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1. Introduction and preliminaries

Consider the neutral differential equation

(1) - [y(ί) + py(t - τ)] + qy(t - σ) = 0

where p, τ, q and σ are real numbers. The main results in this paper are the
following:

THEOREM 1. The following statements are equivalent:
(a) Every bounded solution of Eq. (1) oscillates.
(b) The characteristic equation associated with Eq. (1)

(2) F(λ) = λ + λpe~λτ + qe~λσ = 0

has no roots in ( — oo, 0].

THEOREM 2. The following statements are equivalent:
(a) Every unbounded solution of Eq. (1) oscillates.
(b) The characteristic equation (2) associated with Eq. (1) has no roots in

(0, oo) and 0 is not a double root of Eq. (2).

An immediate corollary of the above theorems is the following result which
was proved in [3].

COROLLARY Every solution ofEq. (1) oscillates if and only if its characteris-
tic equation (2) has no real roots.

As is customary a solution of Eq. (1) is called oscillatory if it has arbitrarily
large zeros. Otherwise it is called nonoscillatory.

In the sequel all functional inequalities that we write are assumed to hold
eventually, that is for sufficiently large t.
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We now list some preliminary results which will be useful in our study of

Eq. (1).
The first result we will make use of is extracted from [5].

LEMMA 1. Let r and μ be positive constants. Assume that x(t) is a positive

solution of the inequality

x(t) + rx(t - μ) < 0

and y(t) is a positive solution of the inequality

y(t) - ry(t + μ) > 0 .

Then

and

For a proof of the next lemma see [4].

LEMMA 2. Let y(t) be a solution of Eq. (1) for t > ί0 and let α and β be any

constants. Then

Γt-β
x(t)= y(s)ds

Jί-α

is also a solution for t > t0 + max {α, β}.

The next result deals with the characteristic equation (2).

LEMMA 3. Assume the characteristic equation (2) has no roots in (—oo, 0].

Then there exists m > 0 such that for all λ > 0

λ + λpeλτ - qeλσ < -m if q > 0

while

— λ — λpeλτ + qeλσ<—m if q<Q.

Also, if (2) has no roots in (0, oo), there exists m > 0 such that for all λ > 0

— λ - λpe~λτ - qe~λσ < -m if q>0
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while

λ + λpe~λτ + qe~λσ < -m if q < 0 .

The next lemma, which follows from [1], shows that if Eq. (1) has a
nonoscillatory solution then it also has a nonoscillatory solution with "nice"
properties which are useful in the study of Eq. (1).

LEMMA 4. Assume q φ 0 ana let y(t) be an eventually positive solution of
Eq. (1). Define z(t) = y(t) + py(t — τ) and w(ί) = z(ί) + pz(t — τ). Then

w(ί) > 0, w(ί) < 0, w(ί) > 0 and lim,^ w(ί) = 0

if y(t) is bounded, while

w(ί) > 0, w(ί) > 0, w(ί) > 0 and lim^^ w(ί) = oo

if y(t) is unbounded. Moreover z(t) is a differentiate solution of Eq. (1) and w(ί)
is a twice differentiate solution of Eq. (1).

For the following see Grammatikopoulos, Sficas and Stavroulakis [2].

LEMMA 5. Let v(t) be a positive and continuously differentiate function.
Assume that there exists positive numbers A and α such that either

(3) υ(t - α) < Av(t)

or

(4) υ(t + α) < Av(t).

Set
A = μ > 0: ϋ(t) + λv(t) < 0} if (3) holds

and

Λ = {λ>0: -v(t) + λv(t) < 0} if (4) holds .

Then (A > 1) and

1 lnA<tΛλ0 = φ A .
α

PROOF. We will prove the lemma when (3) holds. The case when (4)
holds is similar and will be omitted. Assume that (3) holds and, for the sake of

contradiction, assume that λ0 e A. Then

|>Λ<Mί)] = e*[v(t) + (ί)] < 0
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which implies that the function eλotv(t) is decreasing. Hence

or

v(t - α) > eλ°Λv(t) = elnAv(t) = Av(t)

which contradicts (3) and completes the proof of the lemma.

