Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral

Kazimierz MUSIAŁ and Grzegorz PLEBANEK

(Received July 2, 1987) (Revised August 1, 1988)

Abstract It is shown that if (Ω, Σ, μ) is a finite measure space and X is a Banach space then X^* has the μ -Pettis Integral Property if and only if

$$\|(weak^*) - \int_{\Omega} f d\mu\| = \|(Dunford) - \int_{\Omega} f d\mu\|$$

for every bounded weakly measurable function $f: \Omega \to X^*$. A negative answer to a question of E. Bator is also given.

1. Introduction

Let (Ω, Σ, μ) be a finite measure space. For a Banach space X we denote by $bwm(\mu; X)$ the space of all bounded and weakly measurable X-valued functions defined on Ω . X* denotes the dual of X. B is the unit ball of X.

It is well known that if $f \in bwm(\mu; X^*)$ then for every $E \in \Sigma$ there exists $x_E^* \in X^*$ such that, for every $x \in X$,

$$x_E^*(x) = \int_E x f d\mu$$

and, for every $E \in \Sigma$ there exists $x_E^{***} \in X^{***}$ such that, for every $x^{**} \in X^{**}$,

$$x_E^{***}(x^{**}) = \int_E x^{**} f d\mu.$$

 x_E^* is called the weak* integral of f over E, denoted by $w^* - \int_E f d\mu$, and x_E^{***} is called the Dunford integral of f over E, denoted by $D - \int_E f d\mu$. f is said to be Pettis integrable if $D - \int_E f d\mu \in X^*$ for all $E \in \Sigma$.

X is said to have the μ -Pettis Integral Property (μ -PIP) if every $f \in bwm(\mu; X)$ is Pettis integrable. More information on Pettis integral and μ -PIP can be found in [3].

E. M. Bator proved in [1] that X^* has μ -PIP for a perfect measure μ if and only if

$$\left\|w^* - \int_{\Omega} f d\mu\right\| = \left\|D - \int_{\Omega} f d\mu\right\|$$

for every $f \in bwm(\mu; X^*)$. The proof was based on Fremlin's subsequence theorem. It is the purpose of this note to give a short and elementary proof of the theorem of Bator in the case of arbitrary finite μ .

Moreover, assuming the existence of measurable cardinals we present a negative answer to a problem of Bator.

2. Characterization of μ -PIP of X*

THEOREM. If (Ω, Σ, μ) is a finite measure space and X is a Banach space, then X* has μ -PIP if and only if for every $f \in bwm(\mu; X^*)$ the equality

$$\left\|w^* - \int_{\Omega} f d\mu\right\| = \left\|D - \int_{\Omega} f d\mu\right\|$$

holds.

PROOF. Noting that only one implication needs a proof let us assume that

$$\left\|w^* - \int_{\Omega} f d\mu\right\| = \left\|D - \int_{\Omega} f d\mu\right\|$$

for all $f \in bwm(\mu; X^*)$, and take an $h \in bwm(\mu; X^*)$. By the assumption, for each $E \in \Sigma$ and each $x^* \in X^*$ we have

$$\left\|w^*-\int_E(h-x^*)d\mu\right\|=\left\|D-\int_E(h-x^*)d\mu\right\|.$$

Setting $x^* = \mu(E)^{-1} \left(w^* - \int_E h d\mu \right)$ if $\mu(E) > 0$, we get at once the required equality

$$w^* - \int_E h d\mu = D - \int_E h d\mu.$$

This completes the proof.

As a consequence we get also a generalization of Corollary 6 in [1].

COROLLARY. X^* has μ -PIP if and only if for each $f \in bwm(\mu; X^*)$ and each $x^{**} \in X^{**}$ there exists a bounded sequence $\{x_n: n = 1, \dots\}$ in X such that $||x_n|| \leq ||x^{**}||$ for each n and $x_n f \to x^{**} f$, μ -a.e.

PROOF. The proof of the "only if" part in [1] contains a gap (the pointwise convergence of $(x_{\beta} \circ f)$ does not yield, in general, the $L_1(\mu)$ -convergence). We shall present here an independent proof.

Assume that X^* has μ -PIP, and take $f \in bwm(\mu; X^*)$. Then $T_f: X \to L_1(\mu)$ given by $T_f(x) = xf$ is weakly compact and so $T_f^{**}(X^{**}) \subset L_1(\mu)$. It follows that T_f^{**} is weak*-weak continuous. Applying the Goldstine theorem, we see that $T^{**}B^{**}$ is in the weak closure of $T_f^{**}B$. But $T_f^{**}B$ is convex and so the Mazur theorem yields the norm density of $T_f^{**}B$ in $T_f^{**}B^{**}$. Now, it is only sufficient to observe that the Pettis integrability of f yields the equality $T_f^{**}(x^{**}) = x^{**}f$ for all $x^{**} \in X^{**}$.

