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Introduction

The author [5], [6] and Nomura [11] have investigated the class £°° of
Lie algebras in which the join of any collection of subideals is always a
subideal. On the other hand, concerning the class fi^of Lie algebras in which
the intersection of any collection of subideals is always a subideal, very little is
known except the fact that 501 < 2^ ([5, Lemma 3.2]), where 501 is the class of
Lie algebras having an upper bound for the steps of all subideals. The purpose
of this paper is to present further results concerning the class 2^ and investigate
related classes.

In Section 2 we shall first prove that in any Lie algebra the intersection of
any collection of descendant (resp. weakly descendant, serial, weakly serial)
subalgebras is always descendant (resp. weakly descendant, serial, weakly
serial) (Theorem 2.2). We shall secondly characterize the class 2^ as the class
of Lie algebras in which every descendant subalgebra is a subideal (Theorem
2.3).

The group-theoretic analogue of the class 501 is usually denoted by 23.
Robinson [12] has proved that if a group G has a normal subgroup N such
that N has a composition series of finite length and G/N is in the class 23,
then G is in the class 23. In Section 3 we shall prove that if a Lie algebra L
has an ideal / such that / has a composition series of finite length and L/I
is in the class 2^ (resp. ^ ( a sc ) , 501, T)(asc, si)), then L is in the class 2^
(resp. fi^asc), 501, £>(asc, si))(Theorem 3.4), where fi^asc) is the class of Lie
algebras in which the intersection of any collection of ascendant subalgebras is
always ascendant, and T)(asc, si) is the class of Lie algebras in which every
ascendant subalgebra is a subideal.

In Section 4 we shall first prove that if a Lie algebra having an abelian
ideal of codimension 1 is in the class £„ , then it must be in the class 501
(Proposition 4.2). Secondly we shall present a sufficient condition for Lie
algebras in the class 2^ to be nilpotent.

1.

Throughout this paper we always consider not necessarily finite-
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dimensional Lie algebras over a field ! of arbitrary characteristic unless

otherwise specified. Notation and terminology are mainly based on [2]. For

the sake of convenience we explain some terms which we use here. Any nota-

tion not explained here may be found in [2].

Let L be a Lie algebra over f and n be an integer ^ 0 . H < L

(resp. //<3 L, //<3WL, HsiL) we mean that H is a subalgebra (resp. an ideal, an

n-step subideal, a subideal) of L. If iίsiL, then there is the smallest integer m

with respect to H<j m L, which we denote by si(L:H) as in [5]. H is a weak

subideal of L, denoted by i/wsiL, if there exist an integer n ̂  0 and a chain

{Hi'. 0 ̂  i ̂  n} of subspaces of L such that

(a) H0 = H and Hn = L,

(b) lHi+l9H^^Ht(0^i<n).

H is an ascendant subalgebra (resp. a weakly ascendant subalgebra) of L,

denoted by //ascL(resp. //wascL), if there exist an ordinal σ and an ascending

chain {HΛ: a < σ} of subalgebras (resp. subspaces) of L such that

(a) H0 = H and Hσ = L,

(b) Hα<ι Ha + ί (resp. [ H β + 1 , H ] c /fα) for all ordinals α < σ,

(c) Hλ = (Jα<A#α f°Γ aH limit ordinals 2 ̂  σ.
Then the ascending chain {Ha: α ̂  σ} is said to be an ascending series (resp. a

weakly ascending series) from H to L. H is a descendant subalgebra (resp. a

weakly descendant subalgebra) of L, denoted by iίdscL(resp. iίwdscL), if there

exist an ordinal σ and a descending chain {Ha: oc ^ σ} of subalgebras

(resp. subspaces) of L such that

(a) H0 = L and Hσ = H,

(b) Ha+1*3 Ha (resp. [ # α , i ί ] £ H α + 1 ) for all ordinals α < σ,

(c) //λ = ( r >)α < AHα for all limit ordinals λ ̂  σ.

