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A. K. Bousfield [1], [2] introduced the notion of the localization of spaces

and spectra with respect to homology. In this note, we introduce the notion of

the injective hull of spaces and spectra with respect to homology. We also

prove that the class A(Hos) of Bousfield equivalence classes of spectra [2]

becomes a set i.e., has a cardinality.

1. Statement of results

#, Sf, <f, & denote the categories of CW-complexes, CW-spectra, and their

homotopy categories respectively.

DEFINITION 1. Let sf, & be categories and ϊF'.stf -*0& a functor.

i) Aeθb(jrf) is &-local (resp. &-injective) if for any B, C e O b M and

any f:B^>C with #X/):iso (resp. mono), /*:'s/(C, A) -> s/(B9 A) is an iso

(resp. epi).

ii) A map f\A-+B is an ^-localization map of A if B is #"-local and

J*(/) is an iso.

iii) A mapf.A -•β is an IF-injective enveloping map of A if/satisfies the

following two conditions:

a) B is ^-injective and J*(/) is a mono.

b) For any Ceθb(sέ) and any g:B-*C, ^(g) is monic if &(g°f) is

monic.

iv) B is an &-injective hull of A if there is an ̂ -injective enveloping map

f:A-+B of A.

Then we can prove the following:

THEOREM 1. Let h = (hH\neZ):@->&*s/ό (@e {<£,&}) be a generalized

homology functor which is representable by a spectrum where <3>L$4S- is the

category of Z-graded abelian groups. Then it follows that:

i) Any object Aeθb(β) has an h-injective enveloping map.

ii) Let f.A-^B and g:A-+C be h-injective enveloping maps of A. then

there exists a map k:B -+C such that k°f=g. Moreover, such a k is always an
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isomorphism in the category Q).

DEFINITION 2. Let E, Feθb(^). Then E and F are Bousfield equivalent
(resp. B*-equivalent) if for any Z e O b ^ ) (resp. for any / e M o r ( y ) ) the
following two conditions on X (resp./) are equivalent;

a) En(X) ^ 0 (resp. En(f) is monic) for any neZ.

b) Fn(X) ^ 0 (resp. Fn(f) is monic) for any neZ.

Then we can prove

THEOREM 2. i) The class of Bousfield equivalence classes of spectra

becomes a set. ii) The class of B*-equivalence classes of spectra becomes a set.

Let £ be a spectrum with finite stable cells i.e., (so-called) finite spectra and
R = (Rn = [E, E~\n\neZ) the graded ring of operations of the generalized
homology functor E^( — ). Then this functor E^( — ) becomes a functor from
<? or & to the category JίR of jR-modules.

Then we can prove

THEOREM 3. Let A, B be spectra. Them

i) A is £*( — )-injective iff A is E^( — )-local and E^(A) is infective over R.

ii) For any injective R-module I, there is an EJ, — )-injectίve spectruma X

with EJ(X) ^ /.

iii) If B is E^( — )-injective, then the map E^( — ) : [̂ 4, B~\^

-+ Hom R (£JΛ), £*(£)) is bijective.

Let f.A^B be a map of spectra. Then:

iv) / is an E^{ — )-injectίve enveloping map iff B is E^( — )-injective and

E^(f):Eχ(A) -+ EJβ) is an injective enveloping map over R, i.e., E^(f) is monic,

EJiβ) is injective over R, and EJJ^iEJ^A)) is an essential submodule of E^(B) (a

submodule N of M is called essential if for any submodule N' of M with NnN'

= {0}, N' vanishes i.e., Nf = {0}).

v) Any injective enveloping map i: EJ^A) -> / of R-module is realized by an

£*( — yinjective enveloping map from A.

2. Proof of Theorem 1

We shall prove Theorem 1 only for the case of C ̂ -complexes. The case

of CW-spectra can be proved similarly. Moreover we can give a slightly more

clear proof by using the additive and triangulable properties of the category

£f. It is left for the reader. #X denotes the cardinality of a set X. Let α

= Σ«ez#π«(£) where £ is a spectrum representing the generalized homology

functor h in Theorem 1. c(X) denotes the set of cells of a CW-complex X.

