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Introduction
In the stable homotopy theory, the G-Adams spectral sequence
) E(G) = {E(G)}", d,: E(G)}' —» E(G)*""*""!} abutting to m,_,(X)

(cf. [4, III, §15]) is useful, where X is a CW spectrum, m,(X) is its homotopy
group and G is a ring spectrum. For X and G = E, F with some conditions,
H. R. Miller [10] introduced the May and Mahowald spectral sequences

2 EMaY = (E%t dMay: ESt — EStLIry abutting to E(E)3** and
EMah — (Fst gMah: fis. _, fistriortiy o converging to E(F)ST"
for E(G), in (1), which satisfy the following

(o) ES = EY, = A%'; and for any x € AS",
(il) if x converges to x¥ in EM®®, then so does d}*x to (—1)'d% xF.

Especially, he defined these algebraically in case when

(3) X =S° E=BP at a prime p, and F = HZ, (BP is the Brown-Peterson
spectrum, and HZ, is the spectrum of the ordinary homology H,( ;Z,));

and calculated some differential d¥%» in (1) for X = S°.

The purpose of this paper is to argue the existence and relations of these
spectral sequences. Let G denote the mapping cone of the unit S°—» G of a
ring spectrum G, and G" the smash product of n copies of G. Then the main
result in this paper, stated in Theorem 7.2, implies the following

THEOREM. For a CW spectrum X and ring spectra E, F, assume that
(4) there is a unit-preserving map A: E —» F, and
(5) the F-Adams spectral sequence abutting to n (E A E" A X) in (1) converges
and collapses for any n = 0.
Then we have the spectral sequences EM® and EM*® in (2) satisfying (o), (ii),
(i) d¥a¥erx = a¥evdMayx for any x € A3,
(iii) if x converges to xE in EM®, then so does d¥*"x to d%x%, and
(iv) if the assumptions in (ii)—(iii) hold, then some y e AS%%*' converges to
dixE in EM® and to (—1)'d5xF in EM?!,



38 Mizuho HIKIDA

Especially, in case (3), we see (4)—(5) by the Thom map BP - HZ,, and
A3' = Ext3(Z,, Ext3*(Z,, P,)) in (0)

(A, =(HZ,),HZ,), P,=(HZ,),(BP), and Extjj_*(Zp, P,) = Z,[ay, a,,a,,...]
(a, € Ext*2P"71)) and we obtain Examples 8.3-4 on the differentials d%» and
dgf_, in (1) for X = §°.

For our purpose, we argue in §§ 1-3 the construction of the Adams spectral
sequences. We introduce the notion of an E,-group B = (B;} related to a given
homology theory h, in Definition 1.8, so that we have in Theorem 1.9 the
spectral sequence of Adams type

(6) {E(B)", d8} abutting to h,_,(X) and satisfying E(B)3' = B{(X).

Then for any ring spectrum G, we have the E,-group GA = {GA;} in (2.1.1-4)
related to n, and define the G-Adams spectral sequence E(G) in (1) by

E(G) = E(GA), i.e,, E(G)3' = GA{(X) (see Theorem 2.3).

We note that the E,-term may be seen by the definition of GA even if G, (G) is
not flat over G,(S°); e.g., we have Example 2.5 for the connective K-theory
spectrum bu or the corresponding one buQ, with coefficients in Q,.

We define an E,-functor B = {B{} to be an E,-group satisfying the func-
toriality on the category of cofiberings in Definition 3.2, so that we can
compare E(B) in (6) for B=C, D (see Theorems 3.4-5)). Then GA is an
E,-functor by definition, A: E—~F in (4) induces the homomorphism 1,
E(E)p' - E(F)P* between G-Adams spectral sequences, and we have Theorem
3.8 on the conditions that 4, is isomorphic, monomorphic or epimorphic.
Examples 3.9-10 hold when A is the Thom map BP - HZ,, etc; in par-
ticular, we see E(MO) =~ E(HZ,) for the Thom spectrum MO of the bordism
theory.

Moreover, we introduce in §§4-5 the notion of a double E,-functor A =
{A3'} related to an E,-functor D or indirectly related to C (see (Definitions 4.3
and 5.3), so that we have the Mahowald or May spectral sequence

(7) {Et, dMh} converging to Di*'(X) with ES?, = A54(X), or

{ESt, dM>} abutting to CS5_,(X) with ES', = A5'(X)
(see Theorem 4.4 and Corollary 5.6)). In particular, for some ring spectra E
and F (e.g., satisfying (4)—(5)), we have the double E,-functor EFA = {EFA}'}
in (4.6.8) and the spectral sequences in (7) by taking A = EFA, D = FA and
C = EA (see Theorems 4.7 and 5.8), which are taken to be EM®® and EM® in
(2). Example 4.8 gives a note on E™*® for E = BP at p and F = KQ, (the
K-theory spectrum with coefficients in Q,) when p is an odd prime.
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Now, we prepare in §6 some lemmas on commutative diagrams of cofiber-
ings. Then we can consider the case stated in Definition 7.1 that for a CW
spectrum X, a homology theory h,, E,-functors B=C, D and a double E,-
functor A, the spectral sequences of Adams type in (6) and the Mahowald and
May ones in (7) are all defined (see (7.1.8)); and we prove in Theorem 7.2 some
relations between them. By taking h, =mn,, C=EA, D=FA and 4 = EFA,
Theorem 7.2 implies the above theorem and Examples 8.3-4.

Here, we notice that the cohomology version of E,-functors can be
obtained by the dual consideration, by which we may argue several spectral
sequences, e.g., the Adams universal coefficient one or the one of Bousfield-Kan
type; the details will be discussed in a forthcoming paper.

The author is deeply in debt to Professors M. Sugawara, T. Kobayasi and
T. Matumoto for their valuable suggestions and discussions. He also thanks
Professor J. F. Adams for the kind letter of Nov. 24, 1981 on KQpA(SO) in
Example 4.8.

§1. Spectral sequences and E,-groups

Throughout this paper, we work in the category € of CW spectra (cf. [4]
or [16] for the definition and the basic properties of CW spectra and the
related notions).

Let h, be a homology theory on €%, and for a given X, € %, assume that

(1.1.1) there are cofiberings «,: X,,i» Wnﬂ» 1 n=0,1,2,..)in ¥ (ie.,
X+, is the mapping cone W, U, CX, of f, and g,,, is the inclusion map, up to
homotopy equivalence).
Then, we have the induced exact sequences
fx . d
(112) = h(X,) = B(W) = h(X,y) — by (X,)
—_— (f* = f;*’ Ix = gs+1*)

for any ¢t and any s = 0; and the standard argument on exact couples defines
the spectral sequence given by (1.1.3), where 0" = 0 o *-- 0 0: h,.(X,4,) = h(X,):

(1.1.3)
Z8 =gt tm [0 gy (Xour) = B(Xi))] € (W), 25" = ()21 251,

B = f, Ker [0"7: (X)) = hy—yiy Xy )] (r S s + 1),
=By, =By (rz2s+1)
Ept=Z}Byt, 4 Ep'BZ3YZy = Bt T BttTl c BT
ES' = Z%YBS', F&'=1Im [0% h(X,) > h,_(X,)], Z5%' =Kerg, =Imf, = Z3',
A% =Tm g, 0 (Voz1 Im (07 by (Xgipir) = Bl(Xi1)] < B(Xiy) -
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PROPOSITION 1.2.  For a homology theory h, on %, X, € € and cofiberings a,
in (1.1.1), the exact sequences (1.1.2) associate the spectral sequence {E;',d,} in
(1.1.3) such that

(L21) Ey' =h(W),  dy=fy 00, B = h(W) > h(X,e1) > h(Wye,) =
E5™ and

(1.2.2) by the filtration h,_(Xy) = F®' "S-+ o F&' o Fs*0F 5 e
have the exact sequence

0_)Fs,t/Fs+1,r+1(EZ;t/B;r)_’E;,)t_)As,l(gzgo,t/zt;t)_)o‘

In this paper, we present such a case by the following
(1.2.3) {E>'} abuts to h,_(X,): ES' = h(W,) = h,_{(X,) (abut).

To represent the E,-term of this spectral sequence, we consider the following

DEFINITION 1.3. Let C = {C}|s, t € Z} be a collection of covariant functors

C:: € — o (the category of abelian groups) with C; =0 for s < 0.

Then, we say that C is related to a homology theory h, at X, by a natural
transformation ¢: h, » C? (t € Z) and cofiberings «a,, in (1.1.1), if

(1.3.1) ¢: h(W,) = CO(W,), Ci(W,)=0 for s>0, and there are homo-
morphisms & so that the following sequences are exact:

f.m

s CHX,) s (W) 2 (X, ) — s CE(X,) — e

(1.3.2) Then, we have §: C¥(X,.,;) = C*1(X,)(s > 0) and the exact sequence

f;n* In+1x S5
—5 (W) = CX(Xp41) — CH(X,) — 0.

0— Co(X,) >

Furthermore, for d}'=d, = f,og, in (1.2.1), we have the commutative

diagram
Es—l,r di_“ Es,l di" Es+1.t
1 1 > 1

(133)  h(W) —25h(X,) -2 W) 25 h(Xe)) 25 h(Wiy)

COW,_) 25 CO(X,) 25 COW) 223 CO(X, 1) 2225 COW,y)

Then, (1.3.2) implies that f;, is monomorphic and we have the isomorphisms
fix! o ¢: Ker dp' = CX(X), Im d§™"' = Im g,, and

(134)  ¢=0""0b0(f;! o 9): E3' = COX,)/Im g, = C(X,-y) = Ci(X,)
(6"t =4+ 0). Thus, we see the following
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THEOREM 1.4. In case of Definition 1.3, we have the associated spectral
sequence {E}'} in Proposition 1.2, which abuts to h,(X,) and whose E,-term E%'
is isomorphic to C{(X,) by ¢ in (1.3.4).

St = C(Xo) = h,_(X,) (abut).

COROLLARY 1.5. In Theorem 1.4, the following (1.5.1-3) are equivalent:
(1.5.1) E5'=C}(X,) =0 for s> 0and ¢ = ¢: ES* = h(X,) = C2(X,).
(1.52) 0- h(X,) —> h(W,) o, h(X,1+1) — 0 is exact in (1.1.2) for all n = 0.
(1.5.3) ¢: h(X,) = C2(X,) and C:(X,) =0 for all s> 0 and n = 0.

Proor. (1.5.2) implies 0 = 0 and so (1.5.1) by (1.1.3). (1.5.1) means (1.5.3)
for n=0; and (1.5.3) for n implies (1.5.2) for n and (1.5.3) for n + 1 by (1.3.2)
and 5-Lemma. Thus, (1.5.1-3) are equivalent by induction. q.ed.

We use the following terminologies for {E,, d,} in Proposition 1.2:
(1.6.1) d.x=x' for xeES', x' e E5"" with u<r, if ' =s+r, ' =t+r—1,
xeZ,/B,, x'€Z)/B, and the equality holds for their images x € E,, x' € E,
(G, =Gy, G, = Gy'Y).
(1.62) ZE>'= Z%'/B>* is the subgroup of all permanent cycles in E®*; and
x € ES' converges to yeh,_(X,) if xeZE', ye F*' and they coincide in
ZE;I — FS'I/FS+1"+1.
(1.6.3) {E,,d,} converges: E'=h,_(X,) (conv), if Z, = Z,, (or A%'=0) and
(Vnzo F™*" = 0; and it collapses (for r 2 2)if d, =0 or E, = E, for r 2 2.

COROLLARY 1.7.7 In Theorem 1.4, consider
(L.7.1) g_C,’(;XO) = ZES' < ES' = C¥(X,) (by regarding ¢ = id), and
(1.7.2) ¢ =0%0¢: h(X,) > CA(X,) » C!(X,-;) = Ci(X,).

(i) Then, ZC}(X,) = Im ¢; and x € Ci(X,) = E' converges to y € h,_(X,)
if and only if x = ¢y, and 0°y, =y for some y € h(X,). Also d,x = x' holds
for xeCi(X,), x'€C5(X,) if and only if s'=s+r, t'=t+r—1 and
x= 5sxs,,fs*xs = ¢W, gy414w = 0" 'y and @y = x' for some x, € C2(Xj), w € h,(w,)
and y € h.(Xy).

(i) {E,} converges and collapses if and only if (1.7.3) and one of (1.7.4-6)
hold:

(1.7.3) inv lim, {h,4,(X,), 0t hyyps1(Xps1) = Hyn(X,)} = O for any t.

(1.7.4) {E}'} converges weakly (i.e., Z, =2Z, or A>' = 0) and collapses.

(1.7.5)  ¢: h(X,) > C2(X,) is epimorphic for any s, t.

(1.7.6) Ker 0" = Ker 0 for 0™ h,(X;) = h,_,(X,_,), forany n (1 £ n < s) and s, t.

Proor. (i) follows immediately from (1.1.3) and (1.3.1-4) and (1.6.1-2).
(i) Assume (1.7.6), and take any x € C2(X,). Then by (1.3.2-3), we see
fixx = ¢w for some we h(W,), and so ¢f,g,w=0 and g,w =0y for some
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y€h1(X4,). Hence 8%y =0, g,w =0y =0 by (1.7.6), and w = f,y’ for some
y' € h(X,). Thus x = ¢y’ since f,, is monomorphic; and (1.7.5) holds. (1.7.5)
implies Z, = Z, = Z, = Z, (r = 2) by (i), and so d, = 0 and (1.7.4).

Conversely, assume (1.7.4), and take any y € Ker 0" (n = 2) in (1.7.6). Then
by (1.1.3) and (1.74), we have f,yeB,., =B,, f,y=/f,y, y—y =0z and
dy = 0% for some y eKerd and zeh,,(X,,). Hence dye(),Imd" by
induction. Therefore, 9" 'y e Ker d n (), Im " = A*™™'™"*! = 0 by (1.7.4); and
0y = 0 by induction, which shows (1.7.6). Thus (1.7.4-6) are equivalent.

Now, consider p: h, = inv lim, h,,,(X,) > F, = (), F""*" given by p{y,} =
yo for y,eh,,(X,) with 0y,.; =y, (n20); and assume (1.7.6). If p{y,} =
yo = 0, then y,,, € Ker 8"*! = Ker @ by (1.7.6), and y, = 0. If y, € F,, then we
have y, € h,,,(X,) with é"y, =y,. Thus dy,,, — y,+, € Ker 0 by (1.7.6), and
{0Y,+1} € h, with p{dy,.;} = yo. Therefore p is isomorphic, and we see (ii).

q.e.d.