Then the descending chain {//α: α ̂  σ} is said to be a descending series (resp. a

weakly descending series) from H to L. i ί is a serial subalgebra (resp. a weakly

serial subalgebra) of L, denoted by /f serL(resp. iίwserL), if there exist a totally

ordered set Σ and a family {Λσ, Fσ: σe27} of subalgebras (resp. subspaces) of L

such that

(a) H^Vσ^Λσ for all σeΣ9

(b) Λτ s Fσ if τ < σ,

(c) L\H = |J«x(Λ\^),
(d) Kσ<α Λσ (resp. [^ίσ, H ] s Vσ) for all σ e l .

Then the family {Λσ, Vσ: σeΣ} is said to be a series (resp. a weak series) from H

to L.

Let H < L. The ideal closure series (resp. the weak closure series) of H in

L, which we denote by {HL'a: a ̂  0}(resp. {HLa: α ̂  0}) as in [5], is defined

inductively as follows:

(a) HL0 = L (resp. HLt0 = L);

(b) / f ^ + 1 = Σ ^ o [ ^ n ^ L ' α ] ( r e s p . / f L , α + 1 = [/ίL,α,//] + //) for each
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ordinal α;

(c) HLλ = ()a<λH
L>a (resp. HUλ = f]a<λHLJ for each limit ordinal λ.

Then it is easy to see that HdscL(resp. iίwdscL) if and only if HUσ = H (resp.

HLa = H) for some ordinal σ.

A class X is a collection of Lie algebras together with their isomorphic

copies and O-dimensional Lie algebras. Lie algebras in a class X are called X-

algebras. 21 (resp. S, gπ, (5, 91, 9lπ, κ% S, 3) is the class of Lie algebras which

are abelian (resp. finite-dimensional, finite-dimensional of dimension ^ n,

finitely generated, nilpotent, nilpotent of class ^ n, residually nilpotent, simple,

hypercentral). 93 (resp. ©r) is the class of Lie algebras L such that <x>siL

(resp. <x> asc L) for all xeL. 93-algebras (resp. (Sr-algebras) are called Baer

(resp. Gruenberg) algebras. Similarly we use Φr, as in [8], to denote the class

of Lie algebras L such that <x>dscL for all xeL. Furthermore, we use

E ( < 3 )Φ, as in [8], to denote the class of Lie algebras Lsuch that Lα = {0} for

some ordinal α. Evidently R91 < έ ( o )®. Let Xx, 3E2, X3 and X be classes of

Lie algebras and n be an integer > 0. Then the classes XXX2, XXX2X3,

•£", EX, E ( < I )X and E ( O )X are defined as follows:

LeXxX2 iff Lhas an ideal / such that IEXX and L/IeX2\

LeX1X2X3 iff Le^XJXs;

LeXn iff there exists an ascending series {L^ i g n) from {0} to Lsuch that

L^JL^X (0^i<n);

LEEX iff LeXn for some integer n > 0;

L G E ( < 3 )3E (resp. έ(<i )3E) iff there exist an integer n ̂  0 (resp. an ordinal σ)

and an ascending series {Lf: i ̂  n}(resp. {Lα: α ̂  σ}), consisting of ideals of L,

from {0} to Lsuch that each factor Li+1/LieX (resp. La+1/LaeX).

In particular, E2I is the class of soluble Lie algebras. The following five classes

of Lie algebras, introduced in [5] and [7], will be mainly studied in this paper.

Le^ίi iff either LeSΆ or LeSU2 with dim(L/L2) = 1.

Lefi^resp. fijasc)) iff # α s i L (resp. HaascL)(oceA) implies f]aeAHasiL

(resp. Π ^ H α a s c L )
iff si(L: H) ^ n for all subideals H of L

iff Le9Kπ for some integer n ̂  0.

Let J j be any of the relations < , si, asc, dsc (ί = 1, 2). Then we introduce

the new class D(Λl9 J 2 ) °f Lie algebras as follows:

L e I ) ( J 1 } J 2 ) iff HAXL always implies HA2L.

In particular, £)( < , si) is usually denoted by D. We also abbreviate

Φ( < , asc) to D(asc). In [7] T)(asc, si) is denoted by $R(asc). The classes

£>( < , dsc), T)(asc, dsc) and T)(dsc, asc) will not concern us in this paper.

