Partial A-optimal balanced fractional $2^{\boldsymbol{m}}$ factorial designs with $6 \leqq m \leqq 8$

Yoshifumi HyOdo
(Received December 7, 1988)

1. Introduction

A balanced array (B-array), which is a generalization of an orthogonal array, was first studied by Chakravarti [2] under the name of "partially Barray". A connection between a B-array and a balanced fractional factorial (BFF) design has been investigated so far by, e.g., Srivastava [31], Yamamoto, Shirakura and Kuwada [41], Kuwada [20] and Kuwada and Nishii [22]. The characteristic roots of the information matrix of a $2^{m}-\mathrm{BFF}$ design of resolution V were obtained by Srivastava and Chopra [33]. By use of the triangular multidimentional partially balanced (TMDPB) association scheme and its algebra, Yamamoto, Shirakura and Kuwada [42] extended their results to a 2^{m} BFF design of resolution $2 \ell+1$. The concept of the MDPB association scheme was introduced by Bose and Srivastava [1] and Srivastava [30] as a generalization of the ordinary association scheme.

A- and/or D-optimal 2^{m}-BFF designs of resolution V or VII were obtained by Srivastava and/or Chopra $[4-9,11-14,34,35]$ and Shirakura [24,26]. More precise tables of Srivastava-Chopra optimal designs of resolution V have been presented by Nishii and Shirakura [23] for $4 \leqq m \leqq 6$, and Chopra, Kipngeno and Ghosh [10] for $7 \leqq m \leqq 10$. Some optimal fractional 2^{m} factorial ($2^{m}-\mathrm{FF}$) designs were obtained by Cheng [3] and Kuwada [21]. Optimal 2^{m}-BFF designs of even resolution derived from B-arrays were obtained by Shirakura [25-27]. A necessary and sufficient condition for a Barray of strength 2ℓ to be a 2^{m}-BFF design of resolution 2ℓ was obtained by Shirakura [28]. Yamamoto and Hyodo [38,39] introduced an extended concept of resolution, which includes the results due to Shirakura [25-28]. By utilizing the characterization of the information matrix, Yamamoto and Hyodo [38-40], Hyodo and Yamamoto [17-19] and Hyodo [15, 16] have shown that there are so many designs having various type resolution including both odd and even resolution as special cases.

Consider a two-symbol B-array of strength $6, m$ constraints, index set $\left\{\mu_{0}^{(6)}, \mu_{1}^{(6)}, \ldots, \mu_{6}^{(6)}\right\}$ and frequency set $\left\{z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right\}$, where $z_{j}^{(m)}$ are the number of row vectors with weight j in the array. Such an array is traditionally denoted as a $\operatorname{BA}(N, m, 2,6)\left\{\mu_{0}^{(6)}, \mu_{1}^{(6)}, \ldots, \mu_{6}^{(6)}\right\}$, where N is the total number of assemblies. We, hovever, denote it here as
$\mathrm{BA}\left(m, 6 ; z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right)$ since the characterization of the information matrix can be explicitly expressed by $z_{j}^{(m)}$ (see $[15,16]$). The indices $\mu_{i}^{(6)}$ are completely determined by $z_{j}^{(m)}$ as follows (cf. [15, 26, 32, 36, 37]):

$$
\mu_{i}^{(6)}=\sum_{j=0}^{m}\binom{m-6}{j-i}\left\{z_{j}^{(m)} /\binom{m}{j}\right\} \quad \text { for } i=0,1, \ldots, 6 .
$$

Note that the usual boundary convention for the binomial coefficient $\binom{a}{b}$, i.e., $\binom{a}{b}=0$ if and only if $b<0$ or $0 \leqq a<b$, will be used throughout this paper.

In this paper, we shall consider a 2^{m}-BFF design derived from a $\mathrm{BA}\left(m, 6 ; z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right)$ such that the general mean and the main effects (or the main effects only) are estimable under the situation in which all four-factor and higher order interactions are assumed to be negligible. Such a design will be called a 2^{m}-BFF design having resolution $R^{*}(\{0,1\} \mid P)$ (or $R^{*}(\{1\} \mid P)$) as will be seen in Definition 3.3, where $P=\{0,1,2,3\}$. For a given pair (N, m), there are so many $2^{m}-\mathrm{BFF}$ designs having resolution $R^{*}(\{0,1\} \mid P)\left(\right.$ or $R^{*}(\{1\} \mid P)$). We may note that these designs may be superior to resolution IV designs in the sense that the confounding of the three-factor interactions and the main effects can be always avoided even though the latter exist. A design considered here is explicitly described by some specified simple array (S-array) for the cases of m $=6,7,8$ and $N<\sum_{i=0}^{3}\binom{m}{i}\left(=v_{3}\right.$, say $)$ as will be seen in Proposition 3.3, where v_{3} is the total number of factorial effects up to the three-factor interactions (see [15-19, 38-40]). In Section 4, for the cases of $m=6,7$ and 8, partial A-optimal $2^{m}-\mathrm{BFF}$ designs having resolution $R^{*}(\{0,1\} \mid P)$ and $\left.R^{*}(\{1\} \mid P)\right)$ will be presented for each value of $N\left(<v_{3}\right)$. The covariance matrix of the estimates and the value of its trace are also given for such designs.

2. Preliminaries

Consider a 2^{m}-FF design with m factors F_{1}, \ldots, F_{m}, each at two levels 0 or 1 , where $m \geqq 6$. Further consider the situation in which all four-factor and higher order interactions are assumed to be negligible. The $v_{3} \times 1$ vector of factorial effects is denoted by

$$
\begin{aligned}
\underline{\theta}^{\prime} & =\left(\theta_{\phi} ; \theta_{1}, \ldots, \theta_{m} ; \theta_{12}, \ldots, \theta_{m-1 m} ; \theta_{123}, \ldots, \theta_{m-2 m-1 m}\right) \\
& =\left(\theta_{\phi} ; \underline{1}_{1}^{\prime} ; \underline{\theta}_{2}^{\prime} ; \underline{\theta}_{3}^{\prime}\right),
\end{aligned}
$$

where $\theta_{\phi}, \theta_{t_{1}}$ and, in general, $\theta_{t_{1} \ldots t_{u}}$ denote the general mean, the main effect of the factor $F_{t_{1}}$ and the u-factor interaction of the factors $F_{t_{1}}, \ldots, F_{t_{u}}$, respectively. Here A^{\prime} and $\underline{\theta}_{u}$ denote, respectively, the transpose of a matrix A
and the $\binom{m}{u} \times 1$ vector of the u-factor interactions, especially $u=0$ and $u=1$ stand for the general mean, i.e., $\underline{\theta}_{0}=\theta_{\phi}$, and the main effects, respectively. Let T be a (0,1)-array of size $N \times m$ whose rows denote N assemblies of a design under consideration. The linear model based on T is then given by

$$
\underline{y}_{T}=E_{T} \underline{\theta}+\underline{e}_{T},
$$

where \underline{y}_{T}, E_{T} and \underline{e}_{T} denote a vector of N observations, the $N \times v_{3}$ design matrix whose elements are either 1 or -1 , and an $N \times 1$ error vector with $E\left[\underline{e}_{T}\right]=\underline{0}_{N}$ and $\operatorname{Cov}\left[\underline{e}_{T}\right]=\sigma^{2} I_{N}$, respectively. Here $\underline{0}_{N}$ and I_{N} are the $N \times 1$ vector with all zero and the identity matrix of order N, respectively. The normal equation for estimating $\underline{\theta}$ is given by

$$
M_{T} \underline{\hat{\theta}}=E_{T}^{\prime} \underline{y}_{T}
$$

where $M_{T}=E_{T}^{\prime} E_{T}$ is the information matrix of order v_{3}.
Among the four sets of factorial effects $\left\{\theta_{\phi}\right\},\left\{\theta_{t_{1}}\right\},\left\{\theta_{t_{1} t_{2}}\right\}$ and $\left\{\theta_{t_{1} t_{2} t_{3}}\right\}$, a TMDPB association scheme is defined by introducing a natural relation of association such that $\theta_{t_{1} \ldots t_{u}}$ and $\theta_{t_{1}^{\prime} \ldots t_{v}}$ are the a-th associates if and only if

$$
\left|\left\{t_{1}, \ldots, t_{u}\right\} \cap\left\{t_{1}^{\prime}, \ldots, t_{v}^{\prime}\right\}\right|=\min (u, v)-a,
$$

where $|S|$ and $\min (u, v)$ denote the cardinality of a set S and the minimum of integers u and v, respectively.

