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In this paper we are concerned with radial entire solutions of the linear
elliptic differential equation

(1A) Δu + λp(\x\)u = 0 , xeRN ,

where A is the ΛΓ-dimensional Laplacian, |x| denotes the Euclidean length of
x e RN, and λ is a positive parameter. We always assume that N ^ 3 and p
satisfies

(2) p e C[0, oo), p(t) ^ 0 on [0, oo), and p(t) φ 0 on [T, oo) for every T^ 0 .

The theorem below requires the further conditions

(3) I tp(t) dt<oo

and

(4)

f °° tp(t) dt
Jo

Γ°°
tN~1p(t) dt

Jo

The primary motivation for this paper comes from the observation that
very little is known about the asymptotic property of radial entire solutions
even for simple linear equations of the form (1A), whereas there are many results
concerning the existence and asymptotic property of positive entire solutions of
the nonlinear equation

(5) 4u + X(x)|u|y-1iί = 0, xεRN, γ*l.

For some recent literature on equation (5) the reader is referred to the papers
[1-3, 5-8] and the references cited therein.

Now let us consider the linear equation (1Λ). Assume that (3) is satisfied,
and put

(6) P = tp(t) dt.-ΓJo
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In [5, Remark 2.2], Kawano has shown that if the parameter λ > 0 is small
enough so that λP < N — 2, then equation (1A) has a radial entire solution u(t\
t = |x|, such that u(t) > 0 for t ^ 0 and lim u(t) as t -> oo exists and is positive.
It is natural to consider the case of λP ^ N — 2. However, as far as the author
is aware, there is no result with respect to this case. The objective of this
paper is to determine what happens to the numbers of zeros and the asymptotic
behavior as |x| -» +00 of radial entire solutions of (1A) as the parameter λ grows
to +00.

The next theorem can be shown.

THEOREM (I) Let (3) be satisfied. There exist λ0 and λ1 with 0 < λ0 ^
λ1 < +00 such that

(i) if /le(0, AO), then every nontrivial radial entire solution u(t) of (lλ) has
no zero in [0, oo) and has the asymptotic behavior that

(7) lim,^QO u(t) exists and is a non-zero finite value

(ii) if λe [Λ0, Λ.J], then every nontrivial radial entire solution u(t) of (lλ)
has no zero in [0, oo) and has the asymptotic behavior that

(8) lim^oo tN~2u(t) exists and is a non-zero finite value

(iii) if λe(λί9 +00), then every nontrivial radial entire, solution of (1Λ) has
at least one zero in [0, oo).

(II) Let (4) be satisfied. Then, in addition to λ^ in (I), there exist λk

(k — 2, 3,...) with 0 < λ1 < λ2 < ''' < λk < λk+ί < -" and lim^^λk — +00 such
that if λe (λk, λk+1] (k = 1, 2,...), then every nontrivial radial entire solution u(t)
o f ( \ λ ) has exactly k zeros in [0, oo).

A nontrivial radial entire function u(t\ where t = |x|, is a solution of (lλ) if
and only if u(t) is a solution of the equation

N — 1
(9A) u" + w ' + Λp(ί)H = 0 , ί > 0 ,

satisfying w(0) = c and w'(0) = 0 for some real number c φ 0. Then, since
u(t) = u(t)/u(0) is also a solution of (9λ) satisfying #(()) = 1, ίί'(O) = 0, there is no
loss of generality in assuming that u satisfies

(10) w(0) = 1 , ιι'(0) = 0 .

We denote by uλ(t) the solution of the initial value problem (9λ)-(10). It can
be easily verified that, for every λ > 0, uλ(t) is uniquely defined on [0, oo) and
satisfies
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(11) uλ(t) = 1 - -A- f Γl - (-}" Ί sp(s)uλ(s) ds, t ̂  0 .
^ ~" 2 Jo L W J

In discussing the properties of uλ(t\ the results for solutions of equations of
the type

N - 1
(12) v" + —γ-V + q(t)v = 0 , ί ̂  ί0 ,

will be effectively used.

LEMMA 1. Let t0 > 0. Suppose that q e C[ί0, oo) and

(13) \t\q(t)\dt«x>.

Then equation (12) has a fundamental system of solutions {v^(t\ v2(t)} such that

lim,^ υι(t) = 1 and lim,^ tN~2v2(t) = 1 .