2.

In group theory, Hartley [3] has proved that in any group the intersection
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of any collection of serial subgroups is always serial. In this section we shall

first prove the similar results in Lie theory and present a generalization of

[4, Proposition 2.6]. We shall secondly characterize i^-algebras as Lie

algebras in which every descendant subalgebra is a subideal.

We begin with

LEMMA 2.1. Let Lbe a Lie algebra and A be any of the relations si, wsi, asc,

wasc, dsc, wdsc, ser, wser. Let HaA L(oceA) and set K = f}aeAHa. Then there

exist an ordinal σ and a descending chain {Kβ: β ^ σ} of subalgebras of L

satisfying the following conditions'.
(a) K0 = L and Kσ = K;

(b) Kβ + 1A Kβ for all ordinals β < σ;

(c) Kλ = f]β<λKβ for all limit ordinals λ g σ.

In particular, if \A\ < oo then σ < ω and so KAL.

PROOF. Let the elements of A be well-ordered as A = {α: α < σ} for some

ordinal σ. Then we can construct a descending chain {Kβ: β ^ σ} as

follows: Ko = L, Kβ = f]a<βHa (0 < β ^ σ). It is easy to see that for any

ordinal β < σ, Kβ + 1 = KβΓ\HβAKβ. Therefore {Kβ:β^σ} is a required

chain.

We have the first main result of this section, generalizing [4, Proposition

2.6], in the following

THEOREM 2.2. Let L be a Lie algebra and A be any of the relations dsc,

wdsc, ser, wser. If HaA L((xeA), then f^\aeA Ha A L.

PROOF. If A means dsc or wdsc, then the result is immediately deduced

from Lemma 2.1. Assume that A means ser (resp. wser). Set K

= f]aeAHa. Then by Lemma 2.1 we can easily see that there are a reversely

well-ordered set Σ and a family {Aσ, Vσ: σeΣ} of subalgebras of L containing

K such that

(a) Vσ ser Aσ (resp. Vσ wser Aσ) for all σeΣ,

(b) Ax < Vσ if τ < σ,

(c) L\K = [jσeΣ(Λσ\Vσ).

For each σeΣ, there are a totally ordered set Σσ and a series (resp. a weak series)

{Λσ,τ,Vσy.τeΣσ} from Vσ to Λσ. Set Σ* = {(σ, τ): σeΣ, τeΣσ}. Then we

can define a total ordering on Σ* as follows: (σ, τ) < (σ', τ') if σ < σ' or if σ = σ'

and τ < τ'. For each (σ, τ)eΣ*, set Λ ( σ τ ) = ΛσtT and ViσtT) = F σ τ . Then it is

not hard to show that {Λ(στ), V(σ>τ): (σ, τ)eΣ*} is a series (resp. a weak series)

from K to L. Thus we have K ser L (resp. XwserL).

REMARK. Theorem 2.2 is not true for any of the relations si, wsi, asc,

wasc. In fact, the Lie algebra L constructed in [6, p. 354, Example] has a

descending chain {Hn: n < ω} of subideals such that (~)n<ωHn is self-idealizing
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in L. Then f]n<ωHn is not weakly ascendant in L.

We can now prove the second main result of this section.

THEOREM 2.3. £ „ = £>(dsc, si).

PROOF. By Lemma 2.1 we clearly have X)(dsc, si) < fl^. Let LeQ^ and

HάscL. Then there is a descending series {Ha: α ^ σ} from H to L. By

transfinite induction on α we can show that HΛύL for each ordinal α

^ σ. Hence Le D(dsc, si) and therefore £«, < X>(dsc, si).

REMARK. The proof of Theorem 2.3 carries over in group theory without

difficulties. Thus the group-theoretic analogue of Theorem 2.3 is also true.

Using [8, Theorem 2.9(2)] we have R$i < έ(<ι )Φ < Φr. By making use

of this result and Theorem 2.3, we obtain the following corollary.

COROLLARY 2.4. £ „ n δ(<a ) £ < £«, n &r = £«> Π 93.

3.