It is known that a TMDPB association algebra \boldsymbol{R} generated by the thirty ordered association matrices $D_{a}^{(u, v)}(0 \leqq a \leqq \min (u, v) ; u, v=0,1,2,3)$ is semisimple and completely reducible. It is decomposed into the direct sum of the four two-sided ideals \boldsymbol{R}_{b} generated by $(4-b)^{2}$ ideal bases $\left\{D_{b}^{(u, v) \#}: b \leqq u, v \leqq 3\right\}$ for $b=0,1,2,3$. The ideal \boldsymbol{R}_{b} is isomorphic to the complete $(4-b) \times(4$ $-b$) matrix algebra with multiplicity $\binom{m}{b}-\binom{m}{b-1}\left(=\phi_{b}\right.$, say $)$. The details of the TMDPB association scheme and its algebra can be seen in Yamamoto, Shirakura and Kuwada [41, 42] and Shirakura [26]. It is known (see $[15,41,42]$) that the information matrix M_{T} of a 2^{m}-FF design T derived from a $\mathrm{BA}\left(m, 6 ; z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right)$ belongs to the TMDPB association algebra \boldsymbol{R} and is given by

$$
\begin{align*}
M_{T} & =\sum_{u=0}^{3} \sum_{v=0}^{3} \sum_{a=0}^{\min (u, v)} \gamma_{|u-v|+2 a} D_{a}^{(u, v)} \\
& =\sum_{b=0}^{3} \sum_{r=0}^{3-b} \sum_{s=0}^{3-b} k_{b}^{r, s} D_{b}^{(b+r, b+s) \ddagger} \in \boldsymbol{R}, \tag{2.1}
\end{align*}
$$

where

$$
\gamma_{i}=\sum_{j=0}^{6} \sum_{q=0}^{i}(-1)^{q}\binom{i}{q}\binom{6-i}{j-i+q} \mu_{j}^{(6)}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{m}\left\{\sum_{q=0}^{i}(-1)^{q}\binom{i}{q}\binom{m-i}{m-j-q}\right\}\left\{z_{j}^{(m)} /\binom{m}{j}\right\} \quad \text { for } i=0,1, \ldots, 6, \\
& k_{b}^{r, s}=k_{b}^{s, r}=\sum_{a=0}^{b+r} \gamma_{s-r+2 a} z_{b a}^{(b+r, b+s)} \quad \text { for } 0 \leqq r \leqq s \leqq 3-b ; b=0,1,2,3
\end{aligned}
$$

and

$$
\begin{aligned}
& z_{b a}^{(b+r, b+s)}=\sum_{c=0}^{a}(-1)^{a-c}\binom{r}{c}\binom{b+r-c}{b+r-a}\binom{m-2 b-r+c}{c} \\
& \cdot\left\{\binom{m-2 b-r}{s-r}\binom{s}{r}\right\}^{1 / 2} /\binom{s-r+c}{c} \quad \text { for } r \leqq s .
\end{aligned}
$$

Here the matrix $D_{b}^{(u, v) \#}$ of order v_{3} is linearly linked with the ordered association matrices $D_{a}^{(u, v)}$ of the TMDPB association scheme as follows (see [26, 29, 42]):

$$
D_{a}^{(u, v)}=\left\{D_{a}^{(v, u)}\right\}^{\prime}=\sum_{b=0}^{u} z_{b a}^{(u, v)} D_{b}^{(u, v) \#} \quad \text { for } 0 \leqq a \leqq u \leqq v \leqq 3
$$

and

$$
\begin{equation*}
D_{b}^{(u, v) \mp}=\left\{D_{b}^{(v, u) \#}\right\}^{\prime}=\sum_{a=0}^{u} z_{(u, v)}^{b a} D_{a}^{(u, v)} \quad \text { for } 0 \leqq b \leqq u \leqq v \leqq 3 \tag{2.2}
\end{equation*}
$$

where

$$
z_{(u, v)}^{b a}=\phi_{b} z_{b a}^{(u, v)}\left\{\binom{m}{u}\binom{u}{a}\binom{m-u}{v-u+a}\right\} \quad \text { for } u \leqq v
$$

The matrices $D_{b}^{(u, v) \mp}$ have the following properties (see [42]):

$$
\begin{aligned}
& D_{a}^{(u, w) \#} D_{b}^{(s, v) \#}=\delta_{w s} \delta_{a b} D_{b}^{(u, v) \#}, \\
& \sum_{b=0}^{u} D_{b}^{(u, u) \#}=D_{0}^{(u, u)}, \\
& \sum_{u=0}^{3} \sum_{b=0}^{u} D_{b}^{(u, u) \#}=I_{v_{3}}
\end{aligned}
$$

and

$$
\begin{equation*}
\operatorname{rank}\left[D_{b}^{\left.(u, v)^{\sharp}\right]}\right]=\phi_{b}, \tag{2.5}
\end{equation*}
$$

where $\delta_{a b}$ denotes Kronecker's delta. Each $(4-b) \times(4-b)$ symmetric matrix $K_{b}=\left[k_{b}^{r, s}\right](0 \leqq r, s \leqq 3-b ; b=0,1,2,3)$ is called the irreducible matrix representation of M_{T} with respect to the ideal \boldsymbol{R}_{b} with multiplicity ϕ_{b} and it can be expressed as follows (see [15, 19]):

$$
K_{b}=\sum_{j=b}^{m-b}\left\{z_{j}^{(m)} /\binom{m}{j}\right\} \underline{k}_{b j} \underline{k}_{b j}^{\prime} \quad \text { for } b=0,1,2,3
$$

where $\underline{k}_{b j}$ are given by

$$
\underline{k}_{0 j}^{\prime}=\left\{\binom{m}{j}\right\}^{1 / 2}\left(1,(2 j-m) / m^{1 / 2},\left\{(2 j-m)^{2}-m\right\} /\{2 m(m-1)\}^{1 / 2}\right.
$$

$$
\begin{aligned}
& \left.(2 j-m)\left\{(2 j-m)^{2}-3 m+2\right\} /\{6 m(m-1)(m-2)\}^{1 / 2}\right) \text { for } 0 \leqq j \leqq m, \\
\underline{k}_{1 j}^{\prime}= & 2\left\{\binom{m-2}{j-1}\right\}^{1 / 2}\left(1,(2 j-m) /(m-2)^{1 / 2},\right. \\
& \left.\left\{(2 j-m)^{2}-m+2\right\} /\{2(m-2)(m-3)\}^{1 / 2}\right) \quad \text { for } 1 \leqq j \leqq m-1, \\
\underline{k}_{2 j}^{\prime}= & 4\left\{\binom{m-4}{j-2}\right\}^{1 / 2}\left(1,(2 j-m) /(m-4)^{1 / 2}\right) \quad \text { for } 2 \leqq j \leqq m-2
\end{aligned}
$$

and
$\underline{k}_{3 j}^{\prime}=8\left\{\binom{m-6}{j-3}\right\}^{1 / 2} \quad$ for $3 \leqq j \leqq m-3$.
The matrices K_{b} have the following properties (see $[15,16,19]$):
Proposition 2.1. (i) $\operatorname{rank}\left[K_{b}\right]=\min \left(w\left(z_{b}^{(m)}, z_{b+1}^{(m)}, \ldots, z_{m-b}^{(m)}\right), 4-b\right)$ for b $=0,1,2,3$, where $w\left(\underline{x}^{\prime}\right)$ denotes the number of nonzero elements of a row vector \underline{x}^{\prime}.
(ii) If $\operatorname{rank}\left[K_{b}\right]=r$, then the first r rows in K_{b} are always linearly independent.
(iii) There exist (4-b) linearly independent vectors in $\underline{k}_{b b}, \underline{k}_{b b+1}, \ldots, \underline{k}_{b m-b}$, which are contained in K_{b} as a column vector each.

If T is an S-array with parameters $\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$, written $\mathrm{SA}\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$ for brevity, then it follows from $z_{j}^{(m)}=\binom{m}{j} \lambda_{j}$ $(j=0,1, \ldots, m)$ that

$$
K_{b}=\sum_{j=b}^{m-b} \quad \lambda_{j} \underline{k}_{b j} \underline{k}_{b j}^{\prime} \quad \text { for } b=0,1,2,3 .
$$

3. $\mathbf{2}^{\boldsymbol{m}}$-BFF designs having resolution $\boldsymbol{R}^{*}(\{0,1\} \mid \boldsymbol{P})$ and $\boldsymbol{R}^{*}(\{1\} \mid \boldsymbol{P})$

For readers' convenience, we recall the definition of resolution here.
Definition 3.1. Let $P=\{0,1,2,3\}$ and $S \subset P$. Then a $2^{m}-\mathrm{FF}$ design is said to be of resolution $R(S \mid P)$ if
(i) $D_{o}^{(s, s)} \underline{\theta}$, i.e., a vector of s-factor interactions $\underline{\theta}_{s}$, is estimable for every $s \in S$
and
(ii) $D_{0}^{(h, h)} \underline{\theta}$, i.e., a vector of h-factor interactions $\underline{\theta}_{h}$, is not estimable for every $h \in P-S$
under the situation in which all four-factor and higher order interactions are assumed to be negligible.

Note that resolution $R(\{0,1,2,3\} \mid P)$ and $R(\{0,1,2\} \mid P)$ (or $R(\{1,2\} \mid P))$ are, respectively, resolution VII and VI, where $P=\{0,1,2,3\}$.

Definition 3.2. A $2^{m}-\mathrm{FF}$ design of resolution $R(S \mid P)$ is said to be balanced and denoted by 2^{m}-BFF design of resolution $R(S \mid P)$ if the covariance matrix of the BLUE of $\sum_{s \in S} D_{0}^{(s, s)} \underline{\theta}$ is invariant under any permutation on m factors.

