 0, and a sequence (//)„<=# of measurable
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simple functions such that lim^^ p(fn

p(s) - f(s)) = 0 for all s e S \ S 0 , P

(2) A function f:S-+E is said to be measurable by γ-seminorm if /

is measurable by each p e 0>(y).

(Ill) A function / : £ - • £ is said to be γ-weakly measurable if for each

xf e E'γ9 </(s), x'> is measurable.

The integral of a measurable simple function / = £ixi&4<> Ai e Σ is defined

as usual by

1
We then introduce three kinds of definitions of integrability corresponding

to the notions of measurability introduced above.

( I ) A function / : S -> E is said to be y-strongly ίntegrable if there exists a

sequence (/„)„«=# of measurable simple functions such that

1. fn(s) -*> f(s) μ-a.e. in y, i.e., / is y-strongly measurable;

2. p(fn(s) - f(s)) e L\μ) for each n ε TV, and

"~*°° Js
P(fn(

s) — f(s)) dμ = 0 for each

3. J^/n dμ converges in (£, y) for each A e Σ.

In this case we write {B)y-\Afdμ for the limit l im,,^ \Afn dμ and call it the

γ-strong integral of/ over A.

(II) A function f:S^>E is said to be integrable by y-semίnorm if for

each p e ^(y) there exists a subset SOp of S with μ{SOfP) = 0 and a sequence

(fn)neN of measurable simple functions such that

1. for each s e S\SOtP9 l i π w p(//(s) - /(s)) = 0;
2. l i n w jsp(//(s) - /(5)) rfμ = 0 for each p e P(γ);
3. for each A e Σ9 there exists xA e E such that xA is independent of p

and

l i π w P ( //(5) ^μ - xA j = 0 for each p e

In this case we write xA = {y)-\Afdμ and call xA the integral by y-seminorm of/

over A

(III) A function f:S^>Eis said to be y-Pettis integrable if

1. / is y-weakly integrable in the sense that </(s), x ;> e ί Λ μ ) for every

x' e F y ;
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2. for each AeΣ, there exists xAeE such that (xAix'} = §A(f(s\ x'} dμ

for every x' e Ey.

The value xA is written as xA = (P)y-$Afdμ and is called the y-Pettis integral

of/ on A.

If in the definition (I) (£, y) is sequentially quasi-complete, then the third

condition in (I) is not necessary. As seen from the above definitions of inte-

grals that the y-strong integrability implies the integrability by y-seminorm and

the integrability by y-seminorm also implies the y-Pettis integrability. In [23]

Thomas treats Pettis integral in quasi-complete locally convex Souslin spaces,

and gave interesting criteria for the integrability of vector valued functions.

Obviously, if T is a continuos linear map from a locally convex space (£, τ) to

another locally convex space (F, y), and if / : S -> E is τ-Pettis integrable, then

T o / is also y-Pettis integrable and (P)y-$ATofdμ=T((P)τ-$Afdμ) for all
A e Σ. Blondia [2] investigated the relationship between the above-mentioned

three types of integrability.

The following three theorems are directly derived from the results due to

Blondia [2]. The first two theorems give crucial relationships between Pettis

integrability and integrability by seminorm.

THEOREM 3.1. Let f be measurable by y-seminorm. Then f is integrable by

y-seminorm if and only if f is y-Pettis integrable and p(f(s)) e L1(μ) for each

p e 0*(y). Moreover (y)-$Afdμ = (P)y-\Afdμ for each As Σ.

THEOREM 3.2. Let f be y-Pettis integrable and measurable by y-seminorm.

Then the induced measure v, defined by v(A) = (P)y-§Afdμ for A e Σ, has

y-bounded variation if and only if f is integrable by y-seminorm. Moreover,

\v\p(A) = SΛP(AS)) dμ for each A e Σ.