In group theory, a group G is said to be a 33-group if there exists an upper

bound for the defects of all subnormal subgroups of G. Robinson

[12, Lemma 1] has proved that every extension of a group having a

composition series of finite length by a 93-group is also a 23-group. In this

section we shall establish the similar results concerning the classes 2^

= £)(dsc, si), ^^(asc), SCR and D(asc, si) of Lie algebras.

A composition series of finite length for a Lie algebra Lis a finite ascending

series {Lf: / ̂  ή] from {0} to Lwith each Li+ί/Lie(5. The class E S is the class

of Lie algebras having composition series of finite length. By [2, Proposition

1.7.5] we have E S = Min-siDMax-si. By making use of [1, Theorem 4.7] and

[2, Theorem 8.2.3], we can easily see that Min-si < E ( O )(gu 6) . It follows

that

Min-sinMax-si < έ(<ι )(gu6)nMax-si < E(<3 )(gU 6) < E(gU 6) .

By induction on n we can show that gπ < E S (n = 1, 2, •••)• This implies that

E ( 5 U6) = E®. Therefore we have

LEMMA 3.1. Min-si n Max-si = E(<I )(g u ®) = E(g u ®) = E®.

Now we need the following two lemmas.

LEMMA 3.2. Let L be a Lie algebra and n be a positive integer. Then

Le 6" if and only if whenever {L£: i ^ m} is a strictly ascending series from {0} to

L with m < ω, then m ^ n.

PROOF. Let Xn denote the class of Lie algebras Lsuch that whenever {Lf: i
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^ m} is a strictly ascending series from {0} to L with m < ω, then m g n. By

induction on n we first show that S" < £„ (n = 1,2, )• It is trivial for n

= 1. Let n ^ 1 and L e 6 " + 1, and let {L£: i g m} be a strictly ascending series

from {0} to L with m < ω. By inductive hypothesis L has an ideal / such that

IeXn and L//eS. Let ^ denote the natural map L-+L/I. Then {^(L£): i

^ m} (resp. {L, Π/: ΐ ^ m}) is an ascending series from {0} to L// (resp. /). Let

r be the smallest integer with respect to φ(Lr) = ψ(L). In order to show that m

^ n + 1, we may assume that r > 0. Let r ^ ι < m. Since Lt + / = L, by the

modular law L £ + 1 = L£ + (Lί + 1 n / ) . It follows that L f n J < L l + 1 n / , since

Ltφ Li+1. By the minimality of r, Lr_x ^ I. Hence we have

{0} = L o n / < ••• < L Γ _ 1 n / < L r n / < ••• < L m n / = /.

Since IeXn, we have m ^ n + 1 . Therefore we obtain 6Π + 1 <3E Π + 1. This

completes the induction. Conversely we show that Xn < 6". Let L E £ Π \ { 0 }

and let Sf denote the collection of strictly ascending series from {0} to Lof finite

length. Since LeXn, ¥ has an element {L£: i g m} of maximal length. By the

maximality of m we have Li+1/Lie<£ (0 ^ i < m). Hence Le (5m < 6", since m

^ n. Thus we obtain Xn < Sn.

LEMMA 3.3. Let Lbe a Lie algebra and I be an ideal of Lsuch that /eMin-

si Π Max-si. Then there exists a positive integer n such that for any ascendant

subalgebra H of L, HsiH + I with si{H + /://) ^ n.

PROOF. By Lemma 3.1 there exists a positive integer n such that

J e S " . Since HascL, HascH + I. Let {Ha: α ^ σ} be a strictly ascending

series from H to H + /. For any α < σ, since i/ + (Hαn/) = Ha φ Ha+1 = H

+ (HΛ+1Γ\Γ), we have Haf]I Φ Ha+ίf]L Hence {Haf]I: oc^σ} is a strictly

ascending series from H(]I to /. Owing to [14, Theorem], we have

/ e T)(asc, si) Π Max-si < Max-asc. Thus σ must be a finite ordinal. Since

{0} < H0Γ\I < H1 n/ < ••• < Hσ0l = /, by Lemma 3.2 we have σ ^n. There-

fore HsiH + / and si(# + /: H) ^ n.