PROPOSITION 1. Let A be a subcomplex of a CW-complex B and ι\A-*B

the inclusion map, and suppose that h(ι) is monic. Then for any subcomplex C of
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B there is a subcomplex D of B with the properties:

i) D ZD C.

ii) h(j) is monίc where j:A(]D —• D is the inclusion map.

iii) #c(D)<max(#c(C), α).

iv) h(k) is monic where k:A\jD^>B is the inclusion map.

PROOF, a) Construction of D satisfying the properties i), ii), iii). Let C o

= C, and suppose that Cn is defined. Let aeM = {be[JmEm(AΓ\Cn)\b

vanishes in E#(Cn)} where U means disjoint union, R(a), S(a), ά be

mathematical objects satisfying that R(a) is a finite subcomplex of AnCn9

άeEJJR(ά)) is an element which coincides with a in EJ^AoC), S(a) is a finite

subcomplex of A, containing R(a), in which ά vanishes. Such mathematical

objects in fact exist since h(ι) is monic. Let Cπ + 1 = CπU((JαeM<S(α)). Then

any element beE#(CnnA) which vanishes in E^(Cn) vanishes in E^(Cn+1Γ\A)9

and # c ( C n + 1 ) < max(α, #c(Cn)). Hence D = \JnCn is the required subcomplex.

b) Construction of D satisfying all the conditions of the proposition. We

define Cn9 Dn, inductively on n as follows. Let C o = C, and assume that Cn is

defined. By the above construction, we give Dn satisfying the conditions i), ii),

iii) of the proposition in which the letters C, D are changed to Cn, Dn

respectively. Let M = {(a, b)eEm(A) x Em{Dn)\meZ, ija) = IJb) where l:Dn

a B is the inclusion map}. Then # M < max(α, #c(Dn)) since above a is

uniquely determined by b if it exists because h(ι) is monic. For (α, b)sM, let

R(a, b), S(a, b)9 T(a, b), ά, b be mathematical objects such that R(a, b), S(a9 b)

are finite subcomplexes of A and Dn respectively, άeE^(R(a, b))9 6eE^(S(a, b))

are elements which coincide with a, b in E^(A), E^(Dn) respectively, T(α, b) is a

finite subcomplex of B containing R(a, b)\jS(a, b), and a and ί become the

same elements in £^(T(α, b)). Such mathematical objects indeed exist. Let

Cn + 1=Dn[j([jiafb)eMT(aib)). Then #c(Cn + 1) < max(α, #c(C)). Considering

the following Mayer-Veitoris exact sequence for A and Dn:

> Em(A n Dn) - ^ EJtA) 0 Em(Dn) - ^ Em(A UDn)

we see that φ is monic and λ is epic since h(jn) is monic where jn:Aί)Dnc: Dn is

the inclusion map. Let ceEm(A\jDn) be an element which vanishes in Em(B)

and (α, b)sEm(A) x Em(Dn) be an element with λ(a 0 b) = c. Then a and b

coincide with each other in Em(B). Hence by the construction of Cπ + 1, c

vanishes in £m(^4uCn + 1 ) , and therefore D = \JnCn satisfies the conditions i), ii),

iv), and also satisfies iii) since D = [jnDn.

DEFINITION 3. Let h be a generalized homology functor. Then a map

f:A -> B is a versal h-mono if h(f) is monic and for any CVF-complex C, C is h-

injective iff/*: [£, C] -> [Λ, C] is epic.

PROPOSITION 2. For #«y generalized homology functor h = E#( — ), there
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exists a versal h-mono.

PROOF. For a mapf:A-+B, Ώom(f) or Dom/, and Ran(/) or Ran/

denote the domain A and range B of f respectively. Let X be a set satisfying

the properties that i) any feX is an inclusion map f:A a B of C^-complexes

such that h(f) is monic and #c(B) < α and ii) for any inclusion map g:C c D

such that h{g) is monic and #c(D) < α, there is a n / e X which is isomorphic to g

as a map. Such an X indeed exists. Let g = {JfeXf: P -> β be the disjoint

union where P = [JfeXDomf and β = ( J / e X R a n / . Then # is a versal h-

mono. To prove this, it suffices since h(g) is monic to show that any CW-

complex R satisfying that g*: [β, K] -> [P, # ] is epic is /i-injective. Let z:̂ 4

-• B be a map between CW-complexes with h(ι) is monic. We may assume that

i is an inclusion for the aim below. From here we work in the category #

instead of <β. Let /: A -• R be a map where K satisfies the above condition, and

C be a finite subcomplex of 5. Then there is a subcomplex D oϊ B satisfying

the conditions i), ii), iii), iv) of Proposition 1. Then map / extends to A\jD

since there is a map keX which is isomorphic to the inclusion A ΠD c D (as

maps in the category <%). Hence/extends to B by the transfinite induction and

therefore R is /z-injective.