The following "Duality Lemma" from [1] will enable us to reduce the

required number of cases we have to consider in our proofs of the theorems.

(DUALITY) LEMMA. Suppose that p is a nonzero real number. Then y(i) is a

solution of Eq. (I) if and only if y(t) is a solution of

l-y(t - (-τ)ly(t) + -y(t - (-τ) + jy(t - (σ - τ)) = 0 .

2. Proof of Theorem 1

PROOF, (a) => (b). If it is false the characteristic equation (2) would have a

root λ0 e (—00, 0] and therefore Eq. (1) would have the nonoscillatory bounded

solution

y(t) = e

λot .

But this contradicts the hypothesis that every bounded solution of Eq. (1)

oscillates.

(b)=>(a). Assume, for the sake of contradiction, that Eq. (1) has a

bounded eventually positive solution y(t). First assume p = 0. Then (1) and

(2) reduce to

(5) y(t) + qy(t - σ) = 0

and

(6) λ + qe~λσ = 0 .

As (6) has no real roots in (-00, 0] it follows that q φ 0 and when q > 0 then

σ / 0. Hence we have the following cases to consider:

( i ) q > 0 and σ > 0

(ii) q > 0 and σ < 0

(iii) q < 0.

Case (i): q > 0 and σ > 0. Define

A = μ > 0: y(t) + λy(t) < 0} .
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Clearly 0 6 A and so A is a nonempty interval. We will show that A has the
following contradictory properties.

(Pi) There exist positive numbers λί and λ2 such that λ{ e A and λ2 φ A.
(P2) λe Λ=>λ + me Λ where m is as defined in Lemma 3.
Observe that y(t) + qy(t) < 0 which implies that λ± = q e A. Applying

Lemmas 1 and 5 to (5) we obtain

i n 4

λ -A2 —
G

Let λ e Λ and set φ(t) = eλty(t). Then φ(t) = eλt\_y(t) + λy(t)'] < 0 which
implies φ(t) is nonincreasing. Now

y(t) + (λ + m)y(t) = -qy(t - σ) + (λ + m)y(t)

= -qe-λ(t-ff)φ(t - σ) + (λ + m)e~λtφ(t)

< e~λtφ(t)l-qeλσ + λ + m] < έΓλίφ(0[-™ + m] = 0 ,

which shows λ + m e Λ.
C0sέ? (ii): g > 0 and σ < 0. We have F(0) = q > 0 and F(-oo) = -oo

which implies that the characteristic equation has a root in (—00, 0]. This is a
contradiction.

Case (iii): <? < 0. Here

y(t)= -qy(t-σ)>θ

which implies lim^^ y(t) = ( e (0, oo). But then lim^^ y(t) = —q/>0 which
implies that / = oo. This is a contradiction and the proof is complete when

p = 0.
Next, observe that if τ = 0 and p Φ — 1, Eq. (1) reduces to

(7) 3>(0 + T%-y(t - σ) = 0
1 +p

for which the result has just been established. On the other hand, when τ = 0
and p = — 1 Eqs. (1) and (2) reduce to

(8) qy(t - σ) = 0

and

(9) qe~λσ = 0

respectively. As (9) has no roots in (— oo,0], it follows that q Φ 0 and so (8)
implies that y(t) = 0 which is a contradiction.
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Because of the Duality Lemma we may and do assume that τ > 0.
For subsequent use, define z(ί) = y(t) + py(t — τ) and w(ί) = z(ί) + pz(t — τ).

Then, it follows from Lemma 4 that

w(ί) > 0, vv(ί) < 0, w(ί) > 0 and w(f) = 0 .