The exact sequence in the assumption (1.3.1) is given by the following

DeriNITION 1.8. (1) For convariant functors C': % — o/ (s,te€ Z) with
C =0 for s <0, assume the following (1.8.1):
(1.8.1) For any cofibering a: X, ——f"—>X1 i—»XZ in %, there are given abelian
groups KCi(a; i) (s,t € Z;i =0, 1, 2) and exact sequences

s KCH (o3 ) —> CH(X,) —> KC3 (o3 i+ 1) =25 KCE (o3 1) —> -
(p = p; for p =1, k, §) with KC(; 3) = KC;_,(«; 0), KC;(a; i) = 0 for s < 0 and
(1.82) 140K = fi,: C(X;) — KC(o;i + 1) — C}(X;4,) fori=0,1.

Then, we call a collection C = {C;, KC}( ;i)} an E,-group. In this case,
we call X € € C-injective if C;(X)=0 for s>0; and a: Xg—> X, > X, a C-
cofibering if KC(x;0) =0, and a C-injective cofibering if X, is C-injective in
addition.

(2) Furthermore, we say that C has enough injective objects if
(1.8.3) any X € € is in a C-injective cofibering w(X): X — W(X) 4, W(X).

By this definition, we see the following 51.8.4-6):
(1.84) For any C-cofibering a: X, —— X, — X,, we have the exact
sequence

s fonx 3 fln- S P S
== C(Xo) = CH(X ) =5 Ci(X,) — G (X)) — -
by taking 6 = k5! o0d; 013t C¥(X,) = KC¥(a;2) » KC* (a; 1) = CF*1(X,) in
(1.8.1). In fact, the exact sequences in (1.8.1) show that i, and k, are iso-
morphic by KC{(x; 0) = 0, and then the desired one is exact by (1.8.2).
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(1.8.5) Ifa,’s in (1.1.1) are C-cofiberings, then exact sequences in (1.3.1) are
given by (1.8.4); and if they are C-injective cofiberings, then (1.3.2) holds.

(1.8.6) We note that Ci(x) =0 for any s, t, where % is the one point
spectrum. In fact, consider 1, x in (1.8.1) for «: * > * > % and i = 1. Then i, is
epimorphic and k, is monomorphic by (1.8.2); hence C;(x) = 0 by exactness.

Therefore, Theorem 1.4 imlies the following

THEOREM 1.9. Let h, be a homology theory, C = {C;, KC;} be an E,-group,
and ¢: h, » C? be a natural transformation. For X, € €, let be given
(1.9.1) C-injective cofiberings a,: X, = W, = X, ., with ¢: h(W,) = C2(W,).
Then, C = {C;} is related to h, at X, by ¢ and {,}, and we have the spectral
sequence {E2'} in Theorem 1.4 with ES' = C}(X,) = h,—{(X,) (abut).

When C has enough injective objects by w(X) in (1.8.3) with ¢: h(W(X)) =~
CO(W(X)), this is obtained for any X, by taking
(19.2) a, = w(X,): X, - W, = W(X,) = X,,; = W(X,), inductively.

§2. Adams spectral sequences

We recall the Adams spectral sequence for a given ring spectrum E with
unit z = 1;: S° —» E and product y = ug: EA E—E.
For any X € €, consider the homotopy and homology groups

n(X)=[)'S%X] and E(X)=mn(E A X).
Then, we obtain the cochain complex
@2.1.1) E*(X) = {EXX) = (B A X) (s20),=0 (s<0)}
with coboundary 8* = Y 5t (—1)'85,, where E" = E A -+ A E (n copies) and
SF=1AIALEMYAX=E"TASAEAX
SEMITAEAEAX=E2AX.

(2.1.2) We note that if a map A: E— F between ring spectra E and F
preserves units (i.e., 1p~Aoig:S®—>F), then "' A LEY' A X 5> F*" A X
induces the cochain map 4, = {(A**! A 1),}: EXX) - FXX).

Furthermore, for any cofibering a: X, HELING e 1 EEIN X,,
(2.1.3) we have the homotopy exact sequences
S Jox S Sia s Sox
rr = Ej(Xo) = E}(X ) = E}(X) =5 El_ i (Xo) — - (fax =),
the subcomplexes KEX(«; i) = {Ker f;,} of E¥(X;) and the exact sequences

0 - KE¥(a; i) > E¥(X;) > KE¥; i + 1) > 0 (KEX(«; 3) = KEY,(2; 0))
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of cochain complexes. Thus, taking their cohomologies,
(2.1.4) we obtain the E,-group EA = {EA], KEA]( i)} given by
EA}(X) = HY(E}X)) (X€¥), KEA(a;i)= H(KEXo;i) (x€¥F).

Now, the Hurewicz map (1 A 1),:7(X)—> EX(X) induced from 1A 1: X =
S° A X > E A X satisfies 6°0 (2 A 1), =0 for 6° in (2.1.1). Thus we have the
natural Hurewicz map

(2.1.5) ¢%F = (g A 1), 1 (X) > EAX(X) = HY(E¥(X)) = Ker 6° for Xe®.

Furthermore, we have the induced cofiberings

1Al

216) oF:S°—SE1 E=C, o*X: X 2LEAXZLEAX and
wf=wfAX;:X,oEAX,>X,,, with X,=E"AX, (n=0).

LEMMA 22 (1 ApAl),o( A l), =id ESX)—> EXE A X)> EXX) for
IAUALEAE*AX>SE ANEAX; and KES(wf A X;0)=0. Moreover,
¢E:n(E A X)= EAY(E A X) and EAS(E A X)=0 (s> 0). Thus w® A X is an
E A-injective cofibering, and EA has enough injective objects.

Proor. The first part holds since po(l A1)~ 1: E— E. Consider &,
S5 m(ESTP A W) (ES"2 A W) in (2.1.1) for W=E A X when s=0, and
Sol=1A1,6""=4;) when s = —1; and

o' =50 (oS m(ES™ A W) > n(ES A W) for s20,
where 6 =1 ApuA1LE"AE*ANEAX—>E"ANEAE AX. Then, o5'o
85 is 0 oof if i<j, id if i=j, j+ 1, and 85 o0’ ,, if i>j+ 1; hence
%067 =id: n,(W) - n,(W) and
ot o5+ 6 too* =id: m(EST A W) m(ES™ A W) when s=0.
Since ¢f = 67! by (2.1.5), these imply the second part. q.ed.

By this lemma and Theorem 1.9, we see the following

THEOREM 2.3.  For the homotopy theory m, on € and any ring spectrum E,
we have the E,-group EA in (2.1.4) with the Hurewicz map ¢ in (2.1.5). Thus, we
have the E-Adams spectral sequence {E}'} for any CW spectrum X,, given in
Theorem 1.9 by {of} in (2.1.6), with

(2.3.1) 3' = EA{(X,) = H(EX(X,)) = m,—(X,) (abut).

Moreover, it satisfies
(232) E3' = EA}(X,) = Exty!5)(E4(S°), E,(X,)) when
(2.3.3) the E,(S°)-module E,(E) is flat.
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Proor. The cofibering {f} in (2.1.6) induces the one E A X, — X+ —
2X, (the subspension of X,), and we have the filtration X, < Z7'X, «
272X, « -+ of X,, which is the Adams filtration. Thus we have the Adams
spectral sequence {EP'} given by Proposition 1.2 for h, =, and {«f}. The
latter half holds by the following:

(2.3.4) 1If (2.3.3) holds, then E}(X) in (2.1.1) is E,(E)® - ® E(E) ® E,(X)
(the tensor product over E,(S°) of s copies of E,(E) and E,(X)) (cf. [16, 13.75])
and EX(X,) = {E(X,), 6°} is just the cobar complex for E,(X,). q.ed.

In this paper, we consider the following ring spectra as examples:
(2.4.1) For a ring R, HR is the Eilenberg-MacLane spectrum of the ordinary
homology theory H,( ;R), SR is the Moore spectrum of type R, and for any
ring spectrum E, ER = E A SR is the corresponding one with coefficients in R.
KO or K is the spectrum of real or complex K-theory, and bu is the one of the
connective K-theory. For G =0, U or SU, MG is the Thom spectrum of the
G-bordism theory. For a prime p, BP is the Brown-Peterson spectrum at p.

(2.4.2) ([4, 111, 15.1]) (2.3.2-4) hold for E = HR or SR when R is a field,
KO, K, MO, MU or BP.

(2.4.3) In this case, EAJ(X) = PE,(X), the group of all primitive elements
in E,(X), by (2.3.2) and definition.

When E_(E) is not flat, we have to calculate EA;(X,) = H*(E¥(X,)) in
(2.3.1) directly by definition. As examples, we have the following

EXAMPLE 2.5. Consider bu or buQ, in (2.4.1) for Q, = {a/be Q|b: odd}.
Then:

(i) EAS(S°) = Z (resp. Q,)if t =0,=01if t #0, for E = bu (resp. buQ,).

(i) buQ,AL(S®) is the direct sum of the groups Z,<h,» in degree n =
222 and Z,,,{,) in degree 2n = 2, where the generators h, and a, are given in
(2.5.4,7) below, and a(n) =2"*2 if n is even =4 =2"*! otherwise, for n =2"q
(g: odd).

Proor. We use the following (2.5.1-3) given by Adams [4, III, §§ 16—17]:

(2.5.1) There is a map j (= f% in [4]): bu - HZ, preserving units such
that

Js: (HZy)y (bw) > (HZ3),(HZ,) = Ay = Z,[&4, &2, 85 -]

is monomorphic and Im j, = Z,[¢%, &3, &5,...].  Also, the HZ,-Adams spectral
sequence {Ey'} in Theorem 2.3 for X, = bu? with (2.3.2) satisfies

E3' = Ext}(Z,, (HZ,),(bu)) = m,_(bu®) for B, = A, /&1, ¢3,¢5,...)

by the change-of-rings theorem, which converges weakly and collapses for r = 2;
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and (j A 1), = ino ¢: n (bu?) > E3* < (HZ,),(bu) for its edge homomorphism
¢. Moreover, there is a homomorphism E>'— ES*1'*1 which for r =2 is
multiplication by &, and for r = oo is obtained by passing to quotients from
multiplication by 2.

(2.5.2) HZ,(bu") is a direct sum of groups Z, (p: prime) and groups Z in
even degree; hence so is HZ, (BU") = HZ, (bu")® Q, of Z, and Q,, where
BU = buQ, in this proof. Also, 7, (BU") = n,(bu") ® Q,, the Hurewicz homo-
morphism h: n, (BU?) —» HZ,(BU?) is monomorphic, and it induces the mono-
morphism h: F*'® Q, —» G*'(H>* = H*'/H**'**') for the filtrations {F*'} of
7, (bu?) corresponding to {E{'} in (2.5.1) and {G*'=2°HZ,_(BU?)}. More-
over, the torsion subgroup T} of =, (BU"!) is a direct sum of groups Z,, and
(JAD (=G A D ®1): 7 (BU™) > (HZ,),(BU") is monomorphic on T}.

(2.5.3) m,(bu)=Z[t] (degt=2) and =n,(bu*)® Q= Q[u,v] for u=
(I A1)yt and v =( A 1),t. Moreover, a polynomial f(u,v)e Q[u,v] lies in
Im [7,(BU?) = n(bu*) ® Q, = 7, (bu*) ® Q = Q[u, v]] if and only if
(*)  flkx, Ix) e Q,[x, x '] for any odd integers k and [, and f(u, v) € Q,[u/2, v/2].

Proof of (i)} The coboundary 6°: bud(S°) = Z[t] - buk(S°) = n,(bu?) in
(2.1.1) satisfies 6°t" = u™ — v" (# 0 for n = 1) by definition and (2.5.3). Hence
we see (i) for bu, and for BU = buQ, in the same way.

In 25.1), 46, =¢, ®1+1®¢E, for the coproduct 4: 4, - A4, ® A, —
B, ® A,; hence for n=2"22, j.'¢1e(HZ,),(bu) lies in E3" since A&} =
1 ® ¢}, and we have x, € m,(bu?) with (j A 1),x, = ¢x, = j, ¢} since ¢ is epi-
morphic by (1.7.5). Also, &,-j- ¢ =0 in E}"*! since A& = ¢, ®ET+1®

"1 and so 2x,=0 in F'"*!' < E_. Therefore, in (2.5.2), hx,e G>" for
x, € 1,(BU?) is mapped to 0 by x2: G*" - G''"*!, whose kernel is a direct sum
of groups Z,; and so x, € h, + F"""' ® Q, for some h, e T,'!. Moreover, (j°),:
7, (BU®) > n,((HZ,)) is monomorphic on T; ™!, and is a cochain map by (2.1.2).
Now, HZ,A}(S°) = Ext};*(HZ,(S°), HZ,(S°)) is generated by {¢{}:n=2"21}
(cf. [16, p. 477]). Thus:

(2.54) For any n=2"=2, there exists h,e T! c n,(BU?) = BU}(S®)
(BU = buQ,) such that (j A j),h, = &7 in A, h, is a cocycle and its class h, in
BUA}(S°) generates Z,. Moreover, if a cocycle ye T,! is not 0 in BUA}(S°),
thenn=2">2and y = h,.

On the other hand, let ¢, BP - BU = buQ, be the map for BP at 2
induced from the Atiyah-Bott-Shapiro map t,: MU — K (cf. [5]). Then:

(2.5.5) t),v, =temn,(bu)® Q, = n,(BU) for v; = [CP'] € n,(BP).

(2.5.6) ([11, Cor. 423] or [12, Th. 55 (b)) o, =((1 A 1gp)y —
(igp A 1),)07 € m,,(BP?) is divisible by a(n) given in (ii) of the example, and
o, /a(n) € n,(BP?) = BP;(S°) is a cocycle.
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(2.5.7) We have the cocycle a, = (t, A 1), (%/a(n)) € 7,,(BU?) = BU;,(S°)
(BU = buQ,) with a(m)a, =u" —v" in Im[ ] in (2.5.3), and «,€ BUAL,(S°)
generates Z,,.

(25.8) fi(u,v) =" —v")/2'¢ Im[ ]in (2.5.3) for any 2 > a(n).

In fact, the first part of () in (2.5.3) for f = f; implies i <v+2 if v=1 and
i<1if v=0 where n=2"q, q: odd (cf. [16, 19.21, 25]), and the second one
implies i < n. Thus we see (2.5.8).