A $2^{m}-\mathrm{FF}$ (or $\left.2^{m}-\mathrm{BFF}\right)$ design having resolution $R^{*}(\{0,1\} \mid P)$ (or $R^{*}(\{1\} \mid P)$) is defined as follows:

Definition 3.3. If S is a set such that $P \supset S \supset Q$ for fixed P and Q, then a $2^{m}-\mathrm{FF}$ (or $2^{m}-\mathrm{BFF}$) design of resolution $R(S \mid P)$ is called a $2^{m}-\mathrm{FF}$ (or $2^{m}-\mathrm{BFF}$) design having resolution $R^{*}(Q \mid P)$, where $Q=\{0,1\}$ or $\{1\}$.

The following Propositions 3.1 and 3.2 are due to Hyodo [15] and Yamamoto and Hyodo [38], respectively.

Proposition 3.1. Let T be a $2^{m}-F F$ design derived from a $B A\left(m, 6 ; z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right)$. Then T is a $2^{m}-B F F$ design of resolution $R(S \mid P)$ if and only if T satisfies the following conditions:
(i) $\operatorname{rank}\left[K_{b}^{*}\right]=\operatorname{rank}\left[K_{b}^{*}: \underline{f}_{b}^{(s)}\right]$ for every $b \in\{0,1, \ldots, s\}(s \in S)$
and
(ii) $\operatorname{rank}\left[K_{b}^{*}\right] \neq \operatorname{rank}\left[K_{b}^{*}: \underline{f}_{b}^{(h)}\right]$ for some $b \in\{0,1, \ldots, h\}(h \in P-S)$, where $P=\{0,1,2,3\}, K_{b}^{*}=\left[z_{b}^{(m)} \underline{k}_{b b}, z_{b+1}^{(m)} \underline{k}_{b b+1}, \ldots, z_{m-b}^{(m)} \underline{k}_{b m-b}\right]$ and $\underline{f}_{b}^{(u)}$ denotes the $(4-b) \times 1$ canonical basis vector whose $(u-b+1)$ th element is unity.

Proposition 3.2. Let T be a $B A\left(m, 6 ; z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right)$ and P $=\{0,1,2,3\}$.
(I) If T is a 2^{m}-BFF design having resolution $R^{*}(\{0,1\} \mid P)$, then the BLUE of a vector of estimable parametric functions $\sum_{u=0}^{1} D_{0}^{(u, u)} \underline{\theta}\left(=\underline{\Psi}_{01}\right.$, say) and the covariance matrix of its estimate are, respectively, given by

$$
\hat{\underline{\Psi}}_{01}=X_{01} E_{T}^{\prime} \underline{y}_{T}
$$

and

$$
\begin{equation*}
\operatorname{Cov}\left[\underline{\underline{\Psi}}_{01}\right]=\sigma^{2} X_{01} M_{T} X_{01}^{\prime} \in \boldsymbol{R}, \tag{3.1}
\end{equation*}
$$

where $X_{01}(\in R)$ is a $v_{3} \times v_{3}$ matrix satisfying $X_{01} M_{T}=\sum_{u=0}^{1} D_{0}^{(u, u)}$.
(II) If Tis a $2^{m}-B F F$ design having resolution $R^{*}(\{1\} \mid P)$, then the BLUE of a vector of estimable parametric functions $D_{0}^{(1,1)} \underline{\theta}\left(=\underline{\Psi}_{1}\right.$, say) and the covariance matrix of its estimate are, respectively, given by

$$
\underline{\underline{\underline{T}}}_{1}=X_{1} E_{T}^{\prime} \underline{y}_{T}
$$

and

$$
\begin{equation*}
\operatorname{Cov}\left[\hat{\Psi}_{1}\right]=\sigma^{2} X_{1} M_{T} X_{1}^{\prime} \in \boldsymbol{R} \tag{3.2}
\end{equation*}
$$

where $X_{1}(\in \boldsymbol{R})$ is a $v_{3} \times v_{3}$ matrix satisfying $X_{1} M_{T}=D_{0}^{(1,1)}$.
It is known that a $\operatorname{BA}\left(m, 6 ; z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right)$ gives an $\operatorname{SA}\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$ for the cases of $m=6$ and 7. It has been shown in Hyodo [16] that a $\operatorname{BA}\left(8,6 ; z_{0}^{(8)}, z_{1}^{(8)}, \ldots, z_{8}^{(8)}\right)$ turns out to be an $\operatorname{SA}\left(8 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{8}\right)$ provided the information matrix is singular. The following proposition is due to Hyodo $[15,16]$.

Proposition 3.3. Consider 2^{m}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)$ and $R^{*}(\{1\} \mid P)$ for the cases of $m=6,7,8$ and $N<\nu_{3}$, where $P=\{0,1,2,3\}$. Such designs are explicitly described by some specified $S A\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$ as will be seen in Tables 3.1 and 3.2.

Table 3.1. 2^{m}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)$ with $6 \leqq m \leqq 8$

m	Resolution	Conditions on $\mathrm{SA}\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$
6	$R(\{0,1,2,3\} \mid P)$, i.e., VII	non-exist (since $\left.N<v_{3}\right)$
	$R(\{0,1,3\} \mid P)$	non-exist (see $[15])$
$R(\{0,1,2\} \mid P)$, i.e., VI	(6a) $\lambda_{i}>0(i=0,2,4,6), \lambda_{j}=0(j=1,3,5) ;$	
	(6b) $\lambda_{i}>0(i=2,4,5), \lambda_{0}+\lambda_{1}+\lambda_{6}>0, \lambda_{3}=0 ;$	
	(6c) $\lambda_{i}>0(i=1,2,4), \lambda_{0}+\lambda_{5}+\lambda_{6}>0, \lambda_{3}=0 ;$	
	(6d) $\lambda_{i}>0(i=1,3,5), \lambda_{j}=0(j=0,2,4,6) ;$ or	
	(6e) $\lambda_{i}>0(i=1,3,5), \lambda_{0}+\lambda_{6}>0, \lambda_{j}=0(j=2,4)$	
	(6f) $\lambda_{i}>0(i=1,4,5), \lambda_{0}+\lambda_{6}>0, \lambda_{j}=0(j=2,3) ;$ or	
	(6g) $\lambda_{i}>0(i=1,2,5), \lambda_{0}+\lambda_{6}>0, \lambda_{j}=0(j=3,4)$	

7 | $R(\{0,1,2,3\} \mid P)$, i.e., VII | non-exist (since $\left.N<v_{3}\right)$ |
| :--- | :--- |
| $R(\{0,1,3\} \mid P)$ | non-exist (see [15]) |
| $R(\{0,1,2\} \mid P)$, i.e., VI | (7a) $\lambda_{i}>0(i=2,5,6), \lambda_{0}+\lambda_{1}+\lambda_{7}>0, \lambda_{j}=0(j=3,4) ;$ or |
| | (7b) $\lambda_{i}>0(i=1,2,5), \lambda_{0}+\lambda_{6}+\lambda_{7}>0, \lambda_{j}=0(j=3,4)$ |
| $R(\{0,1\} \mid P)$ | (7c) $\lambda_{i}>0(i=1,5,6), \lambda_{0}+\lambda_{7}>0, \lambda_{j}=0(j=2,3,4) ;$ |
| | (7d) $\lambda_{i}>0(i=1,2,6), \lambda_{0}+\lambda_{7}>0, \lambda_{j}=0(j=3,4,5) ;$ |
| | (7e) $\lambda_{i}>0(i=0,1,4,7), \lambda_{j}=0(j=2,3,5,6) ;$ |
| | (7f) $\lambda_{i}>0(i=0,3,6,7), \lambda_{j}=0(j=1,2,4,5) ;$ |
| | (7g) $\lambda_{i}>0(i=1,4,6), \lambda_{0}+\lambda_{7}>0, \lambda_{j}=0(j=2,3,5) ;$ or |
| | (7h) $\lambda_{i}>0(i=1,3,6), \lambda_{0}+\lambda_{7}>0, \lambda_{j}=0(j=2,4,5)$ |

Table 3.1. (continued)

m	Resolution	Conditions on $\operatorname{SA}\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$
8	$R(\{0,1,2,3\} \mid P)$, i.e., VIII	non-exist (since $\left.N<\nu_{3}\right)$
	$R(\{0,1,3\} \mid P)$	non-exist (see [15])
	$R(\{0,1,2\} \mid P)$, i.e., VI	(8a) $\lambda_{i}>0(i=2,6,7), \lambda_{0}+\lambda_{1}+\lambda_{8}>0, \lambda_{j}=0(j=3,4,5) ;$
	(8b) $\lambda_{i}>0(i=1,2,6), \lambda_{0}+\lambda_{7}+\lambda_{8}>0, \lambda_{j}=0(j=3,4,5) ;$ or	
	(8c) $\lambda_{i}>0(i=1,4,7), \lambda_{0}+\lambda_{8}>0, \lambda_{j}=0(j=2,3,5,6)$	
	$R(\{0,1\} \mid P)$	(8d) $\lambda_{i}>0(i=1,6,7), \lambda_{0}+\lambda_{8}>0, \lambda_{j}=0(j=2,3,4,5) ;$
	(8e) $\lambda_{i}>0(i=1,2,7), \lambda_{0}+\lambda_{8}>0, \lambda_{j}=0(j=3,4,5,6) ;$	
	(8f) $\lambda_{i}>0(i=1,5,7), \lambda_{0}+\lambda_{8}>0, \lambda_{j}=0(j=2,3,4,6)$; or	
	(8g) $\lambda_{i}>0(i=1,3,7), \lambda_{0}+\lambda_{8}>0, \lambda_{j}=0(j=2,4,5,6)$	