The following proposition is obtained from the definitions.

PROPOSITION 3. i) An h-ίnjective complex is h-local.

ii) Let X and Y be h-local CW-complexes. Then any map f:X -> Y with

h(f) iso is a homotopy equivalence.

PROOF, i) Let X be an /i-injective complex, / : 7-> Z a map which induces

an iso of h( — ), and g: 7—• X a map. Then there is a map k:Z -> X with g

^ k°f. We assume t h a t / i s an inclusion map. Let V.Z^X be a map such

that g ~ hf9 V= Yx [0, l ] u Z x {0, 1} in W= Z x [0, 1] and m: V-+ W an

inclusion map, and let p: F-> I b e a map such that p(x, 0) = k(x) and p(x, 1) =

l(x). Such a map indeed exists. Since h(m) is monic, p extends to W i.e.,

k ~ I. Therefore X is /ι-local. ii) is easy.

Let us fix a versal /i-mono p:P-*Q which is an inclusion map, and let β

denote the smallest infinite cardinal greater than #c(P).

PROPOSITION 4. For any CW-complex X, there are a CW-complex Y and a

map f:X -> Y satisfying that h(f) is monic and y is h-injective.

PROOF. We define a tower of CW-complexes (Xξ| ξ: ordinal) by the

transfinite induction as follows. Let Xo = X and suppose that Xξ is

defind. Let Mξ = CMap(P, Xξ) where CMap(K, L) denotes the set of all

cellular maps from K to L, and define Xξ + 1 as the push out in the following

push out square diagram in the category c€\



φ

Injective hull of homotopy types

xξ

635

ιξ

\JmeM,Q

L ξ + 1 >

where φ is the composition of the disjont union ( J m e M m and the codiagonal

map ( J m e M Xξ -> Xξ and φ is the disjoint union [jmeM p. For the limit ordinal

ξ, define Xξ = [Jζ<ξXζ. Note that for any ordinals ξ, ζ with ξ < ζ, the

inclusion map Xξ a Xζ induces a mono of h( — ). Let /c be the smallest ordinal

with cardinality β. Then Xκ is /z-injective, because any map k:P-^Xκ passes

Xξ for some ξ < K, hence k extends to a map from Q which passes Xξ+ι, and

therefore XK is /z-injective since p is a versal /ϊ-mono.

PROOF OF i) OF THEOREM 1. Let X be a CW-complex. Then we define a

tower of C ̂ complexes (Xξ | £: ordinals) by the transfinite induction as

follows. Let Xo = X, and suppose that Xξ is defined and let Yξ be a CW-

complex containing Xξ such that Yξ is /z-injective and the inclusion map Xξ a Yξ

induces a monomorphism of h( —). Such a complex indeed exists by

Proposition 4. Let Tξ = {Ker/z(gr)|Z is a complex, g: Ŷ  —• Z is a map such that

h(g°fξ) is monic}, where /* is the inclusion map Xo c Yξ, be a set of submodules

of h(Yξ). Then we see that Tξ has a maximal element with respet to inclusion

relation as follows. Let U be a linearly orderd subset of Tξ, and for MeU, let

kM and Z M be mathematical objects such that Z M is a complex and /cM: Yξ -• Z M

is an inclusion map with M = Ker/i(/cM) (note that then h(kM°fξ) is

monic). We may assume that ZMnZM,= Yξ for any M, M'eU with

M ^ Mr. Let Z = (jMeL/̂ M? k:Yξc= Z be the inclusion map. Then we can see

that Ker/ι(/c) = \JMeUMeTξ (and then h(k°fξ) is monic). Thus Tξ has a

maximal element M o by Zorn's Lemma. Let k0 and Z o be mathematical

objects such that Z o is a complex, /co:Y£->Zo is an inclusion map satisfying

that M o = Ker/z(/c0) (and then h(k0 °fξ) is a mono) where fξ and M o are as

above. Such objects indeed exist. Define Xξ + 1 by Xξ+1 = Z o , and for the

limit ordinal ξ, define as Xξ = [jζ<ξXζ. Let K be the smallest ordinal with

cardinality β, a n d / : X -• Xκ be the inclusion map. Then h(f) is monic, and Xκ

is /z-injective by the same reason as in the proof of Proposition 4. We show

that/ i s an /i-injective enveloping map. Let Wbe a complex, g:Xκ-> Wα map

with h(g°f) mono and αeKετh{g). Then α is represented by some deh(Yξ) for

some ξ < K. Hence by considering g\x_ , we can show that α = 0. This

completes the proof of i) of Theorem 1.