THEOREM 3.3. Let (£, y) be a complete locally convex space and let f:

S -> E be measurable by y-seminorm. If p(f(s)) e Lι{μ) for each p e ^(y), then f

is integrable by y-seminorm.

We now establish a convergence theorem for Pettis integrals in locally

convex spaces.

THEOREM 3.4 (Vίtalί Convergence Theorem for Pettis Integrals). Let (£, y)

be a complete locally convex space and let f: S -• E. If there exists a sequence

(fn)neN °f E-valued y-Pettis integrable functions on S satisfying

(a) for every equicontinuous subset H of Ey, the set {</„, x'} : x' e H,

n e N} is uniformly integrable;

(b) lim,,^ </„, x'} = </ x'} in measure for every x' e E'y9

then f is y-Pettis integrable and \\mn^ao(P)y-\Afndμ = (P)y-\Afdμ y-weakly

in E for every A e Σ.
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The above theorem was given by Musial [16] for the case of Banach

spaces. We here prove the theorem based on his argument. First, we need

the following lemma.

LEMMA 3.5. Let (£, γ) be a locally convex space. Let H be a subset of E'y
which is absolutely convex and σ(Ey, E)-compact. Assume that f:S-*E is a

function such that </, x'> e L1(μ) for every x' e H. Then we have

JA

|</, x'>| dμ < +oo for every A e Σ .

PROOF. First we consider a normed space E'H generated in E'y by H.

Namely, E'H is the linear space generated by H and the norm on E'H is defined

by IIX'IIH = inf {A > 0: x' e λH} for each x' e E'H. Hence H is exactly the unit

ball of the normed space E'H. Since H is σ(E'v £)-compact, E'H is a Banach

space. Let A e Σ. Then it follows from the closed graph theorem that the

map x' -• </, x'> from E'H to L1(μ) is continuous. Thus there exists M(A) > 0

such that $A\(fx')\dμ^M(A)\\x'\\H for every x'e E'H. This means that

+oo. q.e.d.

PROOF OF THEOREM 3.4. First, assume that £ is a complete locally convex

space over the real field R. Fix any AeΣ9 and let C be the weak closure of

the set {(P)y-\Afndμ\neN). Since Vitali's convergence theorem guarantees

that lim^^oo \A(fn, x'} dμ = §A(f x'} dμ for every x' e E'γ9 we see that C is

bounded and C\{(P)γ-$Afdμ: n e N} consists of at most one point. In order

to prove our assertion it is sufficient to show that C is weakly compact. In

fact, if C would be weakly compact, then there would exist a weak limit of

{(P)y-\AfndV)neN i n E Clearly the limit must coincide with (P\-\Afdμ9

and so we could conclude that / is y-Pettis integrable on A. To the contrary

suppose that C is not weakly compact. Then, by a well-known result due to

James ([14, Theorem 1]), there exist an equicontinuous subset {xn:ne N}, a set

{xn : n e i V } c C , and θ > 0, such that x'k(xn) = 0 for k > n and x'k(xn) > θ for

k ^ n. Consequently, we can then choose a subsequence (gm)msN °f (fn)neN

and a subsequence (y'JmeN oϊ(x'n)neN, such that

(1) (9m> y'k) dμ = 0 for k > m ,1
1

<0m, x'}dμ=\ ifx'ydμ for every x' e E'y.
JA JA

(2) <gm,y'k>dμ>θ for/c^m,
JA

(3)
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We then consider the set {</, y'm} : m e TV}. Since the set {y'm :me N} is equi-

continuous, it follows from Lemma 3.5 that

\<f,y'm>\dμ< +00 .