Proof of (i) Take any x € n,(BU?) = n,(bu®) ® Q, with 8'x =0. Then,
for its image X in 7n,(bu*) ® Q, we have 6'x =0 and so X = a(u" —v") (a€ Q)
by [16, 19.20]. Hence, a = b/a(n) for be Q, and x = ba, + y for y e T,} with
o'y = 0 by (2.5.7-8); and we see (ii) by (2.5.4) and (2.5.7). q.e.d.

Here, we notice the following notions due to Miller [10]:
(26) f: X > Y splits if gof ~1: X > X for some ¢g: Y —» X, X is E-injective
if igA1: X > E A X splits, and f: X - Y is E-monic if 1 A f: EAX— EAY splits.

LemMMA 2.7. (i) For a ring spectrum E, X is EA-injective if X is E-injective;
and a: X, —— X, = X, is an EA-cofibering if f, is E-monic.

(i) K is HZA-injective but not HZ-injective; and a#%:8° —— HZ — C,
is a KA-cofibering, but 1 is not K-monic.

ProoOF. (i) is seen by Lemma 2.2 and its proof.

(i) By [16, 13.92, 16.25, 17.21],

(27.1) n(K)=2Z[t,t7'] (degt =2), HZ,(K) = Q[u,u™'] (degu = 2) and
K, (K) is torsion free.
Thus, HZ,(K)=n,HZ)® - ®n, (HZ)® HZ, (K) by [16, 17.9], which is
Q[u, u™] for any s with §3, =id in (2.1.1). Hence, HZA3(K) =0 for s = 1,
and K is HZA-injective. Since K3(S°) is torsion free by (2.3.4) and (2.7.1),
1,: Ki(S°) - K§(HZ) = K§(S°) ® Q[u, u™'] is monomorphic. Hence a”? is a
K A-cofibering. Since (2 A 1),: 7,(K) = Z > n,(HZ A K) = Q does not split as
groups, we see that K is not HZ-injective and  is not K-monic. q.e.d.

§3. E,-functors and comparison of spectral sequences

Let denote by ¥ the category of cofiberings in €, where
(3.1) a mah ¥:a, - a, between cofiberings «;: X, —ﬁ’»le —jr‘;»ij (j=1,2)
consists of maps ¥;: X;; > X,; (i =0, 1,2) which make the homotopy commu-

tative diagram
al:Xlo flOA' le1 fll,Xlz le

Yo J ¥ Yo

ot Xa0 ‘ﬁo”le ~£’Xzz L, 2X50

IX

V2
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of the induced cofiber sequences of «; for the suspension functor 2.

DerINITION 3.2. We define an E,-functor on € to be an E,-group C =
{C;, KC;( ;i)} in Definition 1.8 with the following (3.2.1) in addition:
(3.2.1) Ci:€— o/ is a homotopy functor, KC}( ;i): 4F — < is a covariant
functor and the exact sequences in (1.8.1) are natural, ie., 1, k and 6 commute
with the induced homomorphism y, and ¥, for any map y = {y;}: o; > o, in
(3.1); hence so are the ones in (1.8.4) for C-cofiberings.

By definition, we see immediately the following
(3.2.2) For a ring spectrum E, the E,-group EA in (2.1.4) is an E,-functor.

Now, for X, € %, a homology theory h, and E,-functors B = C and D, let
be given
(3.3.1) B-injective cofiberings af: X? > W2 - X5, and maps 1= {4, 4,}:
af »aPin ¢F n=0,1,2,...) in homotopy commutative diagrams

A Grs1
oy Xy —— WS == X7\ — X7

In ‘ In‘ Inﬂl ZInl ;1_0 =1id on Xg = XO .

D. yD Iy 9% 4D N D
an'Xn u/;: 'Xn+l “:Xn

(3.3.2) natural transformations ¢2: h, —» B® with ¢5: h,(W;2) >~ B®(W,?), and
(3.3.3) an E,-map A:C — D, consisting of natural transformations Ai: C} — D;,
KC? — KD} compatible with 1, k and J in (1.8.1), such that ¢° = A0 ¢ : h,—
C? - D?.
Then, ¢® and {a®} in (3.3.1-2) give us the spectral sequences

(3.3.4) {E(B)y'} in Theorem 1.9 with E(B)3' = B;(X,) = h,_(X,) (abut).
Furthermore, the maps 4 in (3.3.1) induce the commutative diagrams

s (X)L (W) s (XGy) — g (XE) — -

(3.3.5) 1 T, J T li

1 gz 9
cor s by (XP) = (WP) L h(X P ) —— by (XP) — -

T (Ao, = id)

of the exact sequences in (1.1.2). Therefore, by Proposition 1.2, we have the

induced map
(3.3.6) 4,: {E(C)'} —» {E(D);'} between the spectral sequences in (3.3.4) with

7y = Foyt E(C)y' = h(WS) > E(D)}* = h(W) =id on h,_(X,) (abut).
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We see that this is represented on the E,-terms by 4 in (3.3.3):

(3.3.7) 1, = A E(O)' = C¥(X,) = E(D)3* = D{(X,), more precisely,
Lo, =AogC for ¢2= (%) o (f2) !0 ¢B E(B);' = Bi(X,) in (1.3.4).
In fact, we see that (f2) ™ o ¢Po I, = A, 0 L0 (f5)7! o ¢€ and the diagram
CHX ) — 2 DAXE,,) —=2 DH(XE,,)
5° 5 (08=k"'odo:r ' in (1.8.4)

CrHH(XS) —— DEF(XE) — = DFH(XP)
is commutative by (3.3.1-3) and (3.2.1); and these imply the desired equality
BP0 dy =0 P o (f2) " 0 gP 0 Ay = Ao 0 Ao (B o (f5) o g =1204C.

For this induced map I*, we have the following

THEOREM 3.4. In addition to (3.3.1-3), assume that
(3.4.1) each of is also a D-injective cofibering and ¢®: h(W,F) = D2(W,F).
Then, the spectral sequences {E(B)y'} (B = C, D) in (3.3.4) are isomorphic for
r = 2 by the induced map A, in (3.3.6), and 1: Ci(X,) = D{(X,) for any s and t.

PrOOF. By (3.4.1), Theorem 1.9 for ¢ and {«f} shows that
A CH(Xo) = Di(X,), A, E(O)f' = E(Dy* for r=2;
hence the latter is isomorphic also for any r = 2. q.e.d.

By weakening the assumption (3.4.1), we can prove the following

THEOREM 3.5. In addition to (3.3.1-3), assume the following (3.5.1-3) for
some integers a = 0 and b:
(3.5.1) af is a D-cofibering if n < a.
(352 DiWH=0ifn<t—b—1=s+n<awhenaz=?2).
(3.53) ¢P: h(WSE)— DYWS) is
(*) monomorphic if t — b = s < a and epimorphicif t —b—1=s<a.

(i) Then, A, = A: E(C)3' = C(X,) = E(D)3* = D{(X,) in (3.3.7) is (*).

(i) Furthermore, for the subgroups ZE in Corollary 1.7 (i), the restriction
MZC(X,): ZCH(Xy) = ZD(X,) for t = b + s is epimorphic if s < a + 1; hence it
is isomorphic if s < a by (i).

Proofr. (i) By (3.5.1) and (3.3.3), we have the commutative diagram



50 Mizuho HIKIDA

s CH(XE) — CHWE) —> CH(XE,y) > CFH (XE) — -

(3.5.4) l 2 1 ) ji Ii (n=a

s DI(XE) — DI(WE) — DI(XC,y) —s DL (XE) — -

of the exact sequences in (1.8.4) for n < a, where

(3.55) C*=D*=0if +<0, C*WS) =0 if +=1, and 3°: D'(X,) >
DN Xs ) O<n<s) and A=¢Po () : CQWS) > DX(WS) are () in
(3.5.3),
because ¢2 = 1o @€ and ¢€ is isomorphic for WS by (3.3.2-3). Thus, by 5-
Lemma and by induction, we see that

(3.5.6) i:CHXE,)— DMXE,) (0 £ n<s)is also (); and (i) holds.

(i) By (3.3.5-6) and the definition of ZB}(X,), A(ZC}(X,)) = ZD(X,) holds
and (ii) is proved by showing the following in the commutative diagram (3.3.5):

(36.1) Let t=b+s=<a+b+ 1. Then, for any ye h(XP), there exist
Xp € hyyn(XE) (0<n<s) with xo=y, and 04,.x,=y,., for n>0, where
Yn=20""y. _ B
In fact, (3.6.1) shows that dA,, x, = dy; hence y — A, x, € Ker d = Im g2, and so
Py — A, fEx,e Im dP (d% = fE o gB) for any y e h(XP) and some x, € h,(XF).
Thus, Z,,: Im ££/Im d§ — Im f2/Im d? is epimorphic, which means (ii).

Now, assume inductively that there exists x, in (3.6.1) for n <s. Then,
AXp — Vo€ Ker @ = Im g2 and so 1,, f€x, = fP(A, Xy — 0Yps1) € Im dP (2 = 1,).
Thus 1,fEx, =0 in E(D)y™ (m = b + n); hence fx, =0 in E(C)3™ by (i), and
fEx, =dfw = fFglw, x, —giw = 0x for some we h, (W), x€hy(XE)
Therefore, 024}, x = dA,x, = 8y, (' = A,+,); hence

(36.2) gPz=0lx —y,=0(A,x — y,.,) for some z € h,,(W>2,).

This implies dPz = f2g2z = 0, and so we see by (i) that

(3.63) z— A, ,,w €ImdP for some w’ € h,(WE,) with dSw’ = fEglw’' =
0; hence gSw’ = 0x’ and so 04, x’ = A,gSw’ = g2z for some x' € hyy; (XCiy)-
Thus az;x,,ﬂ =y, for x,,; = x — x’; and (3.6.1) is proved by induction.  q.e.d.

As applications to Theorems 3.4-5, we compare the Adams spectral
sequences {E(G);''} given in Theorem 2.3 for
(3.7.1) ring spectra G=E and F with a unit-preserving map A:E—> F
(tp ~Ao1g: S°— F).
In this case, 4 induces A: E = C,, > F = C,, (cf. [16, 8.31]) and the maps
(3.7.2) A = {4, An}: aF - af between the cofiberings of (2.1.6) in
oF: XE ML p A XE XE,, —— SXE

l 1 lzn i T, }zz (XE = X, = XE)

Al
af: XF —— F A XF > XF ZXF
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given by 4, =A" A L XE=FE"A Xo>XF=F"A X, and 1,=4 A 4, (n 2 0).
Furthermore, 5™ A 1: ES*! A X - F**! A X, (s = 0) induce the cochain maps
Ay EX(X) > F¥(X) (X€¥) and A, KE¥(a;i)—> KF*(o;i) (x€$%), which
induce the E,-map

(3.7.3) iy EA = {EA5, KEAX( ;i)} > FA = {FA5, KFA( ;i)}

between the E,-functors GA given in (2.1.4) (see (3.2.2)). This satisfies
(3.74) ¢F =4, 0 ¢F: n(X) > EAX(X) > FAY(X) for ¢€ in (2.1.5).

Thus, by Theorem 2.3 and (3.3.6-7), we have the map

(3.7.5) A,:{E(E);'}—>{E(F)*'} between the Adams spectral sequences with

1, = A, E(Efy' = EA¥(X,) > E(F)' = FAN(X,)=id on 7,_y(X,) (abut).

Now, (pAly=@AAl),00A ) F(X)>F(EAX)>F((F AX) is
monomorphic by Lemma 2.2, and so is (¢z A 1),. Hence:

(3.7.6) KF5(w® A X;0)=0 and af = of A XF is also an FA-cofibering,
by definition. Therefore, Theorems 3.4-5 imply the following

THEOREM 3.8. Let A: E —» F be a unit-preserving map between ring spectra,

and consider WE =E A XE=E A E" A X, (n=0) in (3.7.2) for X,€%. Then:
(i) A, E(EY' > E(F)$" in (3.7.5) is isomorphic for r 2 2, if

(3.8.1) each WE is F A-injective and ¢* (or A,) in (3.7.4) for X = W, is isomorphic.
(il) Assume that there are integers a = 0 and b such that

(382 FAWEY=0ifn<t—b—1=n+s<a(whenaz=?2),and

(3.83) ¢F (or A,) in (3.7.4) for X = WE is

(*) monomorphic if t — b = s < a and epimorphicif t —b—1=s<a.

Then, ,: E(E;' - E(F)$" in (3.7.5) is also (x). Furthermore the restriction

(3.8.4) Ay = Ay: ZE(E)S' = ZEAN(X,) = ZE(F)3* = ZFA3(X,)

for t = b + s is isomorphic if s < a and epimorphic if s =a + 1.

(iii) (i) holds for a = 1 (resp. 0) and any b, if
(3.8.5) ¢": mn,(E)—> FAL(E) is isomorphic (resp. monomorphic), and
(3.8.6) E,(E) and E,(X,) (resp. E,(X,)) are the flat E(S°)-modules.

ProOOF OF (iii). We see inductively that

(3.8.7) if E,(E) and E,(X,) are flat, then so is E (XF) for any n,
because then E(W,;F) = E,(E) ® E,(XE) by [16, 13.75], and

(3.8.8) the split exact sequence 0 — E(XF) > E, (W) > E,(XE,;) - 0 holds,
by Lemma 2.2. Then, by [16, Note after 13.75], we see that

(3.8.9) if (3.8.6) holds, then for n < a =1 (resp. 0), FL(W,f) = n (F""' A E)®
E,(XE), and so FAL(WE)=FA(E)QE,(Xf) and ¢F =¢F ®id: n (W) =
7,(E) ® E,(XF) - FAYWE) = FAY(E) ® E,(X).
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Thus (3.8.5-6) imply (3.8.3) for a = 1 (resp. 0). q.ed.

ExaMPLE 3.9. In Theorem 3.8, (i) is valid when E=F for any unit-
preserving map A: E — E, or when A is the Thom map ®: MO - HZ,.
Also, under the assumption that E (X,) is flat, (iii) is valid for a = 1 when A is the
Atiyah-Bott-Shapiro map t,: MU —» K or t2*: BP - KQ, at a prime p induced
from t,; and for a =0 when A is the Conner-Floyd map t,: MSU — KO (cf.
[15, 7.10]).

ProoF. When F =E, (38.1) holds by Lemma 22. MO ~\/,Z"HZ,
(homotopy equivalent) by [4, p. 207], and so WM ~(\/,Z"HZ,) n X)°.
Hence, we see that HZ,A;(WM°) = Extj(Z,, (HZ,),(WY°) (4, =
(HZ,),(HZ,)) in (2.3.2) is isomorphic to m,(WM°) by ##%: if s =0 and is 0 if
s > 0; and (3.8.1) holds.