Table 3.2. 2^{m}-BFF designs having resolution $R^{*}(\{1\} \mid P)$ with $6 \leqq m \leqq 8$

m	Resolution	Conditions on $\operatorname{SA}\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$
6	$R(\{0,1,2,3\} \mid P)$, i.e., VII	non-exist (since $\left.N<v_{3}\right)$
	$R(\{1,2,3\} \mid P)$	non-exist (see [15])
	$R(\{0,1,3\} \mid P)$	non-exist (see [15])
	$R(\{0,1,2\} \mid P)$, i.e., VI	(6a)-(6e) in Table 3.1
	$R(\{1,3\} \mid P)$	non-exist (see [15])
	$R(\{1,2\} \mid P)$, i.e., VI	non-exist (see [15])
	$R(\{0,1\} \mid P)$	(6f) and (6g) in Table 3.1
	$R(\{1\} \mid P)$	(6h) $\lambda_{i}>0(i=1,4,5), \lambda_{j}=0(j=0,2,3,6) ;$ or
	(6i) $\lambda_{i}>0(i=1,2,5), \lambda_{j}=0(j=0,3,4,6)$	

$7 R(\{0,1,2,3\} \mid P)$, i.e., VII non-exist (since $N<v_{3}$)
$R(\{1,2,3\} \mid P) \quad$ non-exist (see [15])
$R(\{0,1,3\} \mid P) \quad$ non-exist (see [15])
$\boldsymbol{R}(\{0,1,2\} \mid P)$, i.e., VI (7a) and (7b) in Table 3.1
$R(\{1,3\} \mid P) \quad$ non-exist (see [15])
$R(\{1,2\} \mid P)$, i.e., VI non-exist (see [15])
$R(\{0,1\} \mid P) \quad$ (7c)-(7h) in Table 3.1
$R(\{1\} \mid P) \quad$ non-exist (see [15])
$8 \quad R(\{0,1,2,3\} \mid P)$, i.e., VII non-exist (since $N<v_{3}$)
$R(\{0,1,3\} \mid P) \quad$ non-exist (see [15])
$\boldsymbol{R}(\{0,1,2\} \mid P)$, i.e., VI (8a)-(8c) in Table 3.1
$\boldsymbol{R}(\{1,3\} \mid P)$
non-exist (see [15])
$R(\{1,2\} \mid P)$, i.e., VI
non-exist (see [15])
$\boldsymbol{R}(\{0,1\} \mid P)$
(8 d)-(8 g) in Table 3.1
$R(\{1\} \mid P)$
non-exist (see [15])

4. PA-optimal $\mathbf{2}^{\boldsymbol{m}}$-BFF designs having resolution $\boldsymbol{R}^{*}(\{0,1\} \mid \mathbf{P})$ and $\boldsymbol{R}^{*}(\{\mathbf{1}\} \mid \boldsymbol{P})$ with $6 \leqq m \leqq 8$

We shall consider a $2^{m}-B F F$ design derived from a $\mathrm{BA}\left(m, 6 ; z_{0}^{(m)}, z_{1}^{(m)}, \ldots, z_{m}^{(m)}\right)$. For $P=\{0,1,2,3\}$, PA-optimal 2^{m}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)$ and $R^{*}(\{1\} \mid P)$ are then defined as follows:

Definition 4.1. A 2^{m}-BFF design having resolution $R^{*}(\{0,1\} \mid P)$ is said to be partial A-optimal, written PA-optimal 2^{m}-BFF design having resolution $R^{*}(\{0,1\} \mid P)$ for brevity, if $\operatorname{tr}\left(\operatorname{Cov}\left[\hat{\underline{\Psi}}_{01}\right] / \sigma^{2}\right)\left(=S_{01}\right.$, say $)$ is a minimum for a given pair (N, m), where $\operatorname{Cov}\left[\hat{\underline{\Psi}}_{01}\right]$ is given in (3.1) and $\operatorname{tr}(S)$ denotes the trace of a matrix S.

Definition 4.2. A 2^{m}-BFF design having resolution $R^{*}(\{1\} \mid P)$ is said to be partial A-optimal, written PA-optimal 2^{m}-BFF design having resolution $R^{*}(\{1\} \mid P)$ for brevity, if $\operatorname{tr}\left(\operatorname{Cov}\left[\underline{\underline{\Psi}}_{1}\right] / \sigma^{2}\right)\left(=S_{1}\right.$, say) is a minimum for a given pair (N, m), where $\operatorname{Cov}\left[\hat{\Psi}_{1}\right]$ is given in (3.2).

Let $k_{i, j}^{0}$ and $k_{r, s}^{1}$ be, respectively, the $(i+1, j+1)$-element and $(r+1, s+1)$ element of
(i) K_{0}^{-1} and $\left[\begin{array}{ll}K_{1}^{0,0} & k_{1}^{0,1} \\ k_{1}^{1,0} & k_{1}^{1,1}\end{array}\right]^{-1} \quad\left(=K_{(1)}^{-1}\right.$, say $)$
for the series (6a), (7e) and (7f) in Proposition 3.3,
(ii) $\left[\begin{array}{lll}k_{0}^{0,0} & k_{0}^{0,1} & k_{0}^{0,2} \\ & k_{0}^{1,1} & k_{0}^{1,2} \\ \text { sym. } & & k_{0}^{2,2}\end{array}\right]^{-1}\left(=K_{(0)}^{-1}\right.$, say $)$ and K_{1}^{-1}
for the series (6d), (6h) and (6i) in Proposition 3.3
and
(iii) K_{0}^{-1} and K_{1}^{-1} for the remaining series.

Note that from Proposition 2.1, K_{0} and $K_{(1)}$ in (4.1), $K_{(0)}$ and K_{1} in (4.2), and K_{0} and K_{1} in (4.3) are nonsingular. Then we have the following:

Theorem 4.1. (I) If T is an array of Table 3.1, then $\operatorname{Cov}\left[\hat{\Psi}_{01}\right]$ and S_{01} are, respectively, given by

$$
\begin{equation*}
\operatorname{Cov}\left[\underline{\underline{\Psi}}_{01}\right]=\sigma^{2} \sum_{b=0}^{1} \sum_{r=0}^{1-b} \sum_{s=0}^{1-b} k_{r, s}^{b} D_{b}^{(b+r, b+s) \#} \in \boldsymbol{R} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{01}=\left(k_{0,0}^{0}+k_{1,1}^{0}\right)+(m-1) k_{0,0}^{1} . \tag{4.5}
\end{equation*}
$$

(II) If T is an array of Table 3.2, then $\operatorname{Cov}\left[\hat{\Psi}_{1}\right]$ and S_{1} are, respectively, given by

$$
\begin{equation*}
\operatorname{Cov}\left[\underline{\underline{\Psi}}_{1}\right]=\sigma^{2}\left\{k_{1,1}^{0} D_{0}^{(1,1) \#}+k_{0,0}^{1} D_{1}^{(1,1) \sharp}\right\} \in \boldsymbol{R} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{1}=k_{1,1}^{0}+(m-1) k_{0,0}^{1} \tag{4.7}
\end{equation*}
$$

Proof. (I) Consider T being an array of Table 3.1.
(i) If T is an array of the series (7e) and (7f), then using

$$
X_{01}=\sum_{r=0}^{1} \sum_{s=0}^{3} k_{r, s}^{0} D_{0}^{(r, s) \ddagger}+\sum_{s=0}^{1} k_{0, s}^{1} D_{1}^{(1, s+1) \ddagger} \in \boldsymbol{R},
$$

it holds from (2.1), (2.3) and (2.4) that $X_{01} M_{T}=\sum_{u=0}^{1} D_{0}^{(u, u)}$. Furthermore substituting the above X_{01} into (3.1), we get (4.4) from (2.1), (2.2), (2.3) and (2.4).
(ii) For T being an array of the remaining series, let

$$
X_{01}=\sum_{b=0}^{1} \sum_{r=0}^{1-b} \sum_{s=0}^{3-b} k_{r, s}^{b} D_{b}^{(b+r, b+s) \sharp} \in \boldsymbol{R} .
$$

Then from the argument similar to the above, we have (4.4). Applying (2.3) and (2.5) to (4.4), we have (4.5).
(II) Consider T being an array of Table 3.2.
(i) If T is an array of the series (6a), (7e) and (7f), then using

$$
X_{1}=\sum_{s=0}^{3} k_{1, s}^{0} D_{0}^{(1, s) \#}+\sum_{s=0}^{1} k_{0, s}^{1} D_{1}^{(1, s+1) \#} \in \boldsymbol{R},
$$

as computed in (I) we have (4.6).
(ii) If T is an array of the series (6d), (6h) and (6i), then using

$$
X_{1}=\sum_{s=0}^{2} k_{1, s}^{0} D_{0}^{(1, s) \sharp}+\sum_{s=0}^{2} k_{0, s}^{1} D_{1}^{(1,1+s) \sharp} \in \boldsymbol{R},
$$

we obtain (4.6).
(iii) If T is an array of the remaining series, then by use of

$$
X_{1}=\sum_{s=0}^{3} k_{1, s}^{0} D_{0}^{(1, s) \ddagger}+\sum_{s=0}^{2} k_{0, s}^{1} D_{1}^{(1,1+s) \sharp} \in \boldsymbol{R},
$$

we can obtain (4.6). The formula (4.7) can be otained from (2.3), (2.5) and (4.6). This completes the proof.