From this and (a) we see that {(f9y'm}:meN} is uniformly integrable (i.e.,

l im μ ( β )^ 0 sup m e Λ rJ β |</, ym}\ dμ = O) and bounded. Hence it is relatively weakly

compact. This yields the existence of a function heL1(μ) and a subsequence

(z})jeN of (y'm)meN such that lim,-^ </, zj> = h weakly in L\μ). Applying (3) to

every z] we get an inequality \A </, z] > dμ ^ θ and hence JΛ h dμ ^ θ. We now

appeal to the theorem of Mazur. Let αj", . . ., a™(mP meN, be non-negative

numbers such that X, αj" = 1 and l im m ^αj"</, zj+m> = ft in L^μ). Without

loss of generality, we may assume that this convergence holds μ-a.e. Let z'o be

a σ{E'Γ £)-cluster point of the sequence (XJ fljnzj+m)me^, then h = </, zo> μ-a.e.

In particular, we have

(4) 1
On the other hand, each gn is y-Pettis integrable, and also the function
x'-^U(yn>χf} dμ is σ(E'y, £)-continuous. Hence, if (w^α) is a subnet of

(Σjα/Izi+m)m>n converging to z'o in σ(E'y, E\ then the application of (1) implies

0 = limα (gn, w;α> dμ = limα ( {P)γ- gn dμ, w^α

JA \ JA

= ((P)y-\ gndμ,z'0)= I (gn,z'0}dμ.
\ JA I JA

Since this holds for every n e TV, we see from (3) that §A </, z'o} dμ = 0. But

this contradicts the inequality (4). Thus it follows that C is weakly compact

and so the real case of the theorem is proved.

Next assume that E is a complete locally convex space over the complex

field. Let ER be a locally convex space E restricted over the real field R. If

f:S-+ER is y-Pettis integrable in (ER, y), then / is also y-Pettis integrable in

(£, y) and (y(A\ x') = \A </, x'> dμ for every x' e E' and A e Σ, where v(A) is

the indefinite y-Pettis integrable of / on A in (ER, y). To show this, we have

only to note that if f:S-+ER is y-Pettis integrable in (ER,γ), then i f(-) ("i"

means the imaginary unit) is also y-Pettis integrable in (ER, y) and

y - ί i
JA

(P)y-1 i' f(s) dμ = i-(P)y- fdμϊn ER

JA

for every A e Σ. But this is clear since the multiplier i is continuous on

(£/?, 7) q e d.
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As a direct consequence of Theorem 3.4 we get the following generalization

of the Lebesgue dominated convergence theorem for Bochner integrals:

THEOREM 3.6 (Lebesgue Dominated Convergence Theorem for Pettίs Inte-

grals). Let f: S -> E be a function satisfying the following two conditions:

(α) There exists a sequence of y-Pettis ίntegrable functions fn: S —> E,

n e N9 such that limM </„, x ' ) = </, x'> in measure, for every xr E Ey.

(β) There exists a y-Pettis integrable function g:S -• E such that

Kfn> x'}\ = K#> χf}\ V-a-e- for each x' e E'y and ne N (the exceptional set may

depend on xf).

Then f is y-Pettis integrable and

A fndμ =
JA

limn (P)y- fndμ = (P)y- fdμ y-weakly in E for all AeΣ.
JA JA

PROOF. It suffices to show that condition (a) of Theorem 3.4 is induced

from (β). Let H be any equicontinuous subset of Ey. Then there exists a

closed and absolutely convex neighborhood U of 0 so that H c U°. Put

p(x) = inf {λ > 0: x e λU}. Then p defines a y-continuous seminorm on E.

Given x' e U° and AeΣ, (β) implies

[ KΛ, *'>l dμ ̂  f \<g, x'}\ dμ = |<v, x'>\(A)

^ 4 sup {Kv(B)9 x')\ :BczA,BeΣ}

S 4 sup {p(v(B)) :BcnA,BeΣ}9

where v is the indefinite y-Pettis integral of g and |<v, x'}\(A) means the

variation on A of the measure <v, x'>. Thus

JA

KfH9 x')\ dμ^ 4 sup {p(v(B)):Bcz A, B e Σ} .

Consequently, it follows from the absolute continuity of v (see [23]) that

l im^j^o sup x, e ί /oj^|</n, x')\ dμ = 0. q.e.d.