PROOF. Set w(ί) = tv([t/(N - 2)]1/(jv~2)). We find that w(ί) is a solution of
the equation

(14) w" + ρ(ί)w = 0, t*tl9

where Q(t) = t~4[t/(N - 2)]2(N-1)/(JV~2)^([i/(N - 2)]1/(N~2)), t,=(N- 2)tg~2 and
that condition (13) is rewritten as

(15) ί |β(ί) |Λ<oo.
Jίi

It is well known that if Q E C[ίl5 oo) satisfies (15), then (14) has a fundamental

system of solutions (w^ί), w2(ί)} such that

lim^ -J— = 1 and lim^^ w2(ί) = 1

(see, for example, Hartman [4, Corollary 9.1, p. 380]). Then ^(ί) =
(N-2Γ1ΓN+2w1((N-2)tN-2) and v2(t) = ΓN+2w2((N - 2)tN~2) give the de-
sired linearly independent solutions of (12). The proof is complete.

Lemma 1 implies in particular that, under condition (13), each nontrivial
solution v(t) of (12) has a finite number of zeros in [ί0, oo) and satisfies one of
the next two asymptotic conditions:

lim^^ v(t) exists and is a non-zero finite value ,



434 Manabu NAITO

or

lim^oo tN~2v(t) exists and is a non-zero finite value .

LEMMA 2. Let t0 > 0. Suppose that q e C[ί0, oo) and q(t) ̂  0 for t ^ ί0.

// there is a solution v(t) of (12) having no zero in [ί0, oo), then

t"-2 - tξ-2) \'(16) (ί*-2 - ίΓ2) s-"+3g(s) ds^N-2, r £ t0 .

PROOF. We may suppose that t>(t) > 0 for t ^ t0. An easy calculation
shows that v satisfies

(17) (ΓN+3(tN-2v(t))')' + tq(t)v(t) = 0 , t £ to ,

and that

(18) (f"-2»(t))'£0, ί £ t 0 .

Then, integrating (17) once, we find that

Γ°°
(19) ΓN+3(tN-2v(t))' ^ sq(s)υ(s) ds , ί ̂  ί0 .

From (19) together with (18) it follows that, for t ̂  ί0,

dst"-2v(t) Z tΓ2v(to) + f ' s"~3

Jίo

^ J^2^N'2 ~ fo ~2)

dσ ,

yielding (16). The proof of Lemma 2 is complete.

We now return to studying the properties of uλ(t\ the solution of the
problem (9A)-(10). By Lemma 1 we can conclude that, if (3) is satisfied, then,
for each λ > 0, uλ(t) has a finite number of zeros in [0, oo) and satisfies either

(20) lim^oo uλ(t) exists and is a non-zero finite value ,

or

(21) Hindoo tN~2uλ(t) exists and is a non-zero finite value .
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LEMMA 3. Let 0 < μ < λ. If uλ(t) > 0 on [0, tλ\ where 0 < tλ ^ oo, then
uμ(t)^uλ(t)(>0)onW,tλ).

PROOF. First we claim that uμ(i) > 0 on [0, tλ). Assume to the contrary

that uμ(t) has a zero in [0, tλ\ Then there is a tμ e (0, ίλ) such that uμ(tμ) = 0
and uμ(t) > 0 on [0, tμ). Clearly, uμ(tμ) < 0. Define the function W(t) by

(22) W(t) = t"-1 [u'μ(t}uλ(t) - uμ(t)u'λ(t)-] , t ^ 0 .

The derivative of W is given by

W'(t) = (λ- μ)t»-ip(t)uμ(t)uλ(t), t ̂  0 .

By the assumptions, W'(t) ^ 0 on [0, tμ~\\ that is, W(t) is nondecreasing on
[0, ίμ]. However, W(Q) = 0 and W(tμ) = t^u'μ(tμ)uλ(tμ) < 0, contradicting the
nondecreasing property of W. Thus uμ(t) > 0 on [0, tλ).

Reconsider the function W(t) defined by (22). We have W'(t) ^ 0 on [0, tλ)
and (̂0) = 0, and so W(t) ̂  0 on [0, ίλ). Then,

uμ(t)\ = W(t)

."*(*)/ tN~lluλ(t

and consequently

This proves Lemma 3.

As a corollary of Lemma 3 we have the following lemma.

LEMMA 4. Let 0 < μ < λ. (I) // uλ(t) > 0 for t ^ 0, then uμ(t) ^ uλ(t) for

t ^ 0; in particular uμ(t) > 0 for t ^ 0.
(II) // uμ(t) has a zero in [0, oo), then uλ(t) has a zero in [0, oo). Let t\

and tμ be the first zeros of uλ(t) and uμ(t\ respectively. Then t\ ^ tμ.

LEMMA 5. Suppose that (3) holds. Then, for each λ > 0,

(23) \uλ(t)\ :

where P is given by (6).