Let $c_{a}^{(u, v)}$ be an element of $\operatorname{Cov}\left[\hat{\underline{\Psi}}_{01}\right] / \sigma^{2}\left(=C_{01}\right.$, say $)$ or $\operatorname{Cov}\left[\underline{\underline{\Psi}}_{1}\right] / \sigma^{2}$ ($=C_{1}$, say) corresponding to the $\theta_{t_{1} \ldots t_{u}}$-th row and $\theta_{t_{1}^{\prime} \ldots t_{v}^{\prime}}$ th column, which are the a-th associates. Then the following theorem is immediately obtained from (2.2) and (4.4) (or (4.6)).

Theorem 4.2. (I) If T is an array of Table 3.1, then the elements $c_{a}^{(u, v)}(0 \leqq a$ $\leqq \min (u, v) ; u, v=0,1)$ of C_{01} are given by

$$
\begin{aligned}
& c_{0}^{(0,0)}=k_{0,0}^{0}, \\
& c_{0}^{(0,1)}=c_{0}^{(1,0)}=k_{0,1}^{0} / m^{1 / 2}, \\
& c_{0}^{(1,1)}=\left\{k_{1,1}^{0}+(m-1) k_{0,0}^{1}\right\} / m
\end{aligned}
$$

and

$$
c_{1}^{(1,1)}=\left(k_{1,1}^{0}-k_{0,0}^{1}\right) / m,
$$

where $k_{r, s}^{b}(0 \leqq b \leqq r \leqq s \leqq 1)$ are given in (I) of Theorem 4.1.
(II) If T is an array of Table 3.2, then the elements $c_{a}^{(1,1)}(a=0,1)$ of C_{1} are given by

$$
c_{0}^{(1,1)}=\left\{k_{1,1}^{0}+(m-1) k_{0,0}^{1}\right\} / m
$$

and

$$
c_{1}^{(1,1)}=\left(k_{1,1}^{0}-k_{0,0}^{1}\right) / m,
$$

where $k_{1,1}^{0}$ and $k_{0,0}^{1}$ are given in (II) of Theorem 4.1.
We are interested in the estimation of the general mean and the main effects or the main effects only. By Theorems 4.1 and 4.2, PA-optimal 2^{m}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)$ and $R^{*}(\{1\} \mid P)$ will be presented for 6 $\leqq m \leqq 8$, where $P=\{0,1,2,3\}$. If $N \geqq v_{3}$, then there always exist a $2^{m}-\mathrm{BFF}$ design of resolution VII. Thus we only consider the case of $N<v_{3}$. First, we shall consider 2^{m}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)$, which satisfy (i) $m=6,28 \leqq N \leqq 41$, (ii) $m=7,36 \leqq N \leqq 63$ and (iii) $m=8,45 \leqq N \leqq 92$ as in Table 3.1. Note that the lower bounds of N for the existence of such designs can be obtained from the series (6 f) (or (6 g)) for $m=6$, (7c) (or (7d)) for $m=7$, and (8d)(or (8e)) for $m=8$. In Tables 4.1, 4.2 and 4.3, PA-optimal 2^{m}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)$ for $m=6,7$ and 8 are, respectively, given together with $\mathrm{SA}\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$, resolution, S_{01} and $c_{a}^{(u, v)}(0 \leqq a$ $\leqq \min (u, v) ; u, v=0,1)$ for each N. Next we consider $2^{m}-$ BFF designs having resolution $R^{*}(\{1\} \mid P)$, which satisfy (i) $m=6,27 \leqq N \leqq 41$, (ii) $m=7,36 \leqq N$ $\leqq 63$ and (iii) $m=8,45 \leqq N \leqq 92$ as in Table 3.2. We note that the lower bounds of N for the existence of such designs can be obtained from the series (6h)(or (6i)) for $m=6$, (7c)(or (7d)) for $m=7$, and (8d)(or (8e)) for $m=8$. In Tables 4.4, 4.5 and 4.6, PA-optimal 2^{m}-BFF designs having resolution $R^{*}(\{1\} \mid P)$ for $m=6,7$ and 8 are, respectively, given together with $\operatorname{SA}\left(m ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$, resolution, S_{1} and $c_{a}^{(1,1)}(a=0,1)$ for each N. Note that for the designs in Tables 4.1 through 4.6, their complementary designs are also optimal and have the same resolution. In Tables 4.4, 4.5 and 4.6, the designs which are not PAoptimal designs having resolution $R^{*}(\{0,1\} \mid P)$ will be indicated by the asterisk $*$.

Table 4.1. PA-optimal 2^{6}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)(28 \leqq N \leqq 41)$

Table 4.2. PA-optimal 2^{7}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)(36 \leqq N \leqq 63)$

N	$\operatorname{SA}\left(7 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{7}\right)$	Resolution	S_{01}	$\begin{aligned} & c_{0}^{(0,0)} \\ & c_{0}^{(1,1)} \end{aligned}$	$\begin{aligned} & c_{0}^{(0,1)} \\ & c_{1}^{(1,1)} \end{aligned}$
36	SA(7; $1,1,0,0,0,1,1,0)$	$R(\{0,1\} \mid P)$	1.10500	0.13812	-0.01812
				0.13812	-0.01813
37	SA(7; 2, 1, 0, 0, 0, 1, 1, 0)		1.07750	0.11281	-0.01531
				0.13781	-0.01844
38	SA(7; 3, 1, 0, 0, 0, 1, 1, 0)		1.06833	0.10437	-0.01437
				0.13771	-0.01854
39	SA(7; 4, 1, 0, 0, 0, 1, 1, 0)		1.06375	0.10016	-0.01391
				0.13766	-0.01859
40	SA(7; 5, 1, 0, 0, 0, 1, 1, 0)		1.06100	0.09762	-0.01362
				0.13762	-0.01863
41	SA(7; 5, 1, 0, 0, 0, 1, 1, 1)		1.05870	0.09564	-0.01332
				0.13758	-0.01867
42	SA(7; 6, 1, 0, 0, 0, 1, 1, 1)		1.05666	0.09377	-0.01311
				0.13756	-0.01869
43	SA(7; 1, 1, 0, 0, 0, 1, 2, 0)		0.91250	0.13594	-0.01719
				0.11094	-0.01406
44	$\mathrm{SA}(7 ; 1,1,0,0,1,0,0,1)$		0.26389	0.03299	-0.00868
				0.03299	0.00868
45	SA(7; 2, 1, 0, 0, 1, 0, 0, 1)		0.24826	0.03103	-0.00673
				0.03103	0.00673
46	SA(7; 2, 1, 0, 0, 1, 0, 0, 2)		0.24132	0.03016	-0.00760
				0.03016	0.00586
47	$\mathrm{SA}(7 ; 3,1,0,0,1,0,0,2)$		0.23611	0.02951	-0.00694
				0.02951	0.00521
48	SA(7;4, 1, 0, 0, 1, 0, 0, 2)		0.23351	0.02919	-0.00662
				0.02919	0.00488
49	SA(7; 4, 1, 0, 0, 1, 0, 0, 3)		0.23119	0.02890	-0.00691
				0.02890	0.00459
50	SA(7; 1, 1, 0, 0, 1, 0, 1, 0)		0.22271	0.03969	-0.00875
				0.02615	0.00184
51	SA(7; 1, 1, 0, 0, 1, 0, 1, 1)		0.21346	0.03270	-0.00725
				0.02582	0.00152
52	SA(7; 2, 2, 0, 0, 1, 0, 0, 1)		0.19965	0.02496	-0.00239
				0.02496	0.00412
53	SA(7; 2, 2, 0, 0, 1, 0, 0, 2)		0.19271	0.02409	-0.00326
				0.02409	0.00326

Table 4.2. (continued)