Next we state a convergence theorem for integrals by seminorm.

THEOREM 3.7 (Vitali Convergence Theorem for Integrals by Seminorm). Let

(E, y) be a complete locally convex space. Let f:S->E and suppose that there

exists a sequence (fn)ne^ of E-valued functions on S which are integrable by

y-seminorm and satisfies

(c) for every p e £?(y\ the set {p(fn) :ne N} is uniformly integrable;

(d) l i m ^ ^ p(fn - f) = 0 in measure for p e 3>(y\

then f is integrable by y-seminorm and
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~LfAdμ={y)~Llim^^^ (y)- \ fAdμ = (y)- fdμ in y for every AeΣ.
JA JA

PROOF. By Vitali's convergence theorem, we see that for every p e ι

(1) / i s measurable by p, and

(2) l i m ^ 0 O f s p ( / Λ - / ) d μ = 0.

The formula (2) implies that ((y)-\Afndμ) is Cauchy in E for every AeΣ, and

so {y)-\Afn dμ converges to some xA in E. Making use of (2) again, we have

- fn dμ, x' ) =
JA I J

(xA, x'} = lim,,.^ ( (y)- fn dμ, x' ) = \ </, x'} dμ for each xf e E'y.
\ JA I JA

This shows that / is y-Pettis integrable. Thus / is measurable by y-seminorm

and y-Pettis integrable. Furthermore p(f)eL1(μ) for every pe^(y). Hence

by Theorem 3.1 / i s integrable by y-seminorm. By (2) we conclude that

l im,,^ (γ)-\Afn dμ = {y)-\Afdμ in y for every AeΣ. q.e.d.

The following result is an immediate consequence of Theorem 3.7.

THEOREM 3.8 {Lebesgue Dominated Convergence Theorem for Integrals by

Seminorm). Let f: S —> E be a function satisfying the following two conditions:

(y) There exists a sequence (/,)πeΛr °f E-valued functions on S which are

integrable by y-seminorm such that limπ /?(/„ — /) = 0 in measure for every

p e 0*{y).

(δ) For every p e έ?(y), there exists an integrable function gp : S -> [0, H-oo)

such that p(fn) ^ gp μ-a.e. for every ne TV.

Then f is integrable by y-seminorm and

lim^^oo (y)- fndμ = (y)- /dμ in y for every AeΣ.
JA JA

4. Integration in Souslin mixed topological spaces

In this section we advance an integration theory in mixed topological

spaces y\β, τ] under the assumption that (£, τ) is a locally convex Souslin

space. Let (5, Σ, μ) be a fixed complete nonnegative finite measure space.

This is one of our main objectives.

The following lemma due to Thomas states a characteristic property of

weakly measurable functions which take their values in locally convex quasi-

complete Souslin spaces.

LEMMA 4.1. Let (£, τ) be a locally convex quasi-complete Souslin space and

f: S —• E a τ-weakly measurable function. Then there exists a countable parti-

tion S = \J™=0Sn °f s int0 measurable subsets such that μ(S0), μ(Sn) > 0 and f(Sn)

is relatively compact for ne N.



160 Kazuo HASHIMOTO

Using this lemma, Thomas [23, Theorem 3] gave the following theorem.

THEOREM 4.2. Let (E, τ) be a locally convex quasi-complete Souslίn space.

Let f: S —• E be a τ-weakly measurable function such that JsP(/(5)) dμ < +co for

every p e ^(τ). Then f is τ-Pettis integrable.

If in Theorem 4.2 the function / is bounded, then we obtain stronger

integrability.

PROPOSITION 4.3. Let (£, τ) be a quasi-complete locally convex Souslin

space. Then every bounded τ-weakly measurable function is τ-strongly integrable.