PROOF. Use of (11) gives

^ 1 + * „ I sp(s)\uλ(s)\ ds , ί ^ O ,
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and hence by GronwalΓs inequality we have

/ χ Γt \
\uλ(t)\ g exp ί jj—^ sp(s) ds\, t ^ 0 .

Then the assertion (23) is clear.

LEMMA 6. Suppose that (3) holds. Then, for λ > 0 and μ > 0,

(24) \uλ(t) - uμ(t)\ ^\λ-μ\ -^-^ exp \-±±p\ > t ^ ° >

where P is defined by (6).

PROOF. In view of (11) and (23) we can estimate as follows:

\λ — μ\ Γ μ Γ
\Uλ(t) - W μ W I ^ -T; 7 sp(s)|wA(s)| ds + — sp(s)\uλ(s) - uμ(s)\ ds

M ~~ * Jo w ~ * Jo

- TΓΓT P exp ( ΛΓ ? ) + ^_ ? sp(s) |uλ(s) - uμ(s)| ds
7V z yv zy 7V z J0

for t ^ 0. An application of GronwalΓs inequality gives (24).

LEMMA 7. Suppose that (3) holds. There is λ' > 0 SMC/I ί/iαί i/ λ e (0, A'],

ί/ien uλ(t) > 0 /or ί ̂  0 and uλ(t) satisfies (20).

This lemma is a consequence of Kawano's result [5, Remark 2.2].

PROOF OF THEOREM. (I) Define the subsets ΛG and A\ of R+ = (0, +00)

by

ΛQ = {λ 6 R+ : uλ(t) > 0 for t ^ 0} , and

A\ = {λ G R+ : uλ(t) has at least one zero in [0, oo)} .

It is clear that R+ = Λ 0 uylJ" , Λ0nΛ^ = φ. By Lemma 7, Λ0 is non-empty.

It can be shown that Λ\ is also non-empty. To see this, assume the contrary.

Then R+ = Λ0, i.e., uλ(t) > 0 on [0, oo) for every λ > 0. Applying Lemma 2 to
the case of q(t) = λp(t\ we find that

tN~2-t»-2) Γ(25) λ(tN~2 - t»-2) s-N+3p(s) ds^N-2, t ̂  ί0,

for all λ > 0, where ί0 > 0 is an arbitrarily fixed number. In (25), fix t and

let Λ-> +00. Then we are led to a contradiction. Thus A\ is non-empty.

Besides, Λ\ is an open subset of R+ because of the continuous dependence of



Radial entire solutions 437

uλ(t) on λ. From (I) of Lemma 4 we see that if 0 < μ < λ and λeΛQ9 then
μ E Λ0. Therefore we can conclude that Λ0 and A\ are of the forms

Λ = ((Uι] and Λϊ=(λl9 +00)

for some λ1 > 0.
Consider the subsets ΛQ and Λg of R+ defined by

ΛQ = {λ e R+ : uλ(t) is positive on [0, oo) and satisfies (20)} , and

ΛPQ = {λ e R+ : uλ(t) is positive on [0, oo) and satisfies (21)} .

We have Λ0 = Λn

0 u Λg and An

0 n Λg = .̂ Lemma 7 means that Λ0 is non-
empty. By (I) of Lemma 4 we see that if 0 < μ < λ and λ e ΛQ, then μ e ΛQ.

It follows from Lemma 6 that Λn

0 is an open subset of R+. Therefore ΛQ is of
the form Λ0 = (0, λ0) for some Λ0, 0<λ0^λί. Then Λg = [A0, ΛJ. The set
Λg may consist of a single point. The proof of part (I) is complete.

(II) We have shown in (I) that, for every λ>λί9 uλ(t) has a zero in
[0, oo ). Let t\ be the first zero of uλ(t). By (II) of Lemma 4, t\ is non-
increasing for λ > λι. Since uλί(t) has no zero in [0, oo), the continuous de-
pendence of uλ on the parameter λ implies that t\ -> +00 as λ -> λ1 + 0. Define
the subsets Λ± and Λ\ of R+ = (0, H-oo) by

Λ! = {A 6 /?+ : wλ(ί) has exactly one zero in [0, oo)}, and

A 2 = {λ E R+ : uλ(t) has at least two zeros in [0, oo)}.