REMARK 1. By integrating Eq. (1) from t — α to oo with y(t) replaced by

w(ί) one sees that

x(t) = vv(s) ds
Jt—a

is a solution of Eq. (1).
The remaining part of the proof will be accomplished by considering the

following eight cases:

1.

2.
3.
4.
5.
6.
7.
8.

Case 1: p > 0, q > 0, τ > 0 and σ > 0. Since F(—oo) = +00 it follows
that σ > τ. Set

(10)
wn-ι(t) + pwn-!(t - τ), n = 1, 2, ....

It follows from Lemma 4 or from the fact that Eq. (1) is linear and autonomous
that wπ(ί) is a twice differentiable solution of Eq. (1). Then for n = 1, 2, .... we

have

(11)

(12)

and

(13)

wπ(ί)>0, wn(ί)<0, wπ(ί)>0

ww(ί) + pwπ(ί - τ) + qwn(t - σ) = 0 .

The proof of (11), (12) and (13) is by induction.

Set
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Λn = {λ > 0: w.(f) + Awπ(ί) < 0} .

The proof will be accomplished by showing that Λn has the contradictory

properties:

(PJ There exist positive numbers λi and λ2 such that λl e Λn and λ2 Φ Λn

for n = 1, 2, ....
(P2) There exists a positive μ, independent of w, such that λeΛn with

λ> A! => λ + μ e ΛM+1 for n = 1, 2, ....
First we will prove (Pi). From (12) and (13) we have

(1 + p)wΛ(ί - τ) + 4wπ(ί - σ) < 0 .

It follow that

(14) H;M
r vwW ' j , ψvn\tf \^ *//

or

wB(0 + Γ^%(ί)<o.

Hence

Applying Lemma 1 to (14) we obtain

From Lemma 5 we have

Let λ e An and set μ = m/(l + pe*2t) and (pΛ(ί) = eλ'wn(t). Then

φn(ί) = e^[vvπ(ί) + Awπ(t)] < 0

which shows φn is a nonincreasing function. Now

wB+1(t) + (A + //)wn+1(t) = -qwn(t -σ) + (λ + μ)K(t) + pwn(t - τ)]

e~λ' + pφn(t - τJβ-X'-

< φπ(ί - τ)e~λ'l-qeλσ + λ + λpeλτ + μ

<φa(t - τ)e~λ'[_-m + nί] = 0 .
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The proof is complete in this case.
Cases 2 and S: p > 0, q > 0, τ > 0, σ < 0 or p < 0, q < 0, τ > 0, σ < 0.

In these cases F(0) F(-oo) < 0 which implies that the characteristic equation
has a root in (—00, 0].

Cases 3 and 4: p > 0, q < 0, τ > 0, σ > 0 or p > 0, q < 0, τ > 0, σ < 0.
Here

Integrating the above from ί0 and t and taking the limit as ί -» oo implies that
y(f) e Ll[tQ, oo) and so z(ί) e L1^, oo). As z(t) is also a monotonic function it
follows that lim^oo z(ί) = 0 which is impossible because z(ί) > 0 and increasing.

Case 5: p < 0, q > 0, τ > 0 and σ > 0. Set

-ΛO + pw^ίί - τ) , n = 1, 2, ....

Then for n = 1, 2, ... we have

%(ί)= -qwn-^t-σ)'
(16)

wπ(ί)>0, vvπ(ί)<0, w(ί)>0

and

(17) wB(ί) + pvvπ(ί - τ) + φvΛί - σ) = 0 .

Set
Λn = μ > 0: vvπ(ί) + Awπ(ί) < 0} , n = 1, 2, ....

As in Case 1, the proof will be accomplished by showing that Λn has the
contradictory properties (PJ and (P2).

From (17) we have

(18) wπ(ί) + φvn(ί - σ) < 0 .