(3.8.6) holds in each case by (24.2). ¢*:n,(MU)= PK,(MU) by the
Hattori-Stong theorem (cf. [4, II, 14.1]). By [4, II, §16], BP is the direct
summand of MUQ,, and so the isomorphism ¢¥* induces ¢*: n, (BP) =~
PK (BP) (K' = KQ,). Also, $*°: n,(MSU) - PKO,(MSU) is monomorphic by
[15, 7.10]. Since PF,(X) = FAY(X) by (2.4.3), these show the latter half.

q.e.d.

EXAMPLE 3.10. Theorem 3.8 (ii) is valid for the Thom map ®®": BP - HZ,
at a prime p, Xo=S% a=q—r—1 and b=kq+r with 0 <r <gq, where
g =2(p — 1); and BPA}(S®) (q1t), HZ,A,,.(S°) (s + 1 <t < q), ZHZ,A},,,(S°)
(s<t<gq)are0, and PEF: ZBP A (S°) » ZHZ,A5,(S°) (s < q) is epimorphic.

Proor. We use the following (3.10.1) (cf. [4, II, § 16]):

(3.10.1) If g/t then n,(BP), BP(BP) and HZ,A;, (BP) are all 0, (for the
last one, we see that Ext}*(Z,, (HZ,),(BP)) (4, = (HZ,),(HZ,)) in (2.3.2) is
Z,[ag, ay,...] (a;€ Ext* ¢, = 2(p' — 1) + 1) by the structure of (HZ,),(BP) in
[7] and by the same argument as in [16, pp. 500-503].)

Then, according to (2.4.2) and (3.8.7-9), we see the following

(3.10.2) If g{t, then BP(S°), BP(X?") and HZ,A;,(W,’F) are 0, where

X, = S% which implies (3.8.2) and the desired results. q.ed.

§4. Mahowald spectral sequences and double E,-functors

Let D = {D;, KD,} be an E,-functor, and for a given X, assume that

(4.1.1) there exist D-cofiberings w,: X, —— W, LN X 4, for s =20. Then, by
(1.8.4), we have the exact sequences
(412) - — DUX,) " DYW) 2 Di(X,0y) — DLT(X,)

— (l* = is*’j* =js+1*);
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and the same argument as Proposition 1.2 and D=0 (t <0) imply the
following

PrOPOSITION 4.2. For an E,-functor D and X, with (4.1.1), we have the
spectral sequence {ES*, d,: ES' — ES*r'="*1} associated to (4.1.2) such that

@2.1) d, =iy, oj, E}\ = DUW,) > E;i = DY(W,y,), and

(4.2.2) {E5'} converges to Di*'(X,), ES', = F&'/Fs*1'"!, in the sense of
(1.6.2), by the finite filtration D:*'(X,) = FO*** > --- 5 F¥' = Im [6%: Di(X,) —
D,"+S(X0)] > Fus+1,t—1 S F:+1+1,—1 =0.

We now represent the E,-term of this spectral sequence in a similar way to
Theorem 1.9.

DEerINITION 4.3. Let be given a collection of covariant functors
A={Ay"€ > A KA i), LAY ( ;0,)):6F > Als,t,ueZ;i,j=0,1,2}

with A" = KAS'Y( ;i)= LA ;i,j)=0fors<0ort<O.
(1) We say that A4 is a double E,-functor on %, if
(4.3.1) for any o: X, N X, /N X, in 4%, there hold natural exact
sequences
—— LAY (o3 1, j) — AS(0; ) —— LAS (030 +j, j + 1)
— LAT (s i ) ——

p=p,; for p=1, k, 06, where Ay%(a;i)= KAy (i) (j=0,2), A3 (x;i)=
ASY(X;) and LAS'(a;a,b) = LAS! (x;a—3,b) if a =3, =LAS! (a5 a, b —3) if
b = 3; and these satisfy the equalities

(43.2)  fix = bis1,1° Kiv,0 © Liv1,2 © K 10 AV'(X) = A3'(Xiyy) for i=0, 1.

(2) Wecall a: Xqg— X, > X, in €% an A(l)-injective cofibering if it is an
A(1)-cofibering, ie., KAS'(a; 0) = 0 = LAS («; i,j) for j =0 (hence for i =0 by
(4.3.1)), and X, is A(1)-injective, i.e., Ay'(X,) =0 for s # 0.

(3) We say that A is related to an E,-functor D at X, by Y and {w,}, if
(4.3.3) each w,: X; s W, ELNS'S X,+, is a D-cofibering and A(1)-injective cofiber-
ing and y?: D} - A2 is a natural transformation with y?: D}(W,) = A2Y(W,).

By this definition, the exact sequences in (4.3.1-2) imply the following:
(43.4) Any A(1)-cofibering a: X,—— X, —— X, induces the exact
sequence

— As r(XO) fo*

Six

A3 (X)) 5 AS(X) — AS(X ) —

where & = (ky,0011,,9Kg,1) 1 008,19 (15,1 9Kz 0015,) by the isomorphisms k
and 7 in it.
Hence, for w, and ¢ in (4.3.3), the following (4.3.5-6) hold:
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(4.3.5) 6: A™(X,,,) = A14(X,) for n = 1, and we have the exact sequence
0 —— ADY(X,) — ADI(W,) 215 A (X )~ A1(X) — 0.

(4.3.6) ¥ =050 (il o) ESY = AQ(X,)/Im jg, = AS'(X,) for {ES'} in
Proposition 4.2. Moreover, y: DJ(X,) = AJ°(X,).
In fact, the first isomorphism is seen in the same way as (1.3.4) by the exact
sequences in (4.1.2) and (4.3.5) with ¢ in (4.3.3); and the second one by those for
t=0,D,;! =0and 5-Lemma. Thus, we have proved the following

THEOREM 4.4 (Mahowald spectral sequence). In case of Definition 4.3(3),
we have the spectral sequence {E%'} in Proposition 4.2 which converges to
Di*'(X,) and whose E,-term ES', is isomorphic to AS'(X,) by ¥ in (4.3.6):
E3Y = A3'(Xo) = Di'(X,) (conv).

The same proof as Corollary 1.7 and the last half of (4.3.6) give us the
following

COROLLARY 4.5. (i) In Theorem 4.4. ZA>'(X,)=Im [ =8°o y: Di(X,) —
A3(Xo)] for ZA3N(Xo) = Y(Z3',/Byy) = w(Im iy /i, Ker 8); and ZAS°(X,) =
A3°(Xo)-

(i) When {E5} collapses, the similar results to Corollary 1.7 (ii) hold.

By Theorem 4.4, we can construct a spectral sequence which converges to a
given E,-functor, or to the E,-term of a spectral sequence in Theorem 1.9, by
finding a double E,-functor related to it. We call a spectral sequence of this
theorem a Mahowald one according to Miller [10].

For a ring spectrum E and an E,-functor D = {D, KD\( ;i)}, we obtain a
double E,-functor ED in the same way as (2.1.1-4), as follows: For X € &, let

46.1)  DE*(X) = {DE>X) = Di(E**' A X) (s 2 0), = 0 (s < 0)}
be the cochain complex with 8° = 51§ (—1)'65, for 65 EX*' A X 5 ES*?2 A X in

(2.1.1). Also, for a: X, o, X, i>X2 in €%, consider E° A a: E° A X, Lf?

EAX,—BEAX, and 6=06A1LE*" " Aa>E*?nq in €% Then,
according to (3.2.1),

(4.6.2) KDE}'(x;i) = {KDES'(a; i) = KDY(E*** A ;i) (s 20), =0 (s < 0)}
is the cochain complex with §° = Y31} (—1)'d5,, and by the exact sequences
(%) -+ — KDE}'(a; i) — DES'(X;) — KDE3'(0; i + 1)

—2s KDES"™ 1 (o; i) — -+

in (1.8.1) for E** Ao, 1,0 =1,1;; = k and 1,4, , = 0 give us
(4.6.3) the subcomplexes LDE}*(«;i,j)={Kery ;} with the exact sequences
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0 — LDE}"(a; i, j) = DE}j(a; i) » LDES " (a; i + j,j + 1) = 0
of cochain complexes (DE}§ = DE}}, = KDE}', DEP{(xi) =
DE*'(X,), and LDE¥*'(a; a, b) = LDEX*'(a; a—3, b) (a=3), = LDEX}!
(¢ a,b—3) (b2 3))

(4.6.4) Thus we have the double E,-functor ED, where EDJ'(X), KED}'(o; i)
and LED}(«; i, j) are the cohomologies H*® of the cochain complexes in (4.6.1-3).
Moreover, in the same way as ¢ in (2.1.5), we have

(4.6.5) Y2 =(g A 1),: Di(X) > Ker 6° = H*(DE}'(X)) = ED{"'(X) ;
and by the same proof as Lemma 2.2, we see that
(4.6.6) YP:DYEAX)~ED>(EAX), and EDSYEAX)=0 if s>0.

Now, consider the case that
(4.6.7) each E* A oF for af: X, "3 E A X, — X,., in (2.1.6) is a D-cofibering.
Then KDEP'(of;0)=0 by definition. Hence Kerio,=0 and Keri,,=
Imi, =0 in (). Also, 1, ,=0, Kery; ,=Imi,, and 1; 4015, =10k =
(zg A 1), by (1.8.2), which show that 1, , is monomorphic since so is (z A 1),
and 1, , is epimorphic. Thus LDES'(af;i,0) = Kery ,=0; and we see the
following:

(4.6.8) If (4.6.7) holds, then of is an ED(1)-cofibering, and ED is related to
D at X, by y® and {«f}. In particular, when D = FA in (2.1.4) for a ring
spectrum F, (4.6.7) holds if
469 (1 Aig A1) Fu(F' A X,) > F (F' A E A X,) is monomorphic, e.g., there
is a unit-preserving map A: E — F.

Therefore, we have proved the following

THEOREM 4.7. Let E be a ring spectrum and D = {D, KD} an E,-functor.
(i) If (4.6.7) holds, then we have the Mahowald spectral sequence {E,‘,"‘,} in
Theorem 4.4 for A = ED in (4.6.4):

4.7.1) EsY, = EDS'(X,) = DE'(X,) (conv).

(i) (Miller [10]) If (4.6.9) holds for another ring spectrum F, then we have
the one {ES'} in (i) for D = FA in (2.1.4):

4.72) Est, = EFAS'(Xo) = FASH(X,) (conv).
If G,(G) is flat over G,(S°) for G = E, F, in addition, then
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(473)  EFAY'(Xo) = Ext}s)(E,(S°), FAL(E A X,)),
FAL(X) = Extign(Fy (%), Fy(X)) (X =E A Xo, X,).

In fact, (4.7.3) is seen in the same way as the proof of (2.3.2).

EXAMPLE 4.8. Let p be an odd prime. Then, on the groups in (4.7.3) for
E=BPat pand F = KQ, (Q, = {a/b € Q|(b, p) = 1}), we have the following

(i) (Adams—Baird) KQ,A(S°) is Q, if t=u=0, Z, if t=1, u=2(p —
1)bp>~! with (b, p) =1, Q/Q, if t =2, u =0, and 0 otherwise.

(i) KQ,AL(BP)=0 fort = 2.

(i) BPA}(S®) = KQ,A45(S°) (if s=0,1)
~ BPKQ,A4;7*'(5°) (f sz4ors=2,3,u#0).

Proor. Denote simply by K = KQ, in this proof. Then, by [16, §17],
(4.8.1) K,(K) is flat over n,(K)= Q,[t,t™'] (degt=2) and is identified
with the subring of all finite Laurent series f(u, v)e K (K)® Q = Q[u, v,
u o T (= (1 A1)t v=( A 1),1) satisfying
(*)  f(At, ut) € Q,[t, t'] for any integers A, u prime to p.

(i) Let k be a generator for the multiplicative group of reduced residue
classes mod p? (and so mod p" for any n). Then, we have the exact sequence

(4.8.2)
0 — K,(8°) — K, (K) > K,(K) —— K,(5Q) (= Q[t,t'])—0,

with 1t = u, Y(u'v)) = (k' — Du'v/, and cu'v’)=0 (j#0), =t (j=0), by
taking 1 = 1,, ¥ = y§ —id (Y* € K°(K) = Hom,_(x,(K ,(K), 7,(K)) is the Adams
operation given by Y*(u'v’) = kit"*/) and ¢ =ch, (ch: K> SQ is the Chern
charactor).

In fact, the equalities are seen by definition; and Yy o1=0=coy. Let f=
Y fu'vi e K (K). If yf =0, then f;; =0 (j #0), fio € @, (by (*) in (4.8.1)) and
f=Y fiou'elmi If ¢f =0, then f;, =0 and we have g =) ;.o f;ju'(v’ — u')/
(ki — 1) with g = f and g(it, Ait) = 0. Thus g(At, kut) = g(At, ut) + f(it, ut) by
Yg(u, v) = g(u, kv) — g(u, v), and g(At, k"At) € Q,[t,t7'] for A prime to p and any
n by () for f and induction; hence g(At, ut) € Q,[t, t™'] for any A, u prime to p,
and g e K (K). Finally, g, = {J[/={ (v — iw)}/nlv"™" € K (K) (cf. [16, 17.31])
and cq, = 1/n!; hence c is epimorphic. Therefore, the sequence (4.8.2) is exact.

Now, consider I = Im ¥ in (4.8.2). Then, we have the exact sequences

0— K, (5°) —> K, (K) > T—0 and
0— I — K, (K)—— K (SQ)—0;

and these induce the long exact sequences for Ext™*(—) = Ext}¥x (K ,(8°), —),
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where Ext®*(K,(X)) = KA (X) and KA45(X)=0 (s> 0), = n,(X) (s=0) for
X = K by Lemma 2.2 and for X = SQ by taking 6 =1 Ach: K°* A K A SQ —
K* A SQ, W = SQ in the proof of Lemma 2.2. Thus, we see that

(4.8.3) KA5(S°) is isomorphic to Exts™»*(I) if s = 2, which is 0 if s = 3;
and to Coker ch, if s =2, Ker ch,/Im (yf —id) if s = 1, Ker (yf —id) if s =0,
for ch: . (K) — 7,(SQ) and ¥ — id: n(K) - 7, (K) = Q,[¢t, t '] with ch,t' =0
(i#0), =1(i=0)and yft' = kit
Then, the order of k € (Z/p*Z)* is p*~!(p — 1), and so (i) is seen by (4.8.3).