Obviously, Λ\ = Aγ u Λ j , Λl r\Λ\ = φ, where Λ\ = (λl9 +00) consists of all
λ > 0 such that uλ(t) has at least one zero in [0, oo). It will be shown that Λ1

is non-empty. In fact, if this is not true, then, for every λ > λί9 uλ(t) has at
least two zeros in [0, oo). Let t\ be the second zero of uλ(t). It is clear that
0 < t \ < t\ for λ > λl9 and so lim t\ = +00 as λ -> λl + 0. Since t\ is the
second zero of uλ(t\ we have u'λ(t2

λ) > 0 (λ > λ^). Noticing that u'λ(t) is given by

(26) u'λ(t) = —77—r SN ίp(s)uλ(s) ds , t ^ 0 ,
* Jo

we see that

f'ί
(27) sN~1p(s)uλ(s) ds<Q for A > A t .

Jo

To take the limit as λ -»λ^ + 0 in (27), first note that wλ(ί) ->• uλι(t) as λ- +λ^+Q
at each point t e [0, oo). Lemma 5 and condition (4) show that, for λ e
( Λ ^ Λ i + l], tN~1p(t)uλ(t) is uniformly bounded on [0, oo) by an L^O, oo)-

function. Then, by the dominated convergence theorem, it is seen that
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Γ s^pWu^s) ds = lim^Λι+0 Γ1 s^-'pίφΛs) ds^O.
Jo Jo

However this is a contradiction since uλι(t) is positive throughout [0, oo). Thus
we conclude that Λ1 is non-empty.

Assume next that A2 is empty. Then uλ(i) has exactly one zero in [0, oo)
for each λ> λ^. (The zero of uλ(t) is denoted by t\.) The nonincreasing
property of t\ means that, for all λ ^ λ1 + 1, uλ(t) < 0 on [ί!1 + ι + 1, oo). An
application of Lemma 2 to the case of q(t) = λp(t) and ί0 = t\l + 1 + 1 shows that

λίt"-2 - (ίϊl + 1 + I)"'2] Γ s-N+*p(s)ds ^ N - 2 , t ̂  ίI1 + 1 + 1,

which leads to a contradiction in the limit λ -> +00. Thus A2 is non-empty.
According to (II) of Lemma 4 and the well-known Sturm-type theorem

(see, e.g., Swanson [9, Theorem 1.6]) we see that, if λί < μ < λ and λe Aί9 then
μeΛi. Furthermore it is clear that A2 is an open subset of /?+. By these
facts, it is seen that At and A2 are of the forms

Λ1=(λl,λ2] and Λϊ=(λ2, +00)

for some λ2 (>^ι)
We proceed with the same arguments. For every λ > λ2, uλ(t) has at least

two zeros in [0, oo). Denote the second zero of uλ(t) by t\. It can be shown
that t \ -> H-oo as λ -> λ2 + 0. Define the sets A2 and A^ by

A2 = {λ e R+ : uλ(t) has exactly two zeros in [0, oo)} ,

A\ = {λ E R+ : uλ(t) has at least three zeros in [0, oo)}.

Clearly, A2 = A2^A^, A2r^A^ = φ, and as in the above, A\ is a non-empty
open subset of R+. We can show that A2 is non-empty. To show this,
assume the contrary. Then, for λ > λ2, uλ(t) has at least three zeros in [0, oo).
Arguing as in the above, we see that

(28) Γ sN-1p(s)uλ2(s) ds = lim^+o Γ s^pWuάs) ds ̂  0 ,
Jo Jo

where t\ is the third zero of uλ(t). If uλ2(t) has a non-zero finite limit as
t -> +00, then it follows from Lemma 6 that there exists δ > 0 and T > 0 such
that uλ(t) has no zero in [T, oo) for λe(λ2,λ2 + δ]. But this contradicts the
fact that uλ(t) = 0 at t = t\ and lim t\ = +00 as λ -> λ2 + 0. Hence the limit
lim tN~2uλ2(t) as ί -̂  +00 exists and is negative. Since lim uλ2(t) = 0 as t -> +00,
uλ2(t\2) = 0 and uλ2(t) < 0 on (ίJ2, oo), it is possible to take a number ί* e
(ί] , oo) such that u'λ (ί*) = 0. Then equality (26) with λ = λ2 implies
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(29) Γ sN-1p(s)uλ2(s)ds=().
Jo

From (28) and (29) it follows that

V(sK2(
s) ds έ 0 ,fJί*

which is a contradiction because uλ2(t) < 0 for t ^ ί*. Thus Λ2 is non-empty.
From (II) of Lemma 4 and the above-mentioned Sturm-type theorem we see
that, if A 2 < μ < λ and /I e Λ2, then μ 6 Λ2. Therefore, Λ2 and Λ j are of the
forms

Λ2 = (λ2, Λ3] and Λ\ = (Λ3, -foo)

for some A3(> λ2).
To complete the proof of part (II), continue the same arguments.
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