PROOF. Let f:S->E be bounded and τ-weakly measurable. Then there

exists a τ-closed bounded subset B such that f(S) a B. Therefore B is Souslin,

and hence we see in the same way as in the proof of [2, Proposition 2.3] that

we can take a sequence (/„) of simple measurable functions such that fn(S) a B

for neN and limn^aofn(s) = f(s) for each se S. Thus the Lebesgue bounded

convergence theorem implies that limπ \sp{fn — f)dμ = 0 for every p e ^(τ).

q.e.d.

C. Blondia showed in [2] that weak measurability, measurability by semi-

norm and strong measurability are all equivalent in locally convex Souslin

spaces. Using this fact, we have immediately the following proposition.

PROPOSITION 4.4. Let (E, τ) be a locally convex Souslin space. Let

(£, ^ , τ) be a mixed space. For a function f'.S^E the following conditions are

equivalent.

( 1 ) f is τ-weakly measurable',

( 2 ) f is y-weakly measurable',

( 3 ) f~1(B)eΣ for every τ-Borel subset B of E\

( 4 ) f~x{B) e Σ for every y-Borel subset B of E;

( 5 ) f~ι{C)eΣ for every τ-Souslin subset C of E;

( 6) / - 1 ( C ) G Σ for every γ-Souslin subset C of E;

( 7 ) f is measurable by τ-seminorm;

( 8 ) f is measurable by y-seminorm;

( 9 ) f is τ-strongly measurable;

(10) / is y-strongly measurable.

PROOF. Suppose that (E, τ) is Souslin. Then, by Proposition 1.4, (£, γ) is

also Souslin. Hence by [2, Proposition 2.3], we have the implications ( l ) o

(3) <̂> (5) o (7) o (9) and (2) o (4) o (6) o (8) o (10). Thus it is sufficient to show

that (3) o (4). Since y is finear than τ and a countable union of Souslin spaces

is again Souslin, it follows that the Borel σ-fields with respect to τ and y

coincide. q.e.d.
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The following theorem shows that in the mixed spaces τ-Pettis integrability

is equivalent to y-Pettis integrability. It would be noted, however, that integr-

ability by τ-seminorm is not always equivalent to integrability by y-seminorm

(see Remark 4.12).

THEOREM 4.5. Let y be the mixed topology associated with a mixed space

(E, J1, τ). Then f:S-+E is τ-Pettis integrable if and only if it is y-Pettis

integrable.

PROOF. Since the sufficiency is obvious, we show the necessity. Let v be

the infefinite τ-Pettis integral of/. Let xr be any element of E'γ. Since E'y with

the strong dual topology is Frechet and E'x is dense in E'y by Proposition 1.2 (ii),

there exists a sequence (x̂ ,) of E'τ such that x^->x' in E'y. Since </(s), x^>->

</(s), x'> pointwise and <v(Λ), x'> = limM (v{A), *;> = l i m j ^ </, x'n} dμ, it fol-

lows from the Vitali-Hahn-Saks theorem that </(s), x'> is integrable, and

),x'> = limn ί </,x;>dμ= ί (fx'
JA JA

for any A e Σ. This shows that / is y-Pettis integrable. q.e.d.

PROPOSITION 4.6. Let (E, 011, τ) be a mixed space such that (E, τ) is a

quasi-complete locally convex Souslin space. Then every ^-bounded τ-weakly

measurable function is γ-strongly integrable.

This is obvious from the property of y that the ^-boundedness is equi-

valent to the y-boundedness, Proposition 4.3 and Proposition 4.4.

COROLLARY 4.7. Let (£, τ) be a quasi-complete locally convex Souslin space.

Then every τ-weakly measurable function is locally τ-strongly integrable, i.e., for

every A e Σ with μ(A) > 0 there exists a Be Σ with μ(B) > 0 such that B a A

and f is τ-strongly integrable on B. Therefore, if (E, 0&, τ) is a mixed space, then

every τ-weakly measurable function is locally y-strongly integrable.