Hence

A i = « 6 n ? - i 4 , .
Applying Lemma 1 to (18) yields

It now follows from Lemma 5 that
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Let λ 6 Λn and set φn(t) = eλtwn(t) and μ = m. Then

417

- σ) + (λ pwn(t - τ)]

+ (λ + μ)|>-λ>w(ί) + pe-W-lφώ - τ)]

The proof is complete in this case.

Case 6: p < 0, q > 0, τ > 0 and σ < 0. The dual of Case 6 is

p < 0 , g < 0 , τ<0 and σ < 0 with σ < τ

which we will now consider. As in [3], set

'w(ί), n =

(19) wB(ί)= f ί_σ

l l-1(t-τ)]-g w^
Jf-τ

and define ylπ as in Case 5. Then for n = 1, 2, ... we have

(20) vvw(ί) + pwn(t - τ) + qwn(t - σ) = 0 ,

(21) wH(ί) = ίw l l_1(ί-τ)

and

(22) wπ(ί)>0, wn(ί)<0 and w.(ί) > 0 .

From (20) and (22) we obtain

(23) -tf^-ptfΛί-τ^O.

Applying (21) to (23) yields

(24) -flw^ίt - τ) - pwπ(ί - τ) < 0 .

Integrating the above from t + τ to ί yields

-qwn-ι(t ~ τ)(-τ) - pwπ(ί - τ) + pwπ(ί) < 0

from which it follows that

(25) Λ
τ
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Combining (25) with (21) gives

which implies

T

From (19) we have

(26) wn(t)^(-p-q(τ-φ

Applying (26) to (21) yields

which implies

Let λ>λ1 and set φn(t) = eλtwn(t) and

Now

= 0wB(ί - τ) + (λ ) - wπ(ί) - pwπ(ί - τ) - q\ wπ(s) &

< e~λtφn(t - τ) qeλτ -λ- λpeλτ + ^λσ - ^λτ -μ- μpeλτ + γ(^λσ - eλτ)

< e-λtφn(t - τ)Γ-A - λpeλτ + σ 4- / -

< e"ΛVn(ί - τ)[-m + m] = 0 .

The proof is complete in this case.
Case 1: p < 0, q < 0, τ > 0 and σ > 0. Here F(0) = q < 0 and so in

order that F(— oo) = — oo we must have σ > τ.
Let V be the set of all C2 solutions of Eq. (1) which satisfy

t (ί) > 0 , ύ(t) < 0 , ϋ(t) > 0 and lim^^ v(t) = 0 .
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Set

Λ(Ό) = {λ > 0: ύ(t) + λυ(i) < 0} .

First we establish that for every v e V the set Λ(υ) is nonempty and bounded

from above. To this end observe that for v e V

(27)

Now (27) implies

from which it follows

(28)

From (28) we have

Hence

ύ(t) + pv(t - τ) + qv(t - σ) = 0 .

pv(t - τ) + qv(t - σ) > 0 ,

Λ
p

q-ι
P

Applying Lemma 1 to (28) yields

v(t - (σ - τ)) < Bv(t)

where B = 4p2/\_(σ — τ)2g2]. It now follows from Lemma 5 that

Next let λ0 = q/p and set μ = m/(eλ*a — peλ*τ — 1). We will prove by

induction that if

Ίπ = Λ -i

and if

(29) w.(ί)=<

w(t),

- τ)] + !
Γ00

_! w.-iί
Jt-σ

ds , n = 1, 2, . . .
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then wn e V and λn e Λ(wn). As Λ(wn) is bounded from above, this will be a

contradiction and will complete the proof in this case.

Clearly wπ E V for n = 1, 2, — Next, assume that λneΛ(wn). We will

show that λn+ί E Λ(wn+l). We first derive an inequality which we will utilize to

prove the above.

Since λn E Λ(wn)

(30) vvw(f) + λnwn(t) < 0 .

Integrating (30) from t to oo yields

-w.W + 4, wn(s)ds<Q.