PROOF OF ii). Let f:A-*B and g:A-+C be fo-injective enveloping

maps. Then there is a map k:B -• C such that g = k°f (in ̂ ) since C is h-

injective and h(f) is monic. Then h(k) is monic since / is an /z-injective
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enveloping map. Then there is a map l:C->B with hk = iάB since B is h-

injective. Then h(ΐ) is monic since l°g = l°k°f = f and g is an /z-injective

enveloping map. Hence h(ΐ) is an iso and therefore / is a homotopy

equivalence by Proposition 3, and thus k is also a homotopy equivalence.

3. Proof of Theorem 2

Let U, V, d, Tbe mathematical objects satisfying the following conditions:

i) U is a set of finite spectra.

ii) For any finite spectrum A, there is a unique element BeU such that

A ~B.

iii) V is a set of maps between finite spectra.

iv) For any AeU, any finite spectrum B and any map f:A-+B, there is a

unique ge Ksuch that there is an iso h:B -• Rang with # = h°f (in the category

v) d: V-> £/ is a map and d(/) = Dom/ for any / e K

vi) Tis the set of all sections of the bundle over U whose fiber of A e U is

(A))) where φ(X) denotes the set of all subsets of X, and topologies

are discrete.

Such mathematical objects in fact exist, and let us fix one 4-tuple of such

objects U, V, d9 T.

DEFINITION 4. Let £ be a spectrum, AeU, and/: A -> E a map. Then the

elementary type t(f) is the set {geV\d(g) = A, and / extends to Rang in the

category ^?}G^β(d~ί(A))9 and the elementary type t(E) of E is the element seT

defined by s(A) = {t(f)\f\A - > £ } . Spectra E and F are elementarily equivalent

if t(E) = t(F).

i) of Theorem 2 is directly obtained from ii) and ii) is a corollary of the

next proposition since the class of elementary equivalence classes of spectra

becomes a set.

PROPOSITION 5. Let E and F be elementarily equivalent spectra and f:X

—• Y be a map between spectra. Then FJ^f) is monic if E^(f) is monic.

PROOF. Let aeFn(X) and suppose /*(#) = 0. Let A, B be finite spectra,

p:A-+X, q:B-*Y, r:A->B b e m a p s a n d άeFn(A) s u c h t h a t f°p = q°r in &,

p^(ά) = a and r*(ά) = 0. Such objects indeed exist. Let g\Σn{A')^C be a

homotopy cofiber of Σn(r'): Σn(B') -• Σn{A') where K\ V are (one of) the Spanier-

Whitehead dual of a spectrum K and map /, and Σ is the suspension

functor. We can assume that ge V. Let h\Σn(A') -• F be a map corresponding

to ά. Since t(E) = t(F), there is a map k\Σ\A') -• E with t(h) = t(k) and let

b e En(A) be the corresponding element to k. Then r^(ά) = 0 implies that

h°Σn{r') = 0 i.e., h extends to C in the category &9 hence k extends to C since
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t(h) = t(k) and this implies r^(b) = 0. Then from the assumption of the

proposition, we can construct a finite spectrum D, maps m:A^>D and n.D^>X

such that n°m = p and mjb) = 0. Then we can show a = 0 by the similar

argument to the above. Therefore F^(f) is monic.

4. Proof of Theorem 3

Let £ be a finite spectrum, E its Spanier-Whitehead dual, h = E^( — ), and

R = [£, £]„,. Let us fix these expressions. Note that h and [£', — ] * are

canonically naturally equivalent as ^^-valued functors.

PROPOSITION 6. Let I be an injective R-module. Then there is a spectrum

U such that [ — , I/]* and HomΛ(/ι( — ), /) are naturally equivalent to each other

as functors from 9* to ΉistfS-* Such a U is unique up to homotopy type, and is h-

local. Moreover h(U) = I as R-modules.