PROOF. Let f:S-+E be τ-weakly measurable. We see from Lemma 4.1

that there exists a partition 5 = (J"= o Sn of S into measurable subsets such that

μ(S0) = 0, μ(Sn) > 0 and f(Sn) is relatively compact for n e N. Take any Ae Σ

with μ(A) > 0. Then there exists neN such that μ(A n Sn) > 0. We put B =

A nSn. Then we see easily from Proposition 4.3 that / is τ-strongly integrable

on B. As to the latter part of the assertion it is enough to note that τ-weak

measurability and y-weak measurability are equivalent. q.e.d.

Let E and F be locally convex spaces. A continuous linear map u.E^F

is nuclear if it is of the form

x _> u(x) = Σ ϊ=i λn(x, x'n}yn,
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where £ * = 1 \K\ < + °°> (χ'n) *s a n equicontinuous sequence in E\ and (yn) is a

sequence contained in a closed bounded Banach ball B of F. A locally convex

spaces £ is nuclear if for every continuous seminorm p on £, the canonical map

E -• Ep is a nuclear map. Here £ p stands for the completion of the quotient

space E/p'1^) with the norm \\x\\p = p(x\ where x denotes the coset containing

x. It is known [8, p. 257] that if E is nuclear, every weakly integrable function

f:S->E satisfies the condition that p(f) e Lι(μ) for every continuous seminorm

p on E.

E. Thomas gave the following theorem.

THEOREM 4.8 ([23, Theorem 7]). Let (E, τ) be a Souslin space such that E is

the topological dual of a quasi-complete barrelled nuclear space F and E'τ = F.

Iff S^E is τ-weakly measurable, then there exist a τ-bounded Banach ball B in

E and Soe Σ with μ(S\S0) = 0 such that f(s) e EB for all s e So and f:S0^>EB is

Bochner integrable in the usual sense.

The following result is obtained in the case of Souslin spaces as mentioned

in Theorem 4.8. This contrasts with Proposition 4.3.

THEOREM 4.9. Let (E, τ) be as in the above Theorem 4.8. Then τ-weakly

integrable function f:S->Eis τ-strongly integrable.

PROOF. Using the previous theorem we can take a τ-bounded Banach ball

B in E such that f(s)eEB μ-a.e. (i.e., seSoeΣ with μ(S\S0) = 0) and / :

So -• EB is Bochner integrable. Hence there is a sequence (/„) of EB-valued

simple functions such that \\fn(s) — f(s)\\B -> 0 μ-a.e. and j s \\fn — f\\B dμ -* 0. If

p e ^(τ) and M = sup {p(x): x e £}, then p(x) ^ M | |x| |β for all x e £ , whence

ί p(fn-f)dμ^M f \\fn-
Js Js

fhdμ.

Thus we have lim,,^ §sP(fn ~ f) dμ = 0 for all p e ^(τ). q.e.d.

Nuclear Frechet spaces and the function spaces $), $)', <f, S\ Sf and

£f ', which appear in distribution theory are all Souslin spaces satisfying the

assumption of the above Theorem. See for instance [23].

THEOREM 4.10. Let (E,$,τ) be a mixed space such that (E,τ) is a quasi-

complete locally convex Souslin space. If (E, y) is nuclear, a function f: S —• E is

integrable by τ-seminorm if and only if it is integrable by y-seminorm.

PROOF. Since y is finer than τ, the sufficiency is obvious. We show the

necessity. To this end, let f:S^E be integrable by τ-seminorm. Then, in

view of Proposition 4.4, / is measurable by y-seminorm. As / is τ-Pettis

integrable, / is y-Pettis integrable by Theorem 4.5. By the nuclearity of (£, y),
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p(f(s)) eLι{μ) for each pe^(y) as mentioned before Theorem 4.8. Thus we

see from Theorem 3.1 that / is integrable by y-seminorm. q.e.d.