Using the above inequality in (29) gives

(31) wB+1(ί) < -pwB(ί - τ) + λn\ wn(5) ds .

Now let φπ(t) = eλ"'wn(t) and observe, using (31), that

*.+ι(t) + (A, + μ)wΛ+1(ί)

) -pwa(t - τ) + λ, \ w.(s) rfs< qwn(t - σ) - λnwn(t -σ) + (λn + μ) -pwa(t - τ) + λ,

= qβ-^- ^ίt - σ) - λae-λ»«-*φn(t - σ) + (A, + μ)(-pίΓΛ «-<Vπ(ί - τ))

+ λa(λn + μ) f ' e-Λ">n(s) ds
Jί — <Γ

< φw(ί - σ)e-^lqe*" - λne
λ»σ - λ.pe^ - λn + ^βλ«σ + μ(*λ*σ - ^A*τ - 1)]

< φπ(ί - σ)e~λntl-m + m] = 0 .

The proof is complete.

3. Proof of Theorem 2

PROOF, (a) => (b). Clearly, if there is a root in (0, oo) then an unbounded

nonoscillatory solution exists. Also, λ = 0 cannot be a double root, for if 0

were a double root then q — 0 and p = — 1 which would reduce Eq. (1) to

which has the unbounded nonoscillatory solution y(i) = t.
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(b)=>(a). Assume, for the sake of contradiction, that Eq. (1) has an un-
bounded eventually positive solution y(t).

First assume p = 0. Then clearly q must be negative, for otherwise y(t)
would be bounded. Also σ Φ 0, for otherwise the characteristic equation would
have a positive root. Hence, there remain the following cases to consider.

(i) q < 0 and σ > 0
(ii) q < 0 and σ < 0.
Case (i): q < 0 and σ > 0. We have F(0) F(oo) < 0 which implies that

the characteristic equation has a positive root.
Case (ii): q < 0 and σ < 0. Set

Λ = μ>0: -y(t) + λy(t)<0}.

As in Theorem 1, we will show that A has the contradictory properties (PJ and

(P2)
From (5) we have — y(t) + ( — q)y(t) < 0 which yields λί = — q e A. From

Lemmas 1 and 5 it follows that

Let λ e A and set φ(t) = e~λty(t). Observe that

φ(t)= -e-
λ<l-y(t) + λy(tn>0

which shows that φ(t) is increasing.
Now

-y(t) + (λ + m)y(ί) = qy(t - σ) + (λ + m)y(t)

= qφ(t - σ)eλ(t~σ} + (λ + m)eλtφ(t)

< φ(t)eλt[_qe-λσ + λ + m]

?Λί[-m + m] =0

which completes the proof when p = 0.
The case when τ = 0 and p Φ — 1 follows in a manner analogous to the

case when p = 0. On the other hand the case τ = 0 and p = — 1 is trivial. So
we will assume pτ Φ 0.

When q = 0, Eq. (1) reduces to

which implies y(t) + py(ί — τ) = c. Clearly, y(t) cannot be positive and un-
bounded if p > 0. Also, (2) reduces to
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F(λ) = λ(\ + pe'λτ) = 0

and it follows that p > — 1 when τ > 0, for otherwise (2) has a positive root or
0 is a double root of (2). Furthermore, because of the Duality Lemma, we
need only consider — 1 < p < 0 and τ > 0 to complete the proof when q = 0.
To this end, let {tn} be a sequence of points such that lim,,.̂  tn = oo, y(tn) =
maxs<tny(s) and \\mn^^y(tn) = oo. Observe that

c = y(tn) + py(tn - τ) > (1 + p)y(tn) -> oo as n -> oo

which is impossible.
Finally, by utilizing the Duality Lemma, one can see that the following

cases remain to complete the proof of the theorem.

1.

2.
3.
4.
5.
6.
7.