N	$\operatorname{SA}\left(7 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{7}\right)$	Resolution	S_{01}	$\begin{aligned} & c_{0}^{(0,0)} \\ & c_{0}^{(1,1)} \end{aligned}$	$\begin{aligned} & c_{0}^{(0,1)} \\ & c_{1}^{(1,1)} \end{aligned}$
54	SA(7; 3, 2, 0, 0, 1, 0, 0, 2)		0.18750	0.02344	-0.00260
				0.02344	0.00260
55	SA(7; 4, 2, 0, 0, 1, 0, 0, 2)		0.18490	0.02311	-0.00228
				0.02311	0.00228
56	SA(7; 4, 2, 0, 0, 1, 0, 0, 3)		0.18258	0.02282	-0.00257
				0.02282	0.00199
57	SA(7; 5, 2, 0, 0, 1, 0, 0, 3)		0.18102	0.02263	-0.00237
				0.02263	0.00179
58	SA(7; 2, 2, 0, 0, 1, 0, 1, 0)		0.17406	0.02654	-0.00354
				0.02107	0.00024
59	SA(7; 3, 2, 0, 0, 1, 0, 1, 0)		0.17146	0.02508	-0.00305
				0.02091	0.00008
60	SA(7; 3, 2, 0, 0, 1, 0, 1, 1)		0.17013	0.02376	-0.00309
				0.02091	0.00008
61	SA(7; 4, 2, 0, 0, 1, 0, 1, 1)		0.16905	0.02329	-0.00289
				0.02082	-0.00001
62	SA(7; 5, 2, 0, 0, 1, 0, 1, 1)		0.16837	0.02299	-0.00276
				0.02077	-0.00006
63	SA(7; 4, 3, 0, 0, 1, 0, 0, 3)		0.16638	0.02080	-0.00112
				0.02080	0.00112

Table 4.3. PA-optimal 2^{8}-BFF designs having resolution $R^{*}(\{0,1\} \mid P)(45 \leqq N \leqq 92)$

N	$\mathrm{SA}\left(8 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{8}\right)$	Resolution	S_{01}	$c_{0}^{(0,0)}$ $c_{0}^{(1,1)}$	$c_{0}^{(0,1)}$ $c_{1}^{(1,1)}$
45	$\mathrm{SA}(8 ; 1,1,0,0,0,0,1,1,0)$	$R(\{0,1\} \mid P)$	2.01000	0.22333	-0.02667
				0.22333	-0.02667
46	$\mathrm{SA}(8 ; 2,1,0,0,0,0,1,1,0)$		1.94750	0.16778	-0.01972
			0.22247	-0.02753	
47	$\mathrm{SA}(8 ; 3,1,0,0,0,0,1,1,0)$				
		1.92667	0.14926	-0.01741	
48	$\mathrm{SA}(8 ; 4,1,0,0,0,0,1,1,0)$		0.22218	-0.02782	
			1.91000	0.14000	-0.01625
49	$\mathrm{SA}(8 ; 5,1,0,0,0,0,1,1,0)$		0.22203	-0.02797	
				0.22194	-0.02806

Table 4.3. (continued-1)

N	$\mathrm{SA}\left(8 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{8}\right)$	Resolution	S_{01}	$\begin{aligned} & c_{0}^{(0,0)} \\ & c_{0}^{(1,1)} \end{aligned}$	$\begin{aligned} & c_{0}^{(0,1)} \\ & c_{1}^{(1,1)} \end{aligned}$
50	$\mathrm{SA}(8 ; 5,1,0,0,0,0,1,1,1)$		1.90494	0.12940	-0.01567
				0.22194	-0.02806
51	SA(8; 6, 1, 0, 0, 0, 0, 1, 1, 1)		1.90039	0.12531	-0.01518
				0.22189	-0.02811
52	SA(8; $7,1,0,0,0,0,1,1,1)$		1.89714	0.12239	-0.01484
				0.22184	-0.02816
53	$\mathbf{S A}(8 ; 1,1,0,0,0,0,1,2,0)$		1.51000	0.21639	-0.02580
				0.16170	-0.01799
54	SA(8; 2, 1, 0, 0, 0, 0, 1, 2, 0)		1.44750	0.16083	-0.01885
				0.16083	-0.01885
55	SA(8; 3, 1, 0, 0, 0, 0, 1, 2, 0)		1.42667	0.14231	-0.01654
				0.16054	-0.01914
56	SA(8; 4, 1, 0, 0, 0, 0, 1, 2, 0)		1.41625	0.13306	-0.01538
				0.16040	-0.01929
57	SA(8; 5, 1, 0, 0, 0, 0, 1, 2, 0)		1.41000	0.12750	-0.01469
				0.16031	-0.01938
58	$\mathrm{SA}(8 ; 6,1,0,0,0,0,1,2,0)$		1.40583	0.12380	-0.01422
				0.16025	-0.01943
59	$\mathrm{SA}(8 ; 7,1,0,0,0,0,1,2,0)$		1.40286	0.12115	-0.01389
				0.16021	-0.01947
60	SA(8; 8, 1, 0, 0, 0, 0, 1, 2, 0)		1.40063	0.11917	-0.01365
				0.16018	-0.01951
61	SA(8; $1,1,0,0,0,0,1,3,0)$		1.34333	0.21407	-0.02551
				0.14116	-0.01509
62	$\mathrm{SA}(8 ; 2,1,0,0,0,0,1,3,0)$		1.28083	0.15852	-0.01856
				0.14029	-0.01596
63	$\mathrm{SA}(8 ; 3,1,0,0,0,0,1,3,0)$		1.26000	0.14000	-0.01625
				0.14000	-0.01625
64	$\mathbf{S A}(8 ; 4,1,0,0,0,0,1,3,0)$		1.24958	0.13074	-0.01509
				0.13986	-0.01639
65	$\mathbf{S A}(8 ; 1,0,1,0,0,0,1,1,0)$	$R(\{0,1,2\} \mid P)$	0.89702	0.04253	0.00045
				0.10681	-0.01428
66	$\mathbf{S A}(8 ; 1,0,1,0,0,0,1,1,1)$		0.89087	0.03638	0.00047
				0.10681	-0.01428
67	$\mathbf{S A}(8 ; 2,0,1,0,0,0,1,1,1)$		0.88740	0.03323	0.00012
				0.10677	-0.01432
68	$\mathrm{SA}(8 ; 2,0,1,0,0,0,1,1,2)$		0.88529	0.03112	0.00011
				0.10677	-0.01432

Table 4.3. (continued-2)

N	$\operatorname{SA}\left(8 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{8}\right)$	Resolution	S_{01}	$\begin{aligned} & c_{0}^{(0,0)} \\ & c_{0}^{(1,1)} \end{aligned}$	$\begin{aligned} & c_{0}^{(0,1)} \\ & c_{1}^{(1,1)} \end{aligned}$
69	$\mathrm{SA}(8 ; 3,0,1,0,0,0,1,1,2)$		0.88406	0.03000	-0.00001
				0.10676	-0.01434
70	$\mathrm{SA}(8 ; 3,0,1,0,0,0,1,1,3)$		0.88300	0.02893	-0.00001
				0.10676	-0.01434
71	SA(8; 4, 0, 1, 0, 0, 0, 1, 1, 3)		0.88236	0.02835	-0.00008
				0.10675	-0.01434
72	$\mathrm{SA}(8 ; 0,1,1,0,0,0,1,1,0)$		0.59750	0.04500	0.00000
				0.06906	-0.00906
73	$\mathrm{SA}(8 ; 1,1,0,0,0,1,0,1,0)$	$R(\{0,1\} \mid P)$	0.32000	0.08000	-0.01922
				0.03000	0.00266
74	SA(8; 2, 1, 0, 0, 0, 1, 0, 1, 0)		0.29000	0.06000	-0.01422
				0.02875	0.00141
75	SA(8; 3, 1, 0, 0, 0, 1, 0, 1, 0)		0.28000	0.05333	-0.01255
				0.02833	0.00099
76	$\mathrm{SA}(8 ; 3,1,0,0,0,1,0,1,1)$		0.27493	0.04927	-0.01184
				0.02821	0.00086
77	SA(8;4, 1, 0, 0, 0, 1, 0, 1, 1)		0.27107	0.04679	-0.01118
				0.02804	0.00069
78	SA(8; 5, 1, 0, 0, 0, 1, 0, 1, 1)		0.26869	0.04525	-0.01078
				0.02793	0.00059
79	SA(8; $6,1,0,0,0,1,0,1,1)$		0.26708	0.04421	-0.01051
				0.02786	0.00051
80	SA(8; $6,1,0,0,0,1,0,1,2)$		0.26588	0.04320	-0.01035
				0.02783	0.00049
81	$\mathrm{SA}(8 ; 1,2,0,0,0,1,0,1,0)$		0.26141	0.06438	-0.01434
				0.02463	0.00168
82	$\mathrm{SA}(8 ; 2,2,0,0,0,1,0,1,0)$		0.23141	0.04438	-0.00934
				0.02338	0.00043
83	$\mathrm{SA}(8 ; 3,2,0,0,0,1,0,1,0)$		0.22141	0.03771	-0.00767
				0.02296	0.00001
84	$\mathrm{SA}(8 ; 4,2,0,0,0,1,0,1,0)$		0.21641	0.03438	-0.00684
				0.02275	-0.00020
85	SA(8; 5, 2, 0, 0, 0, 1, 0, 1, 0)		0.21341	0.03238	-0.00634
				0.02263	-0.00032
86	$\mathrm{SA}(8 ; 6,2,0,0,0,1,0,1,0)$		0.21141	0.03104	-0.00600
				0.02255	-0.00040
87	SA(8; $1,1,0,0,1,0,0,1,0)$	$R(\{0,1,2\} \mid P)$	0.16574	0.01173	-0.00100
				0.01925	0.00710