We now set about proving the main result of this section.

THEOREM 3.4. Let X be any of the classes £ „ , fi^asc), OT and

I)(asc, si). Then (Min-sin Max-si)X = X.

PROOF. Let Le (Min-sin Max-si) X. Then L has an ideal / such that

/ e Min-si Π Max-si and L/IeX. By Lemma 3.3 there exists a positive integer n

such that for any HascL, HsiH + I with si(H + /: H) ^ n. Then for each of

the following three cases, we show that LeX.

Case 1. X = Wl; then L// e Wlm for some integer m > 0. Let // si L. Then

+ L Since ( # + /)//siL/J, we have tf + 7<]mL. It follows that
+nL. Therefore we have Lemm+n < Wl.
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Case 2. X = X)(asc, si); for any ascendant subalgebra H of L, we have

H<inH + /siL, since (H + /)// ascL/I e D(asc, si). Thus Le D(asc, si).

Case 3. 36 = ^ ( r e s p . ^(asc)) ; then we set Δ = si (resp. asc). Let /ίαzίL

and iCα = Ha + / (αeA). For each <xeA, since HasiKa with si(Xα: i/α) ^ n, we

have

Therefore we have

Since for each aeλ KJIAL/Ie2oo (resp. 2^(asc)), f]aeAKaAL. Hence

Π^AHasif]aeAKaAL and therefore f]aeAHaAL. Thus we have
(resp. fi

By [2, Lemma 1.3.7] we have 91 < SOI. On the other hand, for a Lie alge-

bra L it is well known that if L = £σ(L) for some ordinal σ, then for any

subalgebra H of L, {/ί + ζα(L): α ^ σ} is an ascending series from H to L. It

follows that 3 ^ D(asc) < fi^ίasc). By making use of these results,

[5, Lemma 3.2] and Theorems 2.3 and 3.4, we obtain

COROLLARY 3.5. (1) 591 < (Min-si n Max-si)9t

< (Min-si n Max-si)2R = Wl

< (Min-si Π Max-si)2^ = 2^ = T)(dsc, si).

(2) g 3 < (Min-si Π Max-si) D(asc)

< (Min-si ΓϊMax-sOi^asc) = ^

REMARK. AS stated in Corollary 3.5 we have g9l < 5CR < 2^ and

S 3 < ^oo(asc). However, we should note that 915 :££«> and 3 5 ^ ^ ( a s c ) . In

fact, by [6, p. 354, Example] and the proof of [7, Theorem 5.1(3)] we have

2l5i^£oo a n d 5ίi ^oo(asc), respectively. Furthermore, the latter fact is in

contrast to the fact that SΆγ < Wl ([5, Theorem 2.10]).

In Corollary 3.5, if the ground field f is of characteristic p > 0, then by

[5, Remark to Lemma 3.2] we have 501 < 2^. Moreover, the following

example shows that even if the ground field f is of arbitrary characteristic, then

(Min-si n Max-si)9t < 901 and (Min-si n Max-si)£>(asc) <

EXAMPLE 3.6. Let A be an abelian Lie algebra over f with basis

{αt : ieZ}. For a derivation x of A, xe Tiϊ its image Ax is of finite-dimensional

and if the restriction of x to Ax has trace zero in the uaual sense. Then by

[13, Lemma 4.1] Tis an infinite-dimensional simple Lie algebra. We constuct

the split extension L = A + T of A by T, which is one of the Lie algebras

constructed in [6, p.355, Example]. Then evidently

{H: H < A or H = L) c {H: H^2L} c {H: HascL}.
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Let HascL. Levic [10] has proved that every simple Lie algebra has no non-

trivial ascendant subalgebras. By using this result, we can see that H < A or

H + A = L. Assume that H + A = L. For each i e Z, we define a derivation

x, of A by apt = δifli - δi+ljai+1 (jeZ). Clearly xteT. Since L= H + A, xt

= h + afoτ some heH and some aeA. By using [7, Lemma 2.1], we can find

an integer n > 0 such that [ahnh]eH. Since A is an abelian ideal of L,

[ahn h] = \_ahn Xi] = at. It follows that a^H for all ieZ. Hence L= H + A

= H and therefore

{H: HSLSCL} = {H: H < A or H = L] = {H:

Thus we have Le$Rn£(asc, si) < fi^ίasc). Next we prove that Lis not in the

class (Min-sin Max-si) T)(asc). Assume, to the contrary, that L has an ideal /

such that /eMin-siΠMax-si and L/Ie£>(asc). Obviously Lis not in the class

Min-siUMax-si. Hence / < A. Since A/Io L/IeT)(asc) = QT>(asc), we have

Γ ^ (L/I)/(A/I)eT)(asc). But T has no non-trivial ascendant subalgebras.

Thus TE^U a contradiction.

Finally we show that there is no inclusion between the class ^ ( a s c ) and

the class X>(asc, si), and neither between the class £«, = X>(dsc, si) and the class

X>(asc, si), in the following

PROPOSITION 3.7. (1) ^ ( a s c ) ^T)(asc, si) and 2^ ^T)(asc, si).

(2) Assume that the ground field I is of characteristic zero. Then

D(asc, si) r^fijasc) and T)(asc, si)

PROOF. (1) Let X be an abelian Lie algebra over f with basis {xf:

ί = 0,1, } and σ be a derivation of X such that xoσ = 0 and xiσ = xi-1

(i ^ 1). Form the split extension L = X 4- <σ> of X by <σ>. Then it is well

known (cf. [2, p.119]) that L e 3 \ 9 3 . Thus we have Le X>(asc)\ £(asc, si).

Since L2 = \_X, σ] = X, L2 is of codimension 1 and so LE^X1. By [5,

Lemma 2.9] we have LeQ^.

(2) Let i f be a Lie algebra over f with basis {v^: i = 1,2, •••} and

multiplication [wt , w,-] = (i - ) w i + i. Then by [2, Theorem 8.7.1] and [9,

Theorem] we have We R91 Π Max. By using induction on n, we can easily see

that [w2,n w j = (n\)wn + 2 (n = 0,1, •••)• Hence ( w j is not a subideal of Wand

therefore Wis not in the class 93. It follows from Corollary 2.4 that W is not

in the class £«,. It is clear that Max < D(asc, si). Therefore we obtain

4.

As stated in Section 3 the inclusions 9t < 5Π < £ » hold. In this section
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we shall present sufficient conditions for a Lie algebra in the class 2^ to be in

the class $R and, furthermore, to be nilpotent.

We need the following lemma.

LEMMA 4.1. Let n be a positive integer and let Le2o0f]
<$ί^ln. Then:

(1) To each subalgebra H of L, there corresponds an integer m ^ 0 such

that [L" + 1 , m H] + H = [L" + 1 , m + 1 H] + H.

(2) If L has an abelίan ideal A and a nilpotent subalgebra N of class ^ n

such that L= A + N and Af)N = {0}, then Lm+n + 1 = Lm+n+2 for some integer

m ^ O .

PROOF. (1) Let H < L and M = H + Ln+1. Since Ln+1 is an abelian

ideal of L, as in the proof of [4, Lemma 4.1] we can easily see that HMa = HMaL

for all ordinals α. It is clear that M = H + L" + 1 <] H + L"<i •••<]// + L

= L. Hence we have Mefi^. Therefore by [5, Proposition 3.1(3)] there

exists an integer m = m(H)^0 such that H M m = HM*m + 1. It follows that

HM,m = HM,m + ! . Moreover, for any integer k ^ 0, HMk = \U +', k H]

+ //. Thus we have the result.

(2) By (1) there exists an integer m ^ O such that [Ln + 1 , m JV] + AT

= [ L " + 1 , m + 1 N] + ΛΓ. Since L" + 1 < ylG^ί, for any integer k ^ 0, [ L n + 1 , k AT]

= [Ln + 1, f c^l + AT] = Lk+n+1. Hence L m + π + 1 + ΛΓ = Lm + / ι + 2 + N and there-

fore L m + π + 1 = L m + π + 2 + (L m + n + 1 nΛ0 = Lm+n + 2.