In the sequel z(t) and w(ί) denote the functions defined in Lemma 4.

Cases I and 2: p > 0, q > 0, τ > 0, σ > 0 or p > 0, q > 0, τ > 0, σ < 0.
Here

*(*)= -qy(t-σ)<0.

Hence \ιmt^^z(t) exists, which contradicts the assumption that y(t) is

unbounded.
Cases 3 and 7: p > 0, q < 0, τ > 0, σ > 0 or p < 0, q < 0, τ > 0, σ > 0.

We have ,F(0) F(oo) < 0 which implies that the characteristic equation has a
positive root.

Case 4: p > 0, q < 0, τ > 0 and σ < 0. The dual of Case 4 is

p > 0, q < 0 , τ<0 and σ < 0 (σ < τ)

which we will now consider. Set

w(ί), n = 0

,-ι(0 + PWn-ι(t - τ), n = 1, 2, ...

and
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Λ^>0:-ww(ί) + Aw w (0<0}.

It follows that for n = 1, 2, ...

vvπ(ί) + pvvM(ί - τ) + qwn(t - σ) = 0 ,

vvπ(ί)= -φv^ί-σ)

and

wπ(ί) > 0 , wπ(f) > 0 and wπ(ί) > 0 .

From the above we have

which implies

(32) ,,
1 +p

and so

(33) -vvΛO + y

Applying Lemmas 1 and 5 to (32) yields

while (33) yields

i -4

Let λ e Λn and set φn(t) — e λtwn(t) and μ = m/(l 4- pe A*T). Now

= qwn(t — σ) + (A -f μ)[wπ(ί) 4- pwπ(f — τ)]

= qφn(t — σ)eλ^~σ^ + (λ + μ)\βλtφn(t) 4- peλ^~τ)φn(t — τ)]

^ ^(^ ~~ θ")^Aί[^~λ<T + A 4- λpe~λτ + μ 4- μpe~λ2τ^\

< φn(t - σ)eλt[-m 4- m] = 0

which completes the proof in this case.

Case 5: p < 0, g > 0, τ > 0 and σ > 0. First assume that σ < τ. Set
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w(ί) = Jw(ί), n = 0

and

It follows that for n = 1, 2, ...

wM(ί) + pww(ί - τ) + qwn(t — σ) = 0 ,
(34)

and

wπ(ί) > 0, vvπ(ί) > 0 and wπ(ί) > 0 .

From (34) we have

wΛ(ί - τ) H- pwπ(ί - τ) + qwn(t - σ) < 0

and from [1] it follows that p < — 1. Combining these results gives

q

-(1+/?)W"

and

It now follows that

and

Let A e Λπ and set φπ(ί) = e~λtwn(t) and μ = m/( — p). Now

-viWι(ί) + μ + μK+1(f) = -^fwn(ί - σ) + (Λ + μ)[-ww(ί) - pwπ(ί - τ)]

< φn(t - σ)eλtl-qe~λσ - λ- λpe'λτ- μ -

< φn(t - σ)eλtl-m -f m] = 0 .

This completes the proof in Case 5 for σ < τ.
For σ > τ, set
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w(ί), n = 0

.-ι(f - τ)] + q\ wn^(
Jί-σ

ds , n = 1, 2, ...

and observe that

(36) wπ+ι(0 = qwn(t — τ) > 0 .

From (35) we obtain

Wn+l(0 < [~P + <?(σ ~~ τ)]wn(ί ~~ τ)

This together with (36) gives

which implies

Now

ww(ί) + pvvn(ί - τ) + ewB(t - σ) = 0

implies

(37) wπ(ί) 4- pwπ(f - τ) < 0 .

Combining (36) and (37) gives

(38) qwn-ι(t - τ) + pwπ(ί - τ) < 0 .

Integrating (38) from t to ί + τ we obtain

gτw^ίί — τ) + pww(ί) — pwπ(ί — τ) < 0 .