Table 4.3. (continued-3)

N	$\mathrm{SA}\left(8 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{8}\right)$	Resolution	S_{01}	$\begin{aligned} & c_{0}^{(0,0)} \\ & c_{0}^{(1,1)} \end{aligned}$	$\begin{aligned} & c_{0}^{(0,1)} \\ & c_{1}^{(1,1)} \end{aligned}$
88	$\mathrm{SA}(8 ; 1,1,0,0,1,0,0,1,1)$		0.14331	0.01136	0.00000
				0.01649	0.00434
89	$\mathrm{SA}(8 ; 2,1,0,0,1,0,0,1,1)$		0.13848	0.01129	-0.00022
				0.01590	0.00375
90	$\mathrm{SA}(8 ; 2,1,0,0,1,0,0,1,2)$		0.13530	0.01116	0.00000
				0.01552	0.00336
91	SA(8; 3, 1, 0, 0, 1, 0, 0, 1, 2)		0.13381	0.01111	-0.00010
				0.01534	0.00318
92	$\mathrm{SA}(8 ; 3,1,0,0,1,0,0,1,3)$		0.13257	0.01104	0.00000
				0.01519	0.00304

Table 4.4. PA-optimal 2^{6} - BFF designs having resolution $R^{*}(\{1\} \mid P)(27 \leqq N \leqq 41)$

N	$\operatorname{SA}\left(6 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{6}\right)$	Resolution	S_{1}	$c_{0}^{(1,1)}$	$c_{1}^{(1,1)}$
*27	SA(6;0, 1, 0, 0, 1, 1, 0)	$R(\{1\} \mid P)$	0.49680	0.08280	-0.01095
*28a	SA(6; $0,1,0,0,1,1,1)$	$R(\{0,1\} \mid P)$	0.50000	0.08333	-0.01042
28b	SA(6; $0,1,1,0,0,1,1)$				
*29	SA(6; 1, 1, 0, 0, 1, 1, 1)		0.49688	0.08281	-0.01094
*30	SA(6; 1, 1, 0, 0, 1, 1, 2)		0.49632	0.08272	-0.01103
*31	SA(6; $1,1,0,0,1,1,3)$		0.49609	0.08268	-0.01107
32a	SA(6; $1,0,1,0,1,0,1)$	$R(\{0,1,2\} \mid P)$	0.18750	0.03125	0.00000
32b	SA(6; $0,1,0,1,0,1,0)$				
33	SA(6; 1, 0, 1, 0, 1, 0, 2)		0.18457	0.03076	-0.00049
34	SA(6; 2, 0, 1, 0, 1, 0, 2)		0.18164	0.03027	-0.00098
35	SA(6; 2, 0, 1, 0, 1, 0, 3)		0.18066	0.03011	-0.00114
36	SA(6; 3, 0, 1, 0, 1, 0, 3)		0.17969	0.02995	-0.00130
37	SA(6; 3, 0, 1, 0, 1, 0, 4)		0.17920	0.02987	-0.00138
38	SA(6;0, 1, 0, 1, 0, 2, 0)		0.16992	0.02832	-0.00098
39a	SA(6;0, 1, 0, 1, 0, 2, 1)		0.16992	0.02832	-0.00098
39b	SA(6;0, 2, 0, 1, 0, 1, 1)				
40	SA(6; $1,1,0,1,0,2,1)$		0.16900	0.02817	-0.00113
41a	SA(6; 1, 1, 0, 1, 0, 2, 2)		0.16885	0.02814	-0.00116
41b	SA(6; 2, 1, 0, 1, 0, 2, 1)				

Table 4.5. PA-optimal 2^{7}-BFF designs having resolution $R^{*}(\{1\} \mid P)(36 \leqq N \leqq 63)$

N	$\mathbf{S A}\left(7 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{7}\right)$	Resolution	S_{1}	$c_{0}^{(1,1)}$	$c_{1}^{(1,1)}$
36	SA(7; 1, 1, 0, 0, 0, 1, 1, 0)	$R(\{0,1\} \mid P)$	0.96687	0.13812	-0.01813
37	SA(7; $2,1,0,0,0,1,1,0)$		0.96469	0.13781	-0.01844
38	SA(7; 3, 1, 0, 0, $0,1,1,0)$		0.96396	0.13771	-0.01854
39	SA(7;4, 1, 0, 0, 0, 1, 1, 0)		0.96359	0.13766	-0.01859
*40	SA(7;4, 1, 0, 0, 0, 1, 1, 1)		0.96331	0.13762	-0.01863
41	SA(7; 5, 1, 0, 0, 0, 1, 1, 1)		0.96306	0.13758	-0.01867
42	SA(7; 6, 1, 0, 0, 0, 1, 1, 1)		0.96289	0.13756	-0.01869
43	SA(7; 1, 1, 0, 0, 0, 1, 2, 0)		0.77656	0.11094	-0.01406
44	SA(7; 1, 1, 0, 0, 1, 0, 0, 1)		0.23090	0.03299	0.00868
45	SA(7; $2,1,0,0,1,0,0,1)$		0.21723	0.03103	0.00673
46	SA(7; 2, 1, 0, 0, 1, 0, 0, 2)		0.21115	0.03016	0.00586
47	SA(7; 3, 1, 0, 0, 1, 0, 0, 2)		0.20660	0.02951	0.00521
48	SA(7; 4, 1, 0, 0, 1, 0, 0, 2)		0.20432	0.02919	0.00488
49	SA(7; 4, 1, 0, 0, 1, 0, 0, 3)		0.20229	0.02890	0.00459
50	SA(7; 1, 1, 0, 0, 1, 0, 1, 0)		0.18302	0.02615	0.00184
*51	SA(7; 2, 1, 0, 0, 1, 0, 1, 0)		0.17960	0.02566	0.00135
52	SA(7; 2, 2, 0, 0, 1, 0, 0, 1)		0.17470	0.02496	0.00412
53	SA(7; 2, 2, 0, 0, 1, 0, 0, 2)		0.16862	0.02409	0.00326
54	SA(7; 3, 2, 0, 0, 1, 0, 0, 2)		0.16406	0.02344	0.00260
55	SA(7;4, 2, 0, 0, 1, 0, 0, 2)		0.16178	0.02311	0.00228
56	SA(7; 4, 2, 0, 0, 1, 0, 0, 3)		0.15976	0.02282	0.00199
*57	SA(7; 1, 2, 0, 0, 1, 0, 1, 0)		0.15094	0.02156	0.00073
58	SA(7; 2, 2, 0, 0, 1, 0, 1, 0)		0.14752	0.02107	0.00024
59	SA(7; 3, 2, 0, 0, 1, 0, 1, 0)		0.14638	0.02091	0.00008
*60	SA(7; 4, 2, 0, 0, 1, 0, 1, 0)		0.14581	0.02083	0.00000
*61	SA(7; 5, 2, 0, 0, 1, 0, 1, 0)		0.14547	0.02078	-0.00005
*62	SA(7; 6, 2, 0, 0, 1, 0, 1, 0)		0.14524	0.02075	-0.00008
*63	SA(7; 7, 2, 0, 0, 1, 0, 1, 0)		0.14508	0.02073	-0.00011

Table 4.6. PA-optimal 2^{8}-BFF designs having resolution $R^{*}(\{1\} \mid P)(45 \leqq N \leqq 92)$