REMARK 4.11. If £ is an infinite dimensional Saks space, then (£, y) is

never nuclear. In fact, suppose that (£, y) is nuclear. Then (£, y) has property

(B) by Proposition 1.3, and so its strong dual E'y is also nuclear (see [19, 4.3.1]).

This is a contradiction because E'y is in this case an infinite dimensional Banach

space. In general, the class of complete nuclear spaces of the form (£, y\β, τ])

coincides with the class of the strong duals of nuclear Frechet spaces. Let

(£, y) be a complete nuclear space. Then (£, y) is Montel, and so reflexive.

Hence (£, y) is the strong dual of the nuclear Frechet space E'y by Proposition

1.3 and [19, 4.3.1]. Conversely, let F be a nuclear Frechet space and denote

its topological dual by E. Let $ be the family of absolutely convex, equi-

continuous subsets of E and let τ = σ(£, F). Then we see from [5, Corollary

4.2] and the Banach-Dieudonnέ theorem [15, p. 181] that y\β,τ\ is equivalent

to each of the following topology: the finest topology on E which coincides with

τ on each equicontinuous subset of £, the topology of precompact convergence,

β(E, F) (= the strong topology on E). This shows that (E, y) is the strong dual

of the nuclear Frechet space.

REMARK 4.12. If (£, y) is not nuclear, integrability by τ-seminorm is not

always equivalent to integrability by y-seminorm even if (£, τ) is nuclear.

Indeed, let (5, Σ, μ) be the Lebesgue measure space with S = [0, 1] and let E be

a separable Hubert space. Let τ be the weak topology on E. Then it is

obvious that (£, τ) is a quasi-complete locally convex Souslin space and that

(£, || | |,τ) is a Saks space. Let (en) be an orthonormal basis on E. Take any

( λ π ) e c 0 \ / 2 with λn>0. Then there exists (ξn)el2 with ξn > 0 (n = 1,2,...)

such that £ ? = 1 λnξn = +oo. We define f(s) = 2nξnen on (1/2", 1/2""1), n = 1, 2,

..., and f(s) = 0 elsewhere. Then it is easily verified that / is τ-Pettis integr-

able, and hence / is integrable by τ-seminorm since / is norm-measurable. Put

Pn(x) = \(en> x)\> π = 1, 2, ... Let p(x) = supπλnpn(x). Since BH is τ-compact

(i.e., weakly compact), Proposition 1.1 implies that p is y-continuous, and

p(f(s)) = λnξH2" on (1/2M/2""1), n= 1, 2, ... Thus we have $sP(f(s))dμ =

Σ™=ιλnξn= +oo, and so p(f(s)) φ Lx(μ). Consequently we see from Theorem

3.1 and Theorem 4.5 that / is not integrable by y-seminorm.

The integrability by y-seminorm can be characterized in terms of born-

ology J* and τ-Pettis integrability.

THEOREM 4.13. Let (E,&,τ) be a mixed space such that (£, τ) is a quasi-

complete locally convex Souslin space. If f: S —• E is τ-Pettίs integrable, then f

is integrable by y-seminorm if and only if there exists a τ-closed B e & such that
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B ^ v(Σ) ( = {v(Ά):AeΣ}) and the indefinite τ-Pettis integral of f is of \\-\\B-

bounded variation.

PROOF. Let f:S-+E be τ-Pettis integrable. Then it follows from Pro-

position 4.4 and Theorem 4.5 that / is measurable by y-seminorm by y-Pettis

integrable. Hence we see from Theorem 3.1 and Proposition 2.12 that / is

integrable by y-seminorm if and only if there exists a τ-closed B e $ with

B ID v(Σ) and the indefinite τ-Pettis integral of / is of || Unbounded variation.

q.e.d.