To show the reverse implication it is sufficient to observe that the convergence yields the equality $\left\|w^* - \int_{\Omega} f d\mu\right\| = \left\|D - \int_{\Omega} f d\mu\right\|$ for all $f \in bwm(\mu; X^*)$, since the main theorem can then be applied.

3. Integration of a single function

In connection with the theorem the following problem arises: Assume that $f \in bwm(\mu; X^*)$ satisfies for each $E \in \Sigma$ the equality

(*)
$$\left\|D - \int_{E} f d\mu\right\| = \left\|w^{*} - \int_{E} f d\mu\right\|.$$

Is f Pettis integrable ?

The following example, which is a generalization of an example of Talagrand ([3], 6–2–3) shows, however, that this is not the case even if μ is perfect.

EXAMPLE. Let κ be the first real-measurable cardinal, and let μ be a universal diffused probability on $[0, \kappa]$ (i.e., defined on all subsets of $[0, \kappa]$ and vanishing on points) endowed with the order topology. Consider $f: [0, \kappa] \rightarrow C^*[0, \kappa]$ given by $f(\alpha) = \delta_{\alpha}$. Clearly f is weakly measurable and bounded. Using the fact that each continuous function on $[0, \kappa]$ is eventually constant (cf. [2], II.8.6.3), one can easily show that

$$w^* - \int_E f d\mu = \mu(E) \delta_{\kappa}$$

for all $E \subset [0, \kappa]$.

Since $||f|| \leq 1$ we have $\left\| D - \int_{E} f d\mu \right\| \leq \mu(E)$ and so (*) holds. Let us define now $z \in C^{**}[0, \kappa]$ by the equation $z(v) = v(\{\kappa\})$ for $v \in C^{*}[0, \kappa]$. It follows that for $E = [0, \kappa]$ we have

Kazimierz MUSIAŁ and Grzegorz PLEBANEK

$$\left\langle z, D - \int_{E} f d\mu \right\rangle = 0$$
 while $\left\langle z, w^{*} - \int_{E} f d\mu \right\rangle = 1.$

Thus f is not Pettis integrable.

We now take κ to be the first two-valued measurable cardinal and μ to be a two-valued universal diffused probability on $[0, \kappa]$. Then we obtain the desired example involving a perfect measure.

REMARK. The above example (with the two-valued universal μ) gives also a negative answer to the following question posed in [1]: Suppose that $f \in bwm$ $(\mu; X^*)$ and for each $x^{**} \in X^{**}$ there exists a sequence $\{x_n\}$ in X such that $x_n f \rightarrow x^{**}f$, μ -a.e. Is f Pettis integrable ?

Indeed, assume that κ is the first two-valued measurable cardinal, take f to be the non-Pettis integrable function considered in the example, and fix $x^{**} \in l_{\infty}[0, \kappa]$ (we are applying the fact that $C^{*}[0, \kappa]$ is linearly isometric to $l_{1}[0, \kappa]$ (cf. [2], V.19.7.8 or [3], 2.4.4), and so $C^{**}[0, \kappa]$ is linearly isometric to $l_{\infty}[0, \kappa]$). Since μ is two-valued $x^{**}f$ is μ -a.e. equal to a constant c. Setting $x_{n} = c$ we get a sequence of functions $x_{n} \in C[0, \kappa]$ such that $x_{n}f \rightarrow x^{**}f$, μ -a.e.

Observe yet that if κ is assumed only to be real-measurable then the function f considered in the example satisfies (*) but such a sequence $\{x_n\}$ as mentioned above cannot exist in general. This follows from the fact that a functional $x^{**} \in l_{\infty}[0, \kappa]$ which is μ -a.e. limit of a sequence of functions $x_n \in C[0, \kappa]$ has to be constant μ -a.e.

References

- E. M. Bator, Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral, Proc. Amer. Math. Soc. 95 (1985), 265-270.
- [2] Z. Semadeni, Banach Spaces of Continuous Functions I, Warszawa, 1971, Monografie Matematyczne, vol. 55.
- [3] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).

Institute of Mathematics, University of Wrocław (Wrocław 50-384, Poland)