(i) By taking the tensor products over w,(K) with the flat module
K, (BP) = n,(K)[t;], the exact sequence (4.8.2) gives us the one

(A l), W* A1), —id
_—

(484 00— K, (BP)
(ch A 1),

K,.(K A BP)
K.(SQ A BP)———0;

K, (K A BP)

hence, we see in the same way as (4.8.3) that

(4.8.5) KAL(BP) is the cohomology of the cochain complex 0—
n,(K A BP) — n (K A BP) = 7,(SQ A BP)»0—--- for ¢/ =(* A 1), —id
and ¢’ =(ch A 1),. Here,

K,(BP) = m,(K)[1{]] —— SQ,(BP) = n,(BP)® 0 = Q[1i] —*~ K,(BP) ® 0
(n,(K) = Q,[t,t7' ], to = 1, ¢ = ¢¥ ® 1) satisfy by [4, 11, 16.1, pp. 63-64] that
(") =a(n=0), =0(n+#0), and @l =" ot (tt;_;)”/p’.
Now, for any o = H I # 1 and n = 1, consider the elements
x=p* e —(t°/p), X, =(—t")'7"x" (a=Yia, b=Y(p'— D).

Then, by the above equalities for ¢ and ¢, we see that x is in K,(BP), so is x,
for any n, and ¢'x, = na/p"™%, ¢'(t"®x,) = —1/p". Thus ¢’ is epimorphic; and
(ii) is proved.

(iii) {ES'} in Theorem 4.7 (ii) for E=BP, F = K (= KQ,) and X, = S°
satisfies

(4.8.6) ESY, = BPKASY(S®)=0 if t>2 and ES5=0if t=3 or t =2,
u #0,
by (4.7.2-3) and (i)-(ii). Thus, the differential d,: ES* — ES*™*""*1 is 0 except
for r=2, t=1; and d,: ESL = ES*?° for s =2 or s=0, 1, u#0. Since
BPK A$°(S°) = BPAS(S®) by the Hattori-Stong theorem (cf. [4, II, 14.1]), the
above isomorphism d, implies (iii). q.ed.

In the rest of this section, we note on the differential of {£$'} in Theorem
4.7 (ii) for ring spectra E and F with (4.6.9). For X € %, we consider
49.1) FES'(X)=mn,(F""* A E*' A X) (5,t20), =0 (otherwise), with co-
boundary 6% =Y 13 (—1)6S: FES'(X) > FES™ ' (X) or FE"™(X) for G=E
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or F, respectively, (*x=s or t, °=1A1GA:YAS AZ>YAGAZ,
Z=E'AX or F AE™AX) ie, {FES*X);6"}=FFE*" AX) with
H'(FE>*(X)) = FAES(X) and {FAE®'(X); 6F} with H*(FAE*'(X)) = EF A>'(X)
are the ones in (2.1.1-4) and (4.6.1-4).

According to the assumption (4.6.9), the cofibering
o X, —>EAX,— 15X, =E A X,
=1 Alj=jnA lfoer:So—i»E—j»E)
in (2.1.6) induces the short exact sequence of the cochain complexes {F}; 6% }:

(4.9.2) , _
0 —— FX(E™ A X,) — F*(E™! A X,) 2> F*(E™ A X,,,) —0 (k=1 A k)

and by the definition of € in (4.9.1), we see the equalities

(49.3) 6Foj, =j,00F, 8Foj =) 0 8F and i,oj, o) = (=11 o oE,
for the compositions j* = (j,): FES*(X,) » FE>*(X,) and i, oj,: FE*(X,) >
F¥(Xs+1) — FEX*(X,y,), where i oj, = (zA))FYS°AEAX,) -
FFNE A Xg4y)-
Moreover, (4.9.2) induces the cohomology exact sequence

@.94) - —— FALE™ A X,) —2> FALE™' A X,) -2 FALE™ A X,.,)
L FATNE" A X,) (k= (k) 8y = (i 0 67 0j51),);

and by the definition of J, and the equalities in (4.9.3), we see the following:
(4.9.5) If 6y =(—1y""6Ex for x e FES'*'(X,) and y € FES*''(X,), then
6%j, "ty =0 and 6,[j,j "'yl =[Jj,j°’x] in FAL""(X,,,) for the cohomology
classes [ ].
On the other hand, by (4.6.9) and the definition of FA in (2.1.1-4), we see that
(4.9.6) (4.9.4) is the one in (1.8.4) for the FA-cofibering E™ A af (i.e.
5, = 0).
(49.7) Thus, {E5, d,} in Theorem 4.7 (ii) is the one in Proposition 4.2
associated to (4.9.4) for m=0. So E%\ = FAYE A X,), d, = i, °jy and we
have

J,: EFASY(X,) - ESY induced by J = (j°),: FAES*(X,) » FAES*(X,) = Eo%,
where j® is the composition in (4.9.3).

Therefore, we see the following

LEMMA 4.10. (i) Assume that x; € FES*"'"{(X,) (0 £ i < n) satisfy 6¥x, =
0 and 6%x;.y = (—1F""*16Ex;, for i<n. Then, for the cohomology classes
[xo] € FAES'(X,), [0%x,] € FAES*™'""(X,) and the differential d, in (4.9.7), there
hold
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dJ[xe]=0(1=sr=n) and d,J[xo]=(=1""J[6"x,].

(i) Assume that x;e FES"U™i(X,) 0<i<s—1) and x,e€ F:*(X,)
satisfy 66Exo =0, 6Fx; =(—1)0""1Ex;,, for i<s—1, 6Fx,_ =i, x, (ie,
OyjuXs—y = X;). Then, for [0Ex,]e FAES'(X,) and [x,] € FASY'(X,) in (4.9.7),
(=1 J[6Ex,] converges to [x,].

(iii) Assume that we have a unit-preserving map A: E—F and 6¥Ex =0,
0F6Ex =0 for x e FESV'(X,), where 6"F =6Eo A, +(—1y6%: FE;"'(X,)—
FES™*N(X) Ay =(A A 1),: F(EANE™ A Xo)—»F"(F A E™ A Xy)). Then, for
[65x] € FAES'(X,) and [A,4'x] € FAZ(X,) (Ai=(i,): FEI“(Xo)—
FEST4Lt (X)), (—1)°J[6Ex] converges to [, A7 x].

(iv) J,: EFA}'(X,)— E is isomorphic.

ProOF. By (1.6.1-2), (1.1.3) and (4.9.3), (4.9.5) implies (i)—(ii).

(i) By the definition of 6FE, §FF o A, = 6% 0 17! 4 (—1)*"'6F 0 A; and so
0FAix = (=1 16E A x 0<i<s—1) and 6FA*'x = i A, A" x. By (ii),
these imply (iii).

(ivy We consider the cochain complexes M (r)¥' = {M(r)}’, é(r)}} and
K@)k = {K(r)', 6(r)x} for r 2 0 given as follows:

M)t =E*in(49.7)if s<r, = FA(E ™™ A X,)if s >r, and
oy =d, =0 AJj),in(@97)if0<s<r, =06"in (46.1)
D=FA, X=X,)ifs=r,

K@)y'=0ifs<r, =FA(E"" A X,)ifs>r,and
dNx=0ifs<r,=(@gAl),ifs=r+1,=06"2in(46.1)
D=FA X=EAX,)ifszr+2.

Furthermore, we have the cochain maps i(r) = {i(r)*}: K(r)§'* - M(r)F*
Jjr) = {jr)*}: M@ - M(r + 1);* by taking
iry=0 ifs<r, =(1ni), if s>r,and

joyr=id ifs<r, =(=1"(1Aj), ifs>r.
Then, we have the short exact sequence
0— K = MO = M( + 13— 0;

because i, in (4.9.4) is monomorphic for m > 1. By (4.6.6) (D = FA, X = X,),
H*(K(r)¥*) = 0 for any s; hence j(r), is isomorphic on the cohomology groups.
Thus, by M(0)¥* = FAEX'(X,) and J = (—1)(s)fo---0j0): MO —
M(s + 15" = ES*, (e = s(s + 1)/2), this implies (iv). qed.
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§5. May spectral sequences

In this section, we construct another spectral sequence which abuts to an
E,-functor and whose E;-term is a double E,-functor.
Let C = {C;, KC;} be an E,-functor, and assume that
_a_)s.t _n;,z 'a?s,t+1

/

as,t: Xs,t Vs.t Xs.t+l

(5.1.1)

g
Oyt Koo = Vrr,e — X101

are diagrams of cofiberings &, (¢ = a, B, w, n) with the following (5.1.2-4):
(5.1.2) {k} (k =1i,j,f, g) are maps in €F (see (3.1)).

(5.1.3) Each w, , is a C-injective cofibering.

(5.1.4) Each =, 1is C°-homological, i.e.,, we have the exact sequence

s COW) L CO(Y) 2 COWy) L €2y (W) —
(Z = Zs ts ZZ = Zs.t+1)
by the composition 0 = 1 o k: C2(W,) - KC2_,(B; 0) = C°_, (W) in (1.8.1).
(5.1.55 When W, Y and W, are C- 1nJect1ve, (5.1.4) holds if KC}(B;i)=0

(* # 0) for some (or any) i, which is seen by (1.8.1-2).
(5.1.6) For ¢: h,— C° in (1.3.1) assume that 0 in the exact sequence

c s B (W) =25 by (Y) 25 by (W) = By (W) —

and 0 in (5.1.4) satisfy ¢ 0 0 = 0 o ¢ (then ¢ is called natural for B), and that ¢ is
isomorphic for W and Y. Then, (5.1.4) is equivalent to ¢: h,(W,) = CO(W,).

Then, the same construction as Proposition 1.2 gives us the following:
(52.1) For any s = 0, the spectral sequence {E(s);“ d,. E(s);*—
E(s)i*m#*r~11 is associated to the exact sequences in (5.1.4) such that

E(s)i* = CX(Y,,) = C_ (W, o) = Gi% (abut), ie

(522) G2% > Gy o G and GGt = Z(s):*/B(s): < E(s)* for Z(s)* =
Im f,, B(s)y" = fy(Ker 8') and GJ* = Im 9" where 0" CJ(W,,) - C2_ (W)
On the other hand, w; , in (5 1.3) induces the exact sequence

(523) 0—— CO(X, 0) —> COW, 0) —2 CAUKi11,0) — €51 (Xg,0) — 0
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by (1.8.4). Also, by (5.1.2) and (3.2.1), we see the following:

(524) 6=1(i0)),: CAZ,,) > CAZs,,) for Z=W, Y satisfy 08 =0,
dok,=k,odand dod =006 fork, =f,, g,and d =10k in (5.1.4).
Thus, in (5.2.1-2), we have the cochain complexes
(52.5) {Ey' = E@)3"} = {Z)'=Z,9)%"/B} > {By* = B(s)z"/B} (B = B(s)s" =
f«(Ker 9)) and {GJ'} with coboundary § = (i oj),.
Taking their cohomologies, we see the following by (5.2.2-3):

(5.2.6) 6°oi l: HY(GF?) = Ci_(Xo,). Furthermore, the exact sequence
o HYGE) —» H(GE G > H (G » B (G =

associates the spectral sequence {E!, d,: EL — E5i1it} with

u,r’ utr,r
Eyy = H(GP'/GE™) = HY(ZF'/BF') = H(GED) = Ci_(X,,0) (abut),
ie, FoUFRit < ES' for FS' = Im [HY(G}') - H5(G}:?)].
To represent H(E}") of {ES'} in (5.2.5), we use the following

DEFINITION 5.3. Let A = {A', KAS', LAS'} be a double E,-functor in
Definition 4.3 (1).

(1) We call X €e 4 A(2)-injective if AL (X)=0 for t #0, and o € €% an
A(2)-cofibering if KA (a;0) =0 = LA (;4,0) for i =0, 2 and LA («;1,1) =0
for t #0.

(2) We say that A is indirectly related to an E,-functor C at X, , by a
natural transformation : CS — AS° and cofiberings in (5.1.1) with (5.1.2-4), if
(5.3.1) each w,, is an A(l)-cofibering, W, , is A(1)-injective, B, is an A(2)-
cofibering, Y, , is A(1)- and A(2)-injective, and
(532) yY: CAY,,) = A2°(Y,,) for any 5, t =0, 1,2, ....

In (1) of this definition, the exact sequences in (4.3.1-2) imply the following:

(533) Let a: Xo—> X, —2*5 X, be an A(2)-cofibering. Then, 1, ; © k5 o:
KAS'(a; 2) = AS(X,) and 1, , 0 ko 1 AS'(Xo) = KAS' (a3 1) by LAS (0, 1) =
0 =~ LAY (%;0,2), kyo: KAS%(a;1) = LAS°(x;1,1) by LA (x;1,0) =
LA M (0;4,3) = 0; 17,9 LAS (05 1,0) = KAS (o5 1), Ky 12 AD'(X ) = LAY (25 2, 2)
(t > 0); and we have the exact sequences

Jox K1

o ATO(Xg) > AT O(X,) s LAY (65 2, 2) — A5HO(Xo) —
s LAY 2, 2) — A3(X5) —— AS(Xo)

— LAY (05 2,2) — ...,

’

where 7=1, 0k, 001,, (hence Tok, ;= f;,) and K= (1, ,0Ko 1) " 015,00
Kz20(1,1 0 'Cz,o)_l-
(5.3.4) 1In (5.3.3), if X, is A(2)-injective, then
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K ASH(X,) = A5 (X,) for >0,

If X, and X, are A(l)-injective, then so is X,. Furthermore, if both of these
hold, then we have the exact sequence

./0* AB'O(XI) fl*

0— A°(Xo) —> AQO(X,) — AZ1(X,) — 0.

Now, consider the case of Definition 5.3 (2). Then, for §, with (5.3.1),
(54.1) 00— AW, )— L a0 (Y, )2 ALOW, 1 11)) s ADH (W, 0)— O

is exact by (5.3.3-4), since W, is A(1)-injective by induction on t. Thus, in the
same way as Theorem 1.4, (5.4.1) and a natural transformation y: CS— A$°
with (5.3.2) imply the isomorphism

(542) ¥ =Ko (fi oY) E()s" = AY°(W, )/Im g, = A (W, o)

for the spectral sequence {E(s);“} in (5.2.1).
On the other hand, (4.3.4) for the A(1)-cofibering w,  in (5.3.1) implies the

exact sequence
(54.3) 0— AKX, o) — ALHW, o) =2 A%(X, 41 0) o A5 14(Xg.0)— 0,

and i, and j, commute with ¥ in (5.4.1) (see (5.3.3)) by (5.1.2). Thus:

(5.44) The cochain complex {AJ'(W,,),d = (ioj),} is isomorphic to
{ES" = E(s)5", 6 = (i 0 j),} in (5.2.5) by ¥ in (5.4.2), and &°0i  1: HY (A (W, o)) =
Ay (Xo,0)-

Therefore, we have proved the following

THEOREM 5.5 (May spectral sequence). If a double E,-functor A =
{ASY, KAS', LA'} is indirectly related to an E,-functor C = {C;, KC}} at X, o,
then we have the spectral sequence {E}'} in (5.2.6) such that it abuts to C;_(X,,o)
and

ESY = HYZ}'YBY"), HMEF')= A3'(Xo.0)

for the cochain complexes EX' > Z*' > B*' in (5.2.5).