PROOF. Since / is K-injective, HomR(h( — ), I) becomes a generalized

cohomology functor and then there are a spectrum U and a natural equivalence

φ( — ):HomR(h( — ),/)-•[ — , £/]„, by the representation theorem. Uniqueness

up to homotopy of U is also implied from the representation theorem. The

localness of U follows from the fact that a spectrum V is /ι-local iff for any h-

acyclic spectrum X (i.e., h(X) = 0), IX, F ] = 0. Finally by putting — = E\ we

obtain a required isomophism φ(E') of modules.

PROPOSITION 7. A spectrum U is E^( — )-injective iff the map rx\[X, l / ]^

—• H o m ^ ϋ ^ p f ) , E^{U)) defined by rx(f) = E^(f) is monomorphic for all

spectrum X.

PROOF. Assume that U is E^( — )-injective and let/:X -» U be a map with

EJJ) = 0 and g: U -• Y be a homotopy cofiber of/. Then id^ extends to Y

because U is E^( — )-injective and EJ$) is monic. Thus f=idu°f

= 0. Conversely suppose that rx is monic for all X and let / : Y-» Z be a map

with £*(/) mono, g: W^> Y be a homotopy fiber of / and k: Y-> U be a

map. Then from the assumption k ° g = 0 since E^(g) = 0. This implies that k

extends to Z, and therefore U is E^( — )-injective.

PROPOSITION 8. Let I be an injective R-module and U be a spectrum

representing the generalized cohomology functor H o m ^ i i ^ — ), /). Then:

i) The map rx: [X, I/] -> HomR(E*(X), E*(U)) defined by rx{f) = E*(f) is

bίjective for all X,

ii) U is EJ( — yinjective.

PROOF, i) Let φx:HomR(E^(X), E^(U))^IX, I/] be a natural equival-

ence obtained from the condition on U and f:U -• 1/ be a map realizing the

natural transformation φx°rx. Then E^(f) is an iso since rEf is a
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bijection. Then / is a homotopy equivalence from the spectrum version of

Proposition 3 since U is EJ — )-local from Proposition 6, thus rx is a bijection

for all X. ii) follows directly from Proposition 7.

PROPOSITION 9. Let A be a spectrum and /: EJA) -> / be an injectiυe

enveloping map of R-modules. Then f is realized by an EJ — )-injective

enveloping map of spectra from A.

PROOF. From Proposition 8, / is realized by a map g: A -+ JJ from A to an

EJ — )-injective spectrum JJ. Let k: JJ -* V be a map between spectra with

EJk°9) rnono. Then EJk) is monic since EJg) = / i s an injective enveloping

map over R. Thus g is an EJ — )-injective enveloping map.

PROPOSITION 10.

i) If a spectrum JJ is EJ — yinjective, then EJJJ) is an injective R-module.

ii) If a spectrum JJ is E^( — )-local and EJJJ) is an injective R-module, then

U is EJ — yinjective.

PROOF, i) From Proposition 9, there is an EJ — )-injective enveloping

map/: U -> Vrealizing an injective enveloping map g = EJJ):EJJJ) -> Ejy) of

^-modules. Since U is EJ — )-injective, there is a map k:V-*U with k°f

= iάfj. Then EJJJ) becomes a direct summand of the injective K-module

EJV), and therefore EJJJ) is also injective over R. ii) Also let/: U -> Fbe an

EJ — )-injective enveloping map realizing an injective enveloping map g

= EJf)\EJJJ) -> EJV) of R-modules, then/is a homotopy equivalence because

g is an iso and U and V are EJ — )-local. Thus JJ is EJ — )-injective.

The following proposition is easily obtained from Proposition 9 and
Theorem 1.

PROPOSITION 11. Let f\A-*U be an EJ —)-injective enveloping

map. Then g = EJf) is an injective enveloping map of R-modules.

Theorem 3 is proved by Propositions 6, 7,..., 11. Finally we can also get

the following:

PROPOSITION 12. Let U be an EJ — yinjective spectrum and EJJJ)

= M 0 N be a direct sum decomposition by R-submodules of EJJJ). Then

there is a corresponding direct sum decomposition of JJ in the category &.

The proof of this propositon is not difficult. As a corollary we obtain that

if JJ is EJ — )-injective, EJJJ) is indecomposable as an R-module iff JJ is

indecomposable in the category $?.
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