N	$\mathrm{SA}\left(8 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{8}\right) \quad$ Resolution	S_{1}	$c_{0}^{(1,1)}$	$c_{1}^{(1,1)}$
45	SA(8; $1,1,0,0,0,0,1,1,0) R(\{0,1\} \mid P)$	1.78667	0.22333	-0.02667
46	SA(8; 2, 1, 0, 0, 0, 0, 1, 1, 0)	1.77972	0.22247	-0.02753
47	SA $(8 ; 3,1,0,0,0,0,1,1,0)$	1.77741	0.22218	-0.02782
48	SA(8; 4, 1, 0, 0, 0, 0, 1, 1, 0)	1.77625	0.22203	-0.02797
49	SA(8; 5, 1, 0, 0, 0, 0, 1, 1, 0)	1.77556	0.22194	-0.02806
*50	SA(8; 6, 1, 0, 0, 0, 0, 1, 1, 0)	1.77509	0.22189	-0.02811
*51	SA(8; $7,1,0,0,0,0,1,1,0)$	1.77476	0.22185	-0.02815
*52	SA(8; $8,1,0,0,0,0,1,1,0)$	1.77451	0.22181	-0.02819
53	SA(8; $1,1,0,0,0,0,1,2,0)$	1.29361	0.16170	-0.01799
54	SA(8; 2, 1, 0, 0, 0, 0, 1, 2, 0)	1.28667	0.16083	-0.01885
55	SA(8; 3, 1, 0, 0, 0, 0, 1, 2, 0)	1.28435	0.16054	-0.01914
56	SA(8; 4, 1, 0, 0, 0, 0, 1, 2, 0)	1.28319	0.16040	-0.01929
57	SA(8; 5, 1, 0, 0, 0, 0, 1, 2, 0)	1.28250	0.16031	-0.01938
58	SA(8; 6, 1, 0, 0, 0, 0, 1, 2, 0)	1.28204	0.16025	-0.01943
*59	$\mathrm{SA}(8 ; 6,1,0,0,0,0,1,2,1)$	1.28166	0.16021	-0.01948
*60	SA(8; 7, 1, 0, 0, 0, 0, 1, 2, 1)	1.28136	0.16017	-0.01952
61	SA(8; $1,1,0,0,0,0,1,3,0)$	1.12926	0.14116	-0.01509
62	SA(8; $2,1,0,0,0,0,1,3,0)$	1.12231	0.14029	-0.01596
63	SA(8; 3, 1, 0, 0, 0, 0, 1, 3, 0)	1.12000	0.14000	-0.01625
64	SA(8; 4, 1, 0, 0, 0, 0, 1, 3, 0)	1.11884	0.13986	-0.01639
65	SA(8; $1,0,1,0,0,0,1,1,0) R(\{0,1,2\} \mid P)$	0.85449	0.10681	-0.01428
*66	SA(8; $2,0,1,0,0,0,1,1,0)$	0.85417	0.10677	-0.01432
*67	SA(8; $3,0,1,0,0,0,1,1,0)$	0.85406	0.10676	-0.01434
*68	SA(8;4, $, 1,0,0,0,1,1,0)$	0.85401	0.10675	-0.01434
*69	SA(8; 5, $0,1,0,0,0,1,1,0)$	0.85398	0.10675	-0.01435
*70	SA(8; $6,0,1,0,0,0,1,1,0)$	0.85396	0.10674	-0.01435
*71	SA(8; 7, $0,1,0,0,0,1,1,0)$	0.85394	0.10674	-0.01435
72	SA(8;0, 1, 1, 0, 0, 0, 1, 1, 0)	0.55250	0.06906	-0.00906
73	$\mathrm{SA}(8 ; 1,1,0,0,0,1,0,1,0) R(\{0,1\} \mid P)$	0.24000	0.03000	0.00266
74	SA(8; $2,1,0,0,0,1,0,1,0)$	0.23000	0.02875	0.00141
75	SA(8; $3,1,0,0,0,1,0,1,0)$	0.22667	0.02833	0.00099
*76	$\mathrm{SA}(8 ; 4,1,0,0,0,1,0,1,0)$	0.22500	0.02813	0.00078
*77	SA(8;5, 1, 0, 0, 0, 1, 0, 1, 0)	0.22400	0.02800	0.00066
*78	SA(8;6, $, 0,0,0,1,0,1,0)$	0.22333	0.02792	0.00057
*79	SA(8;7, 1, 0, 0, 0, 1, 0, 1, 0)	0.22286	0.02786	0.00051
*80	SA(8; 7, 1, 0, 0, 0, 1, 0, 1, 1)	0.22245	0.02781	0.00046
81	SA(8; $1,2,0,0,0,1,0,1,0)$	0.19703	0.02463	0.00168
82	SA(8;2, 2, 0, 0, 0, 1, 0, 1, 0)	0.18703	0.02338	0.00043

Table 4.6. (continued)

N	$\mathrm{SA}\left(8 ; \lambda_{0}, \lambda_{1}, \ldots, \lambda_{8}\right)$	Resolution	S_{1}	$c_{0}^{(1,1)}$
83	$\mathrm{SA}(8 ; 3,2,0,0,0,1,0,1,0)$	$c_{1}^{(1,1)}$		
84	$\mathrm{SA}(8 ; 4,2,0,0,0,1,0,1,0)$	0.18370	0.02296	0.00001
85	$\mathrm{SA}(8 ; 5,2,0,0,0,1,0,1,0)$	0.18203	0.02275	-0.00020
86	$\mathrm{SA}(8 ; 6,2,0,0,0,1,0,1,0)$	0.18103	0.02263	-0.00032
87	$\mathrm{SA}(8 ; 1,1,0,0,1,0,0,1,0) R(\{0,1,2\} \mid P)$	0.18036	0.02255	-0.00040
88	$\mathrm{SA}(8 ; 1,1,0,0,1,0,0,1,1)$	0.13194	0.01925	0.00710
89	$\mathrm{SA}(8 ; 1,1,0,0,1,0,0,1,2)$	0.12720	0.01590	0.00434
90	$\mathrm{SA}(8 ; 2,1,0,0,1,0,0,1,2)$	0.12413	0.01552	0.00375
91	$\mathrm{SA}(8 ; 2,1,0,0,1,0,0,1,3)$	0.12270	0.01534	0.00318
92	$\mathrm{SA}(8 ; 3,1,0,0,1,0,0,1,3)$	0.12153	0.01519	0.00304

Acknowledgments

The author would like to express his hearty thanks to Professor Sumiyasu Yamamoto, Okayama University of Science, for his encouragement and his valuable suggestions, and also to Professor Yasunori Fujikoshi and Professor Masahide Kuwada, Hiroshima University, who kindly read over an early draft of this paper with valuable advice and comments. The author wishes to thank Mr. Takahiro Yamada, Okayama University of Science, for his valuable assistance on the numerical calculations. This work was supported in part by both of the Grant of the Ministry of Education, Science and Culture under contract Number 63740126 and the Research Grant of Science University of Tokyo under contract Number 87-1001.

References

[1] R. C. Bose and J. N. Srivastava, Multidimensional partially balanced designs and their analysis, with applications to partially balanced factorial fractions, Sankhyā A 26 (1964), 145-168.
[2] I. M. Chakravarti, Fractional replication in asymmetrical factorial designs and partially balanced arrays, Sankhyā 17 (1956), 143-164.
[3] C. S. Cheng, Optimality of some weighing and 2^{n} fractional factorial designs, Ann. Statist. 8 (1980), 436-446.
[4] D. V. Chopra, Balanced optimal 2^{8} fractional factorial designs of resolution V, $52 \leqq N$ $\leqq 59$, A Survey of Statistical Design and Linear Models (Ed., J. N. Srivastava), NorthHolland Publishing Co., Amsterdam (1975a), 91-100.
[5] D. V. Chopra, Optimal balanced 2^{8} fractional factorial designs of resolution V, with 60 to 65 runs, Bull. Internat. Statist. Inst. 46 (1975b), 161-166.
[6] D. V. Chopra, Trace-optimal balanced 2^{9} reduced designs of resolution V, with 46 to 54 runs, J. Indian Statist. Assoc. 15 (1977a), 179-186.
[7] D. V. Chopra, Some optimal balanced reduced designs of resolution V for 2^{9} series, Proc. Internat. Statist. Inst. 47 (1977b), 120-123.
[8] D. V. Chopra, Balanced optimal resolution V designs for ten bi-level factors, $56 \leqq N$ $\leqq 65$, Proc. Internat. Statist. Inst. 48 (1979), 103-105.
[9] D. V. Chopra, Factorial designs for 2^{10} series and simple arrays, Proc. Internat. Statist. Inst. 50 (1983), 854-857.
[10] D. V. Chopra, W. A. K. Kipngeno and S. Ghosh, More precise tables of optimal balanced 2^{m} fractional factorial designs of Srivastava and Chopra, $7 \leqq m \leqq 10$, J. Statist. Plann. Inference 15 (1986), 115-121.
[11] D. V. Chopra and J. N. Srivastava, Optimal balanced 2^{7} fractional factorial designs of resolution V, with $N \leqq 42$, Ann. Inst. Statist. Math. 25 (1973a), 587-604.
[12] D. V. Chopra and J. N. Srivastava, Optimal balanced 2^{7} fractional factorial designs of resolution V, $49 \leqq N \leqq 55$, Commun. Statist. 2 (1973b), 59-84.
[13] D. V. Chopra and J. N. Srivastava, Optimal balanced 2^{8} fractional factorial designs of resolution V, $37 \leqq N \leqq 51$, Sankhyā A 36 (1974), 41-52.
[14] D. V. Chopra and J. N. Srivastava, Optimal balanced 2^{7} fractional factorial designs of resolution $V, 43 \leqq N \leqq 48$, Sankhyā B 37 (1975), 429-447.
[15] Y. Hyodo, Structure of fractional factorial designs derived from two-symbol balanced arrays and their resolution, To appear in Hiroshima Math. J. (1988a).
[16] Y. Hyodo, Note on fractional $2^{2 p+2}$ factorial designs derived from two-symbol balanced arrays of strength $2 p$, To appear in TRU Math. (1988b).
[17] Y. Hyodo and S. Yamamoto, Algebraic structure of information matrices of fractional factorial designs derived from simple two-symbol balanced arrays and its applications, Proc. 2nd Pacific Ärea Statistical Conference (1986), 206-210.
[18] Y. Hyodo and S. Yamamoto, Structure of balanced designs and atomic arrays, In Contributed Papers, 46th Session of the ISI (1987), 185-186.
[19] Y. Hyodo and S