COROLLARY 5.6 (i) If each {E(s);"} in (5.2.1) converges and collapses, then
Eft=2Z¥"'5 B} =0and ES', = AS(X,.0) in Theorem 5.5.
(i) The assumption in (i) is equivalent to (5.6.1) and one of (5.6.2-3).
(5.6.1) inv lim, {C% (W, ,), 8} = 0 (for 0 in (5.1.4)).
(5.6.2) y:CQ— AL is epimorphic for W,
(5.6.3) Ker [0": CO(W,,)—> C2_,(W,,.)]=Kerd for1 Sn<t.

In fact, (ii) is the same as Corollary 1.7 (ii).
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For given ring spectra E and F, and X, € %, we take
(5.7.1) the commutative diagram (5.1.1) defined by X, , = E* A X,, and

Xs,t=F_t/\Xs,Oa Vs,t=F/\Xs,H VVs,t=F_'/\EAXs,O’ Ys,t=F/\VVS,H

_ _F _ _F _ Pt E _
U, =0 AXs,, Bi=0" AW, o, =F'A0*AXy, n,:=FnAo,,,

where @% A X: X 253G A X > G A X is the cofibering in (2.1.6). Then, by
Lemma 2.2 and (5.1.5-6), we see the following:

(5.7.2) The above diagram satisfies (5.1.2-4) for C = EA in (2.1.4), where
the exact sequence in (5.1.4) is isomorphic to the homotopy one

a
I nu(VVS,I) I nu(Ys,t) I nu(Ws.H—l) — TC,,_l(W/;_,) "

by ¢ n(E A X) = EAJ(E A X). Thus the spectral sequence {E(s)t*} in (5.2.1)
is (isomorphic to) the F-Adams one: E(s)s" = FAL (W, o) = 1, (W, o).

On the other hand, by (4.6.1-5) for D = FA, we have
(5.7.3) the double E,-functor EFA, with the natural transformations y4:
FAL(X) > EFAY'(X) and yE: EAS(X) > EFAS°(X) induced from ¢F: 7, (Y)—
FAY(Y) (Y = E5*' A X), satisfying Y& o ¢E = yF40 ¢F: n,(X) > EFAYL°(X).
Then, by Lemma 2.2 for F, (4.6.6-9) for D = FA and definition, we see that
(5.74) Y,, is EFA(i)-injective for i=1, 2, so is W,, for i=1, y*&
EAX(Y,,) = EFA2°(Y,,) and B,, is an EFA(2)-cofibering. If (4.6.9) holds for
X, = X, o then w is an EFA(1)-cofibering so that EF A is indirectly related to
EA at X, by YE in (5.7.3) and the cofiberings in (5.7.1).
Therefore, Theorem 5.5 and Corollary 5.6 imply the following

THEOREM 5.8. Let X, € ¥ and E and F are ring spectra satisfying (4.6.9) for
X,=X, o Then, we have the May spectral sequence {E;'} in Theorem 5.5
abutting to EA;_(X,) in (2.1.4). Moreover, if the F-Adams spectral sequence

s,

{E(s)¢*} in (5.7.2) converges and collapses for any s =0, then we have E}'| =
EFASY(X,) (in (49.1)) = EA;_,(X,) (abut).

§6. Some preliminary lemmas

For the main result in the next section, we prepare some lemmas.

LEMMA 6.1. If the compositions of maps x—w-L.y and x L
V' ——Y' in € are homotopic to each other, then these are homotopy equivalent
to inclusions
6.11) XcWcecYandXcVcYwithX=WnV.

ProoF. The double mapping cylinder X = W' u; X' A [0, 1]* Uy V' oof i
and f’ is the union of the mapping cylinders W = W'y, X’ A [0, 1/2]" and
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V=V'u.X A[1/2,1]" and X = X' A {1/2}* = W~ V. Furthermore, i, f’
and a homotopy h': X’ A [0,1]* = Y’ of foito i’ o f’ define the map h: X —» Y’
and Y=Yy, X A [0,1]" o X, as desired. ged.

According to this lemma, we may assume the following:
(6.1.2) In(5.1.1), denotingby Z,, =Z, Z,,, , = Z, and Z,,, = Z,, we have

X=WnVcX=WuVcY, X,=WX=X/VcYV=V,,
X,=V/X= X/WC YIW=W,, Xo1441= Y/X =W/X,=W,/X,,

and the horizontal and vertical sequences o, f, ®, and 5 are the cofiberings
&: A & B5 B/A with the inclusions a = f, i and the collapsing maps b = g, j.
(6.1.3) Hence, {i}, {j}, {f} and {g} are maps in €%, and (5.1.2) holds.

LemMmA 6.2 For a homology theory h*, consider the induced exact sequences
6.2.1) - —— h,(A) 5 «(B) — h,(B/A) %, hy_(A) —>-
of the above cofiberings &, and the diagram formed by them. Then:

(622) 0,00 = =30 8 hurs(Xery 1) = hys (X,

for E =&, o =04y, and o = wg,.q; and the other squares are commutative.

(6.2.3) For yeh,(Y,,) with j,g,y=0, there are x.€h,(X,) (X,=
Xotr—ti-1+0 K = 1,2) with 0,x; = —0,x,, foxy =j,y and i,x, =g,y. Con-
versely, for x, with the first equality, there is y with the last two ones. In
particular, if each iy: h,(V,,) > h,(Y,,) is monomorphic, then for any x, € h,(X,),
there is x, € h,(X,) with 0,x, = 0,x,.

(6.24) For zeh,, (X4 41) With 0,0,z =0, there are we h,(W,,) and
ve h,(V,,) with j,w= 0,2, g,v =0,z and f,w= —i,v. Here, if wor v is given,
then there is v or w.

Proor. In addition to é with the maps in (6.1.2-3), we have also
(625) the coﬁbermgs y: X—»X—»X/X X, vX,pX Ly-L, Y/X and
X, —5 X, v Xz——>X, (I=3—k) with the maps {I,f;: Wc X,i,}:o—y,
(L Ve X iy amy, {ji 1} p= oy {39, 1)1 p—> o (i =jsof) for & of
and o’ in (6.2.2), so that

(6.2.6) 0 = 0,014, 0, = 0,024, Oy = ji4©0p O =j2y ©0,, and

(6.27) (Jradza): (X1 v X3) = hy(X)) @ hy(X;) with (jiy, jou) ' =
A A

(6.2.2): 000y + 0,00, = 0,0(i140Jix +i240J24)00, = 0,0j 00, =
0 by (6.2.6-7); and the other squares are commutative by (6.1.3).

(6.2.3): If jog,y =0, then g,y =0 and y = f,x for some X € h,(X); hence
x, = jyX are the desired ones, since J,x; + 0,x, = 0,j,X = 0. Conversely, if
0pX; = —0pX,, then 9,X=0 for X=1i,x, +i,,X,, and X=j,x for some
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X € h,(X); hence y = f,;X is the desired one. The last holds, since f,0,x, =0
by i, fe0uX1 = f4ix0,Xx; = 0 and assumption.

(6.24). 1f 0,0,z =0, then 9,0,z = 0 by (6.2.2), and there are w and v with
the first two equalities. Hence j, X =0 for x = f,,w + fo,v —0,z, and X = i, x
for some x € h,(X). Thus fow + i, 0= fi(X + 0,2) = i, f,x = f,ix; and (6.2.4)
holds for w and v — f,x, or w — i x and v. q.ed.

According to (3.2.1), (6.1.3) and (6.2.5-7), the same proof gives us the
following

LEmMA 6.3.  For an E,-functor D = {D}, KD.}, we assume that
(6.3) & in (6.1.2) and v, p in (6.2.5) are all D-cofiberings, and D splits with wedge
sum, i.e., for i, and j, in (6.2.5), there holds the isomorphism

(Jiwo J2x): DuXy v X5) = Di(X 1) @ Dil(X3) With (jiys jou) ™" = iss + iag -
(6.3.1) Then, & induces the exact sequence in (1.8.4):
- —— D[(A) —*> DI(B) —> DY(B/A) — D (A) — -+ (5 =3).
(6.3.2) These sequences form the diagram, which is commutative except for
050 0y = —0,0 08, D7 (Xg41.041) = DL (X,,) (by the notations in (6.2.2)) .

(6.3.3) For y® e Dy(Y,,) with j,g,y° =0, there are xP € Di(X,) (for X, in
(6.2.3)) satisfying the equalities 5,xP = —3,x2, f,x? =j,y° and i, x? = g,y>.
Conversely, for xP with the first equality, there is y? with the last two ones.

(6.3.4) For z° e D[ (X 41 .141) With 8,0,2° = 0, there are w® e Di(W,,) and
vP e Di(V,,) with jwP =6,2° g,v°=3,2z" and f,wP = —i,vP. Here, if wP
or v® is given, then there is v° or wP.

LEMMA 6.4. Furthermore, let ¢°:h,— D? be a natural transformation.
Then:

(6.4.1) i, and f, for DY are monomorphic, and ¢® o 0: = 0 for 0, in (6.2.1).

(6.4.2) For x; € h,(X,) with d,x, = —0,x, (cf. (6.2.3)), 6,6°x, = — 5,4 x,
holds.

(6.4.3) In (6.3.3) for r =0, the last two equalities imply the first one.

(6.4.4) For z, w and v in (6.2.4), there is x” e D2(X, ) with i, x” = ¢°w and
f*xD = —¢%v.

PrROOF. (6.4.1): We see the first half by (6.3.1) and D, ! =0, and so the
second half since a, o ¢ o d; = doa,od, =0 (a=if), where ¢ = ¢°.

(6.4.2): j,g,0y =0 for y in (6.2.3), and there are x? in (6.3.3) for y? = ¢y
and r =0. Then f,x?=4¢j,y = f,dx, and x? = ¢x, by (6.4.1); and x? = ¢x,
similarly. Thus (6.4.2) holds.
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(6.4.3) holds, since the last two equalities determine x uniquely by (6.4.1).
(6.44): [ jxdW = ¢f,,0,z=0, and j,¢w =0 by (6.4.1); hence ¢w =i, x°
for some x®. Then i, f,x? = f,¢w = —i v, and f,xP = —gv by (6.4.1).
g.e.d.

§7. Comparison of spectral sequences by a double E,-functor

Under Definitions 1.8, 4.3 and 5.3, we consider the following

DEFINITION 7.1. We say that a double E,-functor A = {AJ', KA, LAS'}
is related to a homology theory h, at X, = X, o by
(7.1.1) E,-functors B = {BS, KB} (B=C,D), natural transformations ¢%:
h, = B2, Y€: Cs — A3°, yP: D! — A% with Y€ o ¢ = YyP o ¢P, and cofiberings

/ g i J
(712) o Xo —— Voo — X1, 00 X — W, — Xoiy

f g i J
Bs,r: VVS.t sz.t Ws,H—l b ”s,t: I/s,t Y's,t I/s+l,t )

in (5.1.1) with (6.1.2), if these satisfy the following (7.1.3-5):

(7.1.3) For each 7, ,, 0 - h,(V, ) — hy(Y, ) =2 hy(Vs1.) = O is exact.

(7.14) & (E=a, B, w,n) and y, p in (6.2.5) are all D-cofiberings, and D splits
with wedge sum (cf. (6.3)).

(7.1.5) Each B, is also a C°-homological A4(2)-cofibering, {E(s)>*} in (5.2.1)
converges and collapses, ¢€ is natural for B, (cf. (5.1.4-6)), and w,, is a C-
and A(1)-injective cofibering; Y;, is D- and A(i)-injective (i = 1, 2); ¢¢, ¢ and
Y€ C2 — A2 are isomorphic for Y, ,, and so are ¢¢ and ¥ for W, ,.

Under this definition, we see the following:

(7.1.6) Lemmas 6.2-4 hold by (7.1.4). ¢#” is isomorphic also for ¥, , which
is D-injective, by Corollary 1.5 for 7, ,.

(7.1.7) For W,,, ¢¢ and y® are isomorphic since so are for Y,, and W, ,
and ¢” is epimorphic; and Ker d; = Ker d; for t=n=1 and o;: h,(W,,) -~
hy—n(W, ,-,) in (6.2.1), by (5.1.6) and (5.6.2-3).

(7.1.8) Moreover, A is indirectly related to C at X, by ¢ and (7.1.2); and
A (resp. C, D) is related to D (resp. h,, h,) by ¥? and {w,,} (resp. ¢<, ¢ and
{ws.0}, {%0,}). Thus, Theorem 1.9, 44 and Corollary 5.6 give us the following
spectral sequences:

the May one EMY = {E3S, M ESL — EStLITY,
the Mahowald one EM® = {ES! gMah: St — Estri=r+l} gnd

u,rs

E(B) = {E(B", d®: E(B)' —» E(B*™"*""},  with
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AV (Xo) = E3Yy 53 Ga-o(Xo) = E(O)3"™" 32 hums—i(Xo)

1 abut

I I
A3(Xo) = By 2 DIt (Xo) = E(D)™" i3 hu-s—dXo) -

u,2 conv ab:ut

(7.1.9) If EM™ collapses, then yP” is epimorphic also for X, and
Ker o =Ker g, for s=n=1 and 6j5: Di(X; ) = DJ*"(X,-n0) in (6.3.1), by
Corollary 4.5 (ii).

The purpose of this section is to argue some relations betwen these spectral
sequences by the following main result.

THEOREM 7.2. In case of Definition 7.1, consider the condition
C(a, b, n): hy_,;(W, o) =0 for a < i < a + n (this is nothing when n = 0) .

Then, the spectral sequences in (71.1.8) satisfy the following (1)-(iv) for xe
AS(X,) = Eyh = EpY:

(i) dyd¥etx = dYerdf®x in A513'(X,). More generally, if C(a, b, n) for
a=5+2, s+3 and b=u—t+1 hold for an integer n=0, then dMx =
0 =dM*dy>x for r <min {n+ 1,t}; and dY*dMhx = dMe2a¥®x when n<t,
and x converges in EM®® when n > t.