Let (£, τ) be a locally convex Souslin space. First we note that if B is a

closed ball in E, then ||/(s)||B is measurable for any τ-weakly measurable

function f:S-+E. See Proposition 4.4. The following definition is intro-

duced by E. Thomas [23] and originated in the concept of totally summable

sequences introduced by A. Pietsch. Let (£, τ) be a locally convex Souslin

space. A τ-weakly measurable function / : S —• E is said to be τ-totally integr-

able (smmmable) if there exists a τ-closed and τ-bounded ball B in E such that

is ll/(s)llβdμ < +°° L e t ^ be a bornology on E (satisfying the compatibility

condition (*) stated in Section 1). Let y be the mixed topology y\β, τ]. Then

τ-weakly measurable function f'.S^E is said to be ^-integrable if there

exists a τ-closed set B e 0& such that J s ||/(s)||β dμ < +oo. Therefore, if in

particular & is the bornology defined by a norm || || on £, i.e., (£, || ||,τ) is a

Saks space, then J'-integrability just implies J s ||/(s)|| dμ < +oo. It is easy

to verify that every τ-totally integrable function f\S-+E satisfies the following

condition:

(**) P(f(s)) dμ < +oo for every p e 0>(τ).
Js

Thus if (£, τ) is quasi-complete, then it follows from Theorem 4.2 that / is

τ-Pettis integrable. According to Thomas [23], functions satisfying condition

(**) is said to be τ-absolutely summable (integrable).

PROPOSITION 4.14. Let (E,τ) be a quasi-complete locally convex Souslin

space. Iff is τ-totally integrable, then it is integrable by τ-seminorm.

PROOF. This is obvious from the above observation, Theorem 3.1 and

Proposition 4.4.

We here recapitulate the types of integrability considered so far. Let (£, τ)

be a quasi-complete locally convex Souslin space. Then for a function / :

S -> E, each of the following conditions is more restrictive than the next: (1) / is

τ-totally integrable; (2) / is integrable by τ-seminorm; (3) / is τ-absolutely

integrable; (4) / is τ-Pettis integrable.
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PROPOSITION 4.15. Let (£, ̂ , τ) be a mixed space such that (E,τ) is a

locally convex Souslin space. Let f: S -> E be τ-weakly measurable. Then f is

y-totally integrable if and only if it is ^-integrable.

PROOF. Let f:S-+E be τ-weakly measurable. Then we see from Pro-

position 4.4 that / is y-weakly measurable. Thus | |/(s)| |B is measurable for

every y-closed and y-bounded ball B. Assume that / is y-totally integrable.

Then there exists a y-closed and y-bounded ball B in E such that J s \\f(s)\\Bdμ <

+00. Since B is y-bounded, there exists a τ-closed F e l with B <= B'. Hence

II/(S)IIB' ύ \\RS)\\B for 5 e S, and so J s ||/(s)||B, dμ < +oo. Thus / is ̂ -integrable.

The converse is obvious since τ-closed set & is y-closed and y-bounded. q.e.d.

Finally, we give a result concerning Fubini's theorem. It is known that

Fubini's theorem is not valid for Pettis integrable functions even though they

take values in a separable Hubert space. But it is seen that Fubini's theorem is

valid for totally integrable functions.

Let (5, Σ, μ) be the completion of the product measure space of two

complete nonnegative finite measure spaces (Si9 Σi9 μt\ i = 1, 2. Then by

Theorem 4.15 and the result of Thomas [23, Theorem 8] together imply the

following type of Fubini's theorem for ̂ -integral in mixed spaces.

THEOREM 4.16. Let (E989τ) be a mixed space such that (£, τ) is a

locally convex Souslin space. Let f:S-*E be τ-weakly measurable. If f is

^-integrable, then we have the following properties:

(1) s2 -• f(sl9 s2) is ^-integrable with respect to μ2 for almost all 5X e Sx.

(2) S!^> (γ)-$S2f(s1, s2) dμ2(s2) is ^-integrable over S1\Nl9 where Nx is the

set of points excluded in (1).

(3) (y)-\sfdμ = (y)-JSl dμ^sjiγylsjisu s2) dμ2(s2).
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