As stated in [6, p.354, Example], Lie algebras in the class Slgi need not be

in the class 2^. However, the following proposition shows that if a Lie

algebra in the class (&%1 is also in the class £«,, then it must be in the class 9W.

PROPOSITION 4.2. 2^ n M%1 = Wln^Si

PROOF. Let Le2O0 ΠδϊSi Then Lhas an abelian ideal >1 and an element

x such that L = A + <x>. We may suppose that ^n<x> = {0}. By Lemma

4.1(2) L m + 2 = Lm + 3 for some integer m ^ 0. It follows that Lω = Lm + 2. By

induction on k we can easily verify that Lk+1 = [A,k x](/c = 1,2, •••). Let H si

L with s = si(L:H). We show that s ^ m + 2. It is clear that i ί < X or /ί

+ A = L. If H <A then s ^ 2 ^ m + 2. Assume that H + A = L. Then x

= h + a for some /iei/ and some α e A Since i ί < i s L , L s + 1 = [^, s x]

= [Λs Λ] ^ H. Hence Lm + 2 = Lω < Ls+1 < H. It follows that H = H

+ Lm + 2 < ι / / + L m + 1 < ι <ι// + L=L. Therefore we have s ^ m + l < m

+ 2, so that Le$0ϊm + 2. Thus we obtain 2

Finally we consider a sufficient condition for a Lie algebra in the class 2^

to be nilpotent.

As stated in Remark to Corollary 3.5, Lie algebras in the class 91(5 need

not be in the class 2^. Moreover, Lie algebras in the class 2^ Π 91(5 need not

be nilpotent (see Remark (2) to Lemma 4.3). However, we have
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LEMMA 4.3. £ „ n W(5 Π &r = 9i.

PROOF. Since by Corollary 2.4 2^ n $>r < 93, it is enough to show that

93 n 91(5 < 91. Let Le93 n9ϊ(5. Then Lhas a nilpotent ideal N such that L/N

is finitely generated. There is a finitely generated subalgebra X of L such that

L = AT + N. By [2, Theorem 7.1.5(b), (c)] X is a nilpotent subideal of L. It

follows from [2, Theorem 2.2.13] that L= X + Ne$l. Thus we have

REMARK. (1) If we remove the class 2^ from the equation stated in

Lemma 4.3, then it becomes a failure. In fact, the Lie algebra constructed in

[6, p. 354, Example] is not a Gruenberg algebra, but in the class 213^ ΠR91. It

follows from [8, Theorem 2.9(2)] that 91(5 Π&r > 91.

(2) If we replace the class Φr with the class (Sr in the equation stated in

Lemma 4.3, then it becomes a failure. In fact, the Lie algebra constructed in

the proof of Proposition 3.7(1) is not a Baer algebra, but in the class

i Π3. This implies that 2^ Π 91(5 n ©r > 91.

LEMMA 4.4. SRn&r = 9JΪΠE(<] )& = 5tΠn93 = 91.

PROOF. Using [8, Theorem 2.9(2)] we have 91 < R91 < E(<I )& < &r. It

is clear that 91 < 93 < Φr. Therefore it is enough to prove that

9Wn&r<91. Let Le9OTnΦr. Then Le9Jln for some integer n > 0. Since

LeWl < £ „ , by Corollary 2.4 we have Le93. Let ^ e L f l ^ i ^ n ) and set H

= <x, : 1 ύ i ύ n>. By [2, Theorem 7.1.5(c)] we have HsiL, so that

H^nL. Hence L e D M . Owing to [2, Theorem 7.2.5], we have Le91.

PROPOSITION 4.5. 2^ n (591(5 n ^ r = 91.

PROOF. By making use of Corollary 3.5(1), Lemma 4.4 and [2, Theorem

7.1.5(b)], we can easily see that

93 Π (591 = 93 n (93 n (5) 91 = 93 n S91 = 93 n 9JI = 91.

Therefore by Corollary 2.4 we have 2^ Π (591© n ̂ r = 2^ n 91(5 Π 93. Thus the

result is immediately deduced from Lemma 4.3.
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