(i) If x converges to xPe D:*'(X,) in EM®® then so does d¥¥xe
ATV (X)) to (—1)d2xP e Dt 3(X,). If EM*™® collapses and d2?xP =0 in
addition, then so does d¥* x € AS14%'2(X,) to (—1)'dPxP e D514 3(X,).

(iti) If x converges to x€e C5_,(X,) in EM®, then so does d¥*"xe
AST2H(X,) to dSxCe Cst2,(X,). If C(s+ 2,u—t+ 1,n) holds in addition,
then dM*x = 0 = dfx® for r < min {n + 1,t}; and d¥*5x e AS*"*>'""1(X,) con-
verges to dS,,x¢e Cs2"12 . (X,) in EM® when n<t, and x converges in EM*:
when n 2> t.

(iv) If x converges to x€ in EM¥ and to xP in EM®® then there is ye
Ast3(X,) converging to dSx€ in EM¥ and to (—1)d?xP in EM If
C(s +2,u—t+ 1,n) holds in addition, then d°x¢ =0 for r<n+ 1, d°x?> =0
forr<n—t+1,and there is y' € A511%2:%(X,)) converging to dS,,x€ in EM® and
to (—1ydP ,xP in EM™ where a = max {t — n, 0} and b = max {n — t, 0}.

Here, ‘converge’ is used in the sense of (1.6.2). Thus, in the same way as
Corollary 1.7 (i), we see the following by the definitions of EM** and EM® in
§§4-5:

(7.3.1) xe AS'(X,) converges to xPeDs*'(X,) in EM*" if and only if
x=Y,x? and 65x°=xP for some xPeDi(X,,), where ¥, = (02) o yP:
Di(X,.0) = A2 (X,,0) = AS'(X,), 64 = 6, is in Corollary 4.5, and ,, in (7.1.9).

(7.3.2) For x in (7.3.1) and x, € 45" (X,), dM**x = x, in EM®® (cf. (1.6.1)) if
and only if s'=s+r, t'=t—r+1 and x = (0J)x, i,x=y°wP, j w’=
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6r1xP and Y, x? = x, for some x € A2(X; o), W2 € D}(W, ,) and X € D} (X, ).

(7.3.3) x in (7.3.1) converges to x¢e Ci_(X,) in EM® if and only if
x = (04)%, i,X = YPdyw, ¢ 04w = i,x€ and (85)°'x€ = x€ for some ¥ in (7.3.2),
w e h,(W,,) and x€ € C)_(X,,), where ¢; = &0 ¢ h,(W,,) » DI(W,,) -
DY(W, ), 65 =6, is in Corollary 1.7 (i) for p=B,,, 95 in (7.1.7), and 6 = d:
Ci(X;.0) = Ci" (Xi-1,0) in (1.8.4).

(7.3.4) For x in (7.3.1) and y, € 45" (X,), d™x = y, in EM* if and only if
s'=s+ 1, t'=t+r,u=u+rand x = (62X, i,X = yPhw, i, j, 0w = ) w,,
YPdyw, =iy, and (65)'y, =y, for some X, w in (7.3.3), w,€h,(W, ,) and
y.r € Al?',tl(Xs’,O)‘

Also, (6.2.3) and (7.1.3) imply inductively the following:

(74.1) For any zeh,(X,,), there are z;eh,(X;;) (j=s+t—1i) for
s =i =0 with z; = z and 0,z; = d,z;,,; hence

(742) 6576,z = (= 1)909,2; (e(j, 1) = YAt k)
by (6.3-4.2) for §, = 6% o ¢”: h,(X; ) > DA(X; ,) » D¥(X;.0).

Moreover, (6.2.3-4), (7.1.3) and (6.4.4) imply the following:

(7.4.3) For %2 e DY(X,,), we h,(W,,) and z € h, (X 4 ,41) With i, X0 =
#°w and j,w = J,z, there are z; € h,, (X, j+2), xP € D)(X; ), vieh(V, ), wi€
h(W._y j+1) and y;eh(Y_, ;) (j=s+t—i) for s2i=0 with 0,z; = 0,z;4; =
Ix Vi (ze41 = z), i*vi = _f*wi+1 (Wss1 = W), i*xiD = ¢Dwi+1s f*xiD = _¢Dviy
Ui =JjyVi» Wi = g,y; and so j.w; = ,z; hence i, %X” =i,x? and so %P =x? by
(6.4.1); and 6,xP = 6,x2, by (64.3). Thus,

(7.4.4) 85780 = (— 1098 xP(e(j, t) is in (7.4.2)) by (6.3.2).

On the other hand, C(a,b,n) implies 5" =0: h(W, ;) = (W, j—m)
(k=b+i+j—a) for agi<a+n j=m=1, by (7.1.7); hence for any
z € h(X;;), there is z' e h(X;, j-,) with 0,2’ =0,z when j=1, and z'€
hy+1(Xis1,0) With 0,2" = z when j = 0. Thus:

(7.4.5) Assume C(a, b,n). Then for any z € h,(X, ) (u=>b + c), there are
z;eh(X;;) (j=a+c—i) for a<i<a+min{n c} with z,=2z and 0,2, =
0,2;_;, hence 6:7°¢,z; = (—1)©)¢,z in the same way as (7.4.2); and moreover
when n > ¢, we have z; € hy,;_,(X; o) for c <i—a < n with 0,z; = z;_,.

Also, by (6.2.2,4) and (6.4.4), we see the following:

(7.4.6) Assume C(a,b,n) and C(a+ 1,b,n). Then for %%, w and z in
(7.4.3) with s = a, t = c and u = b + ¢, there are z; € h,.;(X;4; j41) Vi € h(Yioy )
v =Juvi € h(Vi;) wieh (W, ;) and x?e D)(X; ) (j=a+c—i)fora<iZa+
min {n’ C} with awzi = aazzi—l = gy (za = 2), 9sYVi = Wi (Wa = w), j*wi = aazb
fuwi = —iyv;, i xP = ¢Pw, and f,xP = —¢Pv; hence 650jxP = (— 1)@ xP
by the same way as (7.4.4); and moreover §:%°=0 when n>c, since
Ware € hy(W,1c0) = 0 and so x2,, = 0.
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PROOF OF THEOREM 7.2. (i) For x,

(1) put y, =dYx, a’=a+ 1, and take X, w, w, and y, in (7.3.4) for
r=1.

Then, dgw’ = 0 for w' =i, j,w — dyw;, and Jgpw’ = 0 by (7.1.7). Thus, w' =g,y
for some yeh, (Y, ), and j,g,4°y = —j,¢"0w, =0 by (6.4.1) (in (7.1.6)).
Hence, there are x2 € DX(Xy43-4.1—2+1) in (6.3.3) with §,x? = —§,x2, f,xP =
jx#®y and i, x?=g,4"y. Therefore, i,x? =1i,j,¢°w and x? =j,¢°w by
(6.4.1). Thus, by (6.3.2), (1) and (7.3.2),

(2) juPpw = 6!x2 = 5,xP for xP2 = (—1)'6:"x?P, and so Y, x2 = d3*hx.
Also, 0jiy juwy = —iyj,0pw' =0 and 4i, j,w, =0 by (7.1.7); hence 0,j,w; =
0,z for some z € h,(X,+3,), and 6,4°j,w, =,z by (6.4.2). Thus, in the
same way,

) JuBsWi=befuwi=(= 18,82 and 50 (— 1Y, B,z =™y, (f, = 3io¢P).
Moreover, 0,z = j, 04w, = —g,Jj,y. Hence, (6.2.4) and (6.4.4) for v= —j,y
give us Wy, € hy(Wyiz,—1) and x” e D)(Xy,5,,—1) With jowe,, = 0,2, fyWss, =
—i 0 =1I,j. ) ixx?=¢"w,, and f,xP=¢",y=f,x2. Thus x®=x? by
(6.4.1), and

@ i YPx? = (=Y Pyw,., and so dY¥(,XP) = (— 1) ,bz for x?
in (2),
by (7.3.4). Now, (1)—(4) show the desired first equality in (i). (Note that w', z,
Wy, and x? are all 0 when ¢ = 0.)

Assume C(a,b,n) and Ca+ 1,b,n) for a=s+2 and b=u—t+ 1.
Then, by (7.4.6) for x°, z and w, (a=s+2,¢=1t— 1) of above, we have
elements x?, z;, w, (@<i<a+min{nc}) in (74.6) with x2=x>, z,=z,
i,xP? = ¢°w, and j,w, = 3,z;. Thus, by (7.3.2-4) and (1)—(4),

(5) YoxP =d*"x and dY*y,xP = (— 1)y, bz = d¥Py, for XP =
(— 12D *+15ixP (these are 0 when i < a + min {n, c}); and when n = t,d™*"x =0
for any r = 2 by taking x” = 0 in (7.3.2), and so x converges in EM?".

These imply the last half of (i).

(i) Assume that x converges to x? in EM®®, Then, by (7.3.1), (7.1.4, 6-7)
and (1.3.2),

(1) we have x”eDi(X,,), X°eDXX,,), weh,(W,,) and zeh, (X, )
(@=a+1) with x=y,x° xP=¢5x2, xP=6!%" i,%°=¢"w and
JxW = 0,2;
because the fourth equality implies ¢°f, j,w = f, j, i, X° =0 and so f, j,w=0.
Hence,

(2) d¥x =y, ¢,z by (7.3.4), and this converges to 65 ¢,z in EM*® by
(7.3.1).

Now, by i,%” = ¢°w and j,w = 0,z, we have elements z;, x?, v;, y; and w,
(s2i=0)in (74.3). Then,
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(3) d2(6:**x®)= —¢,z, by the last part of Corollary 1.7 (i) for E(D),
xP = 3550 = §55!%0 = (— 1)P*t055*1x2 by (1) and (7.44), and 054,z =
(= 1+, 24 by (7.4.2).

By (7.3.1), (2)—(3) imply the first half of (ii).

Assume in addition that EM*"collapses and d?x? = 0. Then, 8¢,z = 0 by
(3), and so 8,4,z =0 by Corollary 4.5 (ii). Hence, (7.1.4), (7.1.6-7) and (1.3.2)
imply that ¢,z = j, 4w, $°z — j,°W = g,¢"v" and z — j w' — g,v’ = 8,2’ for
some w'eh,(W,,), v eh,(V,, and z'€h,  (Xy ) and 8?z' =j,w" and
¢Pw” =i, xP for w" =w — gyw’. Therefore,

(4) d¥x =y ¢,z by (7.3.4).
Then, we have z;eh, . (X;;) =5+t —i+1) for s 2i=0 in (7.4.1) with
z=2z". Also, we have v, y;, w/ and x/® (s 2 i 2 0) in (7.4.3) for X%, w” and 9,2’
with 8?z{=— 0,0,z{+;= (—1)* g, v} and the equalities in (7.4.3). Thus, in the
same way as (3),

() d26:°x5) = (=1Puzo, x° = (—106"'xf (e=e(s +1t,1), and
050,72 = (=1 ¢z (8 = (s +t' + 1, ¢ + 1)).
(4)—(5) imply the last half of (ii) by & — e —s =1t + 2s + 2.

(ili) Assume that x converges to x in EM®. Then,

(1) we have X, w and Xx€ in (7.3.3), and so zeh,(Xsi,,-,) With
OnZ = Oy j3W;
because ¢€05i, j,w=0 by the third equality in (7.3.3), and i,0, j,w=0pi, j,w=0
by (7.1.7). Therefore, j, 0w = (—1)"10,0, 'z by (6.2.2), and 6,4°z = 6,4"j, W
and 8,4,z = (—1)"'¢,j,w by (6.4.2), (6.3.2). Thus, by Corollary 1.7 (i) and
(7.3.2),

Q) d§x€=(—1""450,"z (S = (65)* o ¢°) and d¥*"x = (— 1) 'Y, ¢,2.
Hence d}®"x converges to d$x€ by (7.3.3).

Assume in addition C(a,b,n)fora=s+2and b=u—t+ 1. Then,

(3) we have z; (a <i<a+ min {n, c}); and when n > ¢, z,4.4; in (74.5),
forzandc=1t—-1.
Then, 05°*0jz; = (=1, 0;"'w and 65" 4z, = (—1)**@, j,w where & =
e(c,j); and when n2>t, ¢Pz,,, =0 by (6.4.1), and 4,j,w=0. Therefore, by
Corollary (1.7) (i) and (7.3.2),

@) dfxC=(=1y"¢5diz; and &*"x=(—1)""Y,bz; r=i—a+2
¢ =¢(c,j)) for a <i < a+ min {n, c}; and when n > ¢, d"**x =0 for any r = 2
and so x converges in EMb,
These imply the last half of (iii).

(iv) Assume that x converges to x? in EM® and to x€ in EM®. Then, we
have x2, %%, w and z in (1) (in the proof) of (ii), and X, w’ (this is w in (7.3.3)),
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x€ in (7.3.3). Now, y?x? —x =j, ¥ w, for some w, € h(W,_,,) (w, =0
if s=0) by ¥,x°=x=(64)% (7.1.5) and (7.1.7), and so Y @i, jw, =
WP, X0 — i X = YP8hi, X2 — YPgw = Y2, (w — w') by (1) of (i) and (7.3.3).
Hence, ¢°(w —w' — i, j,w,)=¢"g,y and w—w —i,j.w — g,y = dpw, for
some y € h,(Y,,—;) (y' =01if t =0) and w, € h, (W, ,) (@’ = a + 1) by (1.3.2) and
(7.1.5-6). Therefore, by taking w — ;w,, z — j,w,, Yy °x? and x€ + j, ¢ G4w, to
be new w, z, x, X¢, respectively,

(1) we have x?, %2, w, z, X and x© with the equalities in (7.3.3) and (1) of
(ii).
Then, by the same way as (1) of (iii), we have z'€ h,(Xy,,,) with 0,z =
0,z = j,w; and so (—1)0,0}z' = 05 z = j,04w. Therefore, by Corollary 1.7 (i)
and (7.3.3),

(2) y=(—1)/y ¢,z converges to dSx€ = (—1)¢Lad!z’ in EM».
Also, by the same way as (3) of the proof of (ii), we have z; (z; = z), xP
(x? = xP), v;, y; and w; (wy = w) in (7.4.3) for s =i = 0, and

(3) dP(S!xP) = —@,zo, X0 =05%P = (—=1)F65'x2 (¢ =e(s +t,t)), and
(—1)05 %2 ,2" = 85 oz = (— 1), 2.
Therefore,

4 y=(—=1""Y,4,z in (2) converges to (—1)'dPxP in EMak,
(2) and (4) imply the first half of (iv).