The above implies

(39) ^wπ_1(ί-τ)<

From (36) and (39) we now obtain

-*,,(*) +I ~K(ί)>0

which implies
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that

Let λ > λl and set φn(t) = e~λtwn(t) and μ = m[ — p + (q/λj]'1. Observe

vtwι(0 + 0* + μK+ιW

= -qwΛ(t - τ) + (/I + μ) - wΛ(ί) - /?ww(ί - τ) + q\ wn(s) ds

< -qφn(t - τ)eλ(t~τ) + (λ +

+ ^ ^AV,(5) ^5
Jί-σ J

< φπ(ί - τ)eλt\ -qe~λτ - λ- λpe~λτ - μ- μpe~λτ qe~λτ - qe~λσ

<φn(t-τ)eλt[-λ-λpe-λτ-

< φn(t - τ)eλt[-m + m] = 0 .

The proof is complete in this case.

Case 6: p < 0, q > 0, τ > 0 and σ < 0. Set

qe~λσ - μ- μpe~λτ + (

(40) wn(ί) =
Γ~σ

-!>„_!(f) + P\^n-ι(t - τ)] - <? w^Λs) ds , n = 1, 2, ...
Jί-τ

wΛ(ί - τ) + 4wrt(ί - σ) = 0

and define Λπ as in Case 5.
Now for n = 1, 2, ...

(41) wπ(ί)

and

(42) vvπ+1(0 = ^w n (ί-τ)>0.

Again it follows from [4] that p < —\. This together with (41) yields
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" v / -d+p)

and

We now have

and

To complete the proof in this case repeat exactly the same argument as in Case
5 when σ > τ.

Case 8: p < 0, q < 0, τ > 0 and σ < 0. The proof will follow a format
similar to that of Case 7 in Theorem 1.

Let V be the set of all C2 solutions of Eq. (1) which satisfy

v(i) > 0 , v(t) > 0 , ϋ(t) > 0 and lim^^ v(i) = oo .

Set

Λ(v) = {λ > 0: -v(t) + λv(t) < 0} .

Observe that

(43) v(t) + pύ(t - τ) + <?ϋ(ί - σ) = 0 .

From (43) we obtain

(44) ύ(t)-(-q)v(t + (-σ))>0

and so

(45) -ι)(ί) + (-<?MO<0.

From (44) and (45) we obtain

-qeA(υ)

and

-σ
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Now, let λ0 = — q and set μ = m/(l — pe~λ*σ). We will prove by induction
that if

λn = Vi + μ > w = 1, 2, ...,

and if

'w(ί), n = 0

f l

~ λn-ιP
Jί

then vvn e K and Λ,π e Λ(wπ). As Λ(wπ) is bounded from above, this will be a

contradiction and will complete the proof in this case. To this end, set φn(t) =
e~λntwn(t) and observe that

= qwn(t - σ) + λnp\y>n(t - σ) - wπ(ί - τ)]

+ (λm + μ) wπ(ί) + pwπ(ί - τ) - λnp i wπ(s) ds

[t-σ

Jί-τ

vvπ(ί)-Aπp wn(s)ds\

< qwn(t - σ) + Anpwπ(ί - σ) + AΛwπ(ί) - λ2

np WH(S) ds

< φπ(ί - σ)eλnt[-m + m] = 0 .

The proof of Theorem 2 is complete.

REMARK 2. In several instances, in the proofs of Theorems 1 and 2, we
found points

^ e f l ^ i Λ and λ2φ(J?=lΛn.

The values of λί and A2 were expressed in terms of the coefficients, delays and
advances of Eq. (1). Clearly when they are such that

this is a contradiction. Utilizing this idea we can obtain "easily verifiable"
sufficient conditions for the oscillation of all bounded and all unbounded
solutions of Eq. (1).
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NOTE. The authors wish to thank the referee for some useful suggestions.
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