Assume C(s + 2,u —t + 1,n) in addition. Then, we have z; (z, =z') in
(745 fora=s+2,b=u—t+1and c=t. Hence, for a <i < a+ min {n,t},
0 ofzy = (— 1y 4w by (62.2) and 9,0.z" = (—1)j,0w; and for
at+t<isa+n 05°'z; = 052040 = (=19 4w, Therefore, by
Corollary 1.7 (i) and (7.3.3),

(5) dSx€=0 for s+2<i<s+n+2, and y' = (—1)\Y,PuZesns+2 CON-
verges to dS.,xCin EM¥ e =¢(t + 1, t —n)ifn<t, = ¢(t + 1,0)if n > 1).

Also, when n < t, (= 1¥®"™%4 2., = @,z by (6.3.2), and so (—1)°02*"@,z,., =
(= 1)+ 20 (e = &(t + 1, t — n)) for z, in (3) by z, = z’. Therefore, by (3),

(6) when n <t, y’ in (5) converges to (—1)'d?x? in EMeh,

If n > 1t, then we have z{ (z,,, = z,4,) for a+n=i=0 in (7.4.1) for z = z,,,;
and z,,, = 0" "zgey = (=10 'z.,, (6" =e(n —1t,0) by (6.2.2), and 0,z; =
(=1)"*reor "1zl (e =(a+t —i)(n —t)) for a + ¢t > i = 0 by induction. In fact,
z;— (= 1y"*0)7"'z{ = g,v’ for some v € hyyy (Vi j-y), (gev' =0 for i=a+1t,
j=0) by the assumption of induction, and so 9,z;_; = 0,z; = (—1)* *°0,0;7 'z{ =
(— 1) retnmtgnt+izl | by (6.2.2) and (7.1.3). Especially, (—1)"*¢0r "*tzy =
0xZ0 = Gy Vo (e = (s + t + 2)(n — t)) for zy and v, in (3). Therefore,

(7) dPE*xB) =0 for r<n—t+2, dP,,(0:+x8) = (— 1) ***'§,z}, and
02t ¢Pz,in = (=1 " dozo (6" = e(a + n,0)). Thus, by 3)and &” —¢" — ¢ + & —
a—1=1t>+2t+2s
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(8) when n>t, d’x?=0 for r<n—1t+2, and y’ in (6) converges to
(=1)dy 4 2xP.
(6)—(8) imply the latter half of (iv). q.ed.

§8. The case B = GA for ring spectra G = E, F

For ring spectra G = E, F and a CW spectrum X, consider
(8.1.1) the E,-functors GA with ¢%: n, - GA? in (2.1.1-6), the double E,-functor
EFA with yF = yF4: FA, - EFAY', yE: EAS - EFAS° in (4.6.1-8) for D = FA
and in (5.7.3), and the diagram (5.1.1) of the cofiberings given by (5.7.1), by
assuming the following (8.1.2):
(8.1.2) (4.6.9) holds for X, = X, , (e.g., there is a unit-preserving map A: E — F),
and the F-Adam spectral sequence {E(s);"}, E(s)5* = FAL(W, o) = n,—,(W, o), in
(5.7.2) converges and collapses for any s = 0.

(8.1.3) Then, for A = EFA, C=EA, D=FA, h, ==, and the ones in
(8.1.1), (7.1.3-5) hold by (4.6.1-9), (5.7.1-4) and Lemma 2.2; and

(8.1.4) we have the spectral sequences in (7.1.8), which are the G-Adams ones
E(G) = {E(G)}", dS}, the Mahowald and May ones EM*P = {ES'} and EM® =
{E;%} given in Theorem 2.3, 4.7 and 5.8, respectively:

EFAS(Xo) = E5Y "B EAS (Xo) = E(B)y 5788 ™ n, . (X,)

I I
EFAS'(Xo) = Es, "B FAS(X,) = E(F) T 88" 1, . (Xo) .

(8.1.5) Moreover, Theorem 7.2 holds for the spectral sequences in (8.1.4).

In the rest of this section, we consider the case that
(82.1) X,=S°% E=BP at a prime p and F = HZ, with the Thom map ®*°
BP—->HZ,,
(cf. Example 3.10). We notice that

(8.2.2) the Thom map &®” induces a monomorphism @L°:(HZ,),(BP) =
P,=2Z,[t]-(HZ,),(HZ,) = A,, and ®2°t, =n, if p is an odd prime, = n? if
p =2, where n; is the conjugate of Milnor’s ¢;, and we regard P, as a sub-
algebra of 4, by ®2*.
Then {E(s);“} in (5.7.2) satisfies

(823) {E(s)", d(s),} = {EQ0);" @ BP,(X;,0), d(0), ® 1},
because BP, (X o) is flat over BP,(S°) for s = 0 by (3.8.7); and
(8.2.4) E(0);* = Ext}%(Z,, Py) = Z,[a],

(a; € Ext*, » = 2(p' — 1) + 1), which is 0 if u — ¢t % 0 mod 2p — 2, by (3.10.1).
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Thus, d(0), =0, d(s), =0 and {E(s)“} collapses. Also, this converges by
[16,19.12]. Thus:

(8.2.5) In case (8.2.1), the assumption (8.1.2) and so (8.1.4-5) hold.

(8.2.6) Moreover, C(a, b, n) in Theorem 7.2 holds if b — 1 =0 mod 2p — 2
and n = 2p — 3, by (3.10.2); and EM?® collapses if p is odd, by [10, 8.15].

Therefore, Theorem 7.2 implies the following

ExXAMPLE 8.3. In case (8.2.1), the spectral sequences in (8.1.4) satisfy the
following (i)—(iv) for x € EFA}'(S°) (E = BP, F = HZ,).

(i) dy~d¥er x = d¥eR dY®x if t 22p—2, and x converges in EM™® if
t<2p-—2.

(i) If x converges to xFe FAS™(S®) in EM®® then so does d¥*x to
(=1'd5xF. If p is odd and d5xF =0 in addition, then so does d¥*x to
(—1)dExF.

(iii) If x converges to xte EA;_(S°) in EM®, then so does dy:* x to
d%,_ xF when t = 2p — 2, and x converges in EM™® when t < 2p — 2.

(iv) If x converges to x% in EM® and to x* in EM® then there is y e
EFA$12P71°(S%) (v = max {t — 2p + 3,0}, m = max {1,2p — ¢t — 2}) which con-
verges to d3,_,x in EM and to (—1)df,,x¥ in EM®,

Now, by [4, 11, 16.1], .

83.1) n,(E) = Q,[v] and ELE) = n,E)[t] (E=BP) with At, =

I1®t; +t;®1, nv; = v, + pt; for the copoduct 4: E,(E) - E_(E) ® E,(E) and
the (right) unit #: n (E) —» E,(E) (7.x = x for the lef unit ).
Then, for the cochain complex E¥(S°) in (2.1.1), E5(S°) = E,(E)® - @ E(E) (s
times), and 6° =Y (—1)65, 65 =1®4® 1: E5(S°)® EL(E)® EL*(S°) —
ESH(S%) ® E,(E) ® EL(E)® ES'(S°) for 0 < i<, 64,x = x® 1 and 8%,,(x) =
1® x.

(8.3.2) Thus, we have the elements

af € EAL(S°) and Bf, € EA%(S®°) for g =p" (E = BP)(cf. [11]),

represented respectively by of = (v} —v{)/p in EL(S°) (¢, =t,) and Bf, =
™ @ t71 — noP™" @ tf — o™t - AP + o - At] + T ® 1 —
P77 @ 1}/p in EL(SO).

(8.3.3) Also, we have the elements

af , hf €e FAL(S°) and b,e FALS®) (F=HZ),

represented respectively by al =e,, hf =n? (g=p") in F)(S°)=A, and
bi =Y iienPM @t (g = p" pe; = (%)) in FZ(S°) = A, ® A,, where ¢; and 7,
are the conjugates of Milnor’s 7; and &;, respectively.
Moreover, for E = BP, F = HZ, and X = S°, consider
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FE$'(S%) = (A,) ® (P)*! with 6% =Y 11 (—1)85 (x=sort)in(49.1),
where (N,)' = N, ® - ® N, (¢t times) (cf. (2.3.2)). Then for x € (4,) ® (P,)*",
08x=x®1if G=E and i=0, =1®x if G=F and i=t+ 1, and 85 =
1® 4® 1 otherwise, where the coproduct 4: 4, - 4, ® A, P, > A, ®P, or
P, > P, ® P, satisfies An; =1, @1+ 1®ny, A1, =1, @1 + 1, @nf + 1 @13,
At; =t; ®1 +1®1t,. Also, by (49.1) (cf. (2.3.2)),

Cy' = FAE;'(S°) = H'(FE;*(S% 8F) = FAL() ® (P, ),
FAL(E)=Z,[a;]in (824) and FEA'(S°) = H*(C}'; 6f).

Here, by (8.2.3-5) and dimensional reason, we take a; so that
(8.3.4) a; converges to v; € n (E) (v, = p) in (8.3.1) in {E(0);"}.
(8.3.5) Hence, for E = BP and F = HZ,, we have the elements

hn P bn > Qg5 % s (Zi > ,Bq/t s aiﬂq/q—l (q = pn) in FEA:JU(SO) s

represented respectively by the elements
h — 1®t1 , b _1®Zp lct(p ')q®ti" <q=P",I7Ci=<Ii))>’ ag ,

t .
0‘:=Zﬁ;$<l> a7 el @t i =1®@t,® - ®t, (stimes),
ﬁq/t=aq—t®tfq9 aiﬁq/q 1 _a1+l®tpq (q 14 )ll’l C

where, (u,v)=(1,0), (2,0), (0,1), (1,t—1), (5,0), 2,g—t—1), (s+2,0),
respectively.

(8.3.6) In particular, when p = 2, the following elements a(n) (n =0, 1, 2)
in F2(E)= A, ® A, ® P,, represent a3 "a} € FAZ(E) (E = BP at 2, F = HZ,).

a0)=n,®0n®1, al)=n, 1,1+, 1, 1,
a) = @0, + 1 @nina + M, @) @1+ 1, @ @13 +nf@ni® ¢,
(t1:'7§)~

Moreover, for 4: P, > P, ® P,, (1 ® A)a(n) —a(n)® 1 is equal to 0 if n =0,
a0)®t, ifn=1and a0) @ + 7?1 RN @1 @t if n=2.

Now, by (8.2.3) and (8.3.4),

(8.3.7) {G“} in (5.2.2) satisfies G, = (I'), < n,(E), (I'/I''"), = FA‘*H(E)
Gy, =I'""E (E°) c E,(E°) (E* = X, ,) and G$'/G3'4t = FAL(E A E‘) = ES', for
the ideal I = (v, = p, vy, ...) of n (E) (E = BP at p, F = HZ,). Moreover, for
Gsl, = I'E,(E*) < E5(S°) with G5'/GS!\! = FAES'(S®) = C;',j E*— E* of j:
E — E induces the following maps:
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= (j%),: E5(S°) > E, (E¥), the restriction J¢ = JE|GS': G5 — GS*,
J: C;" - E$' in(49.7) and J' = proJ® = Jopr: Go' > ES,

for the projections pr: G3* — ES'; and G5 — C3".
Furthermore, for 6* in (2.1.1) and (i 0 j),: E(E®) - n (E**') > E,(E**!) in (5.2.5)
(E,(X) = EAS(E A X)),

(8.3.8) (ioj), o JE =(—1)*"JE o 5*; hence we have the map

= (J5),: EAY(S®) = HY(EX(S®); 0%) — HXE(E®); (i © j),) = EAY(S°) .

Then, by (8.3.8), (5.2.6) and (1.6.1-2), we see the following:

(8.3.9) Assume that x € G&!, = E3(S°) satisfies 6°x € GS1Li < E‘“(SO)
Then, J'x e ES!, , and J'6°x € ESiL*! represent the elements in E¥% = EX:
such that dM[J'x] = (— 1" [J'6*x] ([J'x] = J,[pr x] for J,: ES', = Efk,'z in
Lemma 4.10 (iv)). If 6°x =0, then [J'x] = J, [pr x] converges to JE[x] in
EMay'

EXAMPLE 8.4. In Example 8.3 (E=BP at p, F = HZ, and X, = S°), the
elements given in (8.3.2-5) satisfy the following:

(i) In EM*® J h, (resp. J.b,, J,(aob,)) converges to hf (resp. bf, albf). In
EMY J a, (resp JeBys Ji (@ Byq-1) for q =p") converges to JEa,E (resp. JEBL:

((“1)sﬁ gia—1)

(i) For n ; 1, dYJ, h,,, = —J(aob,); hence dXhE,, = —albF.

(i) Assume p=2. Then d¥*"J oy =J,(a}) and d¥**J, B, -3 =T (@} Bye-1)
for g =27 hence d§Jioy = (JEaf)* (cf. [13]) and d5JEBE, 5 = JE((@F)*BE,-1)
for g = 2"

Proor. (i) The first half is seen by the equality of ®2” in (8.2.2) and
Lemma 4.10 (iii). By (8.3.9) and pr of = «, («f € G}*™1), Ja, converges to JEoF
Also, B, = (mvi" —vi)/p@t}1+ 1" E(E)Q E,(E)e G2*""' and pr B}, =
B> hence we see (i) by (8.3.9).

(i) tMMeELS®) =Gy and 't} = —pYPic P @t (mod p?)e G2,
and so prt? = h,,, and pr(6't}?) = —aob,. Hence dY*J h,., = —J, a,b, by
(8.3.9). Thus, (i) and Example 8.3 (iii) imply (ii).

(i) By (8.3.5-6), 03 = Y 2_oa(n) ®t}*' € AL ® P} represents ;. Then, for
x=MQ®L, @, eA, ®Plandy=1t, @1, ®t, ®t, € P, we see that

S, =@ ®1®t,®t;, =6Fx, 6Ex=6Fyand 6Ey =af.

Thus, dY**J, a; = J,(2;)* by Lemma 4.10 (i). Also, &3 ® t3? (¢ = 2") represents
B,jq-3; and the above equalities hold for o, ® 139, x @ t3%, y ® t2? and o} ® 1, ®
24 instead of @5, x, y and of, which show the second equality by Lemma 4.10
(i). Thus, Example 8.3 (iii) implies (iii). q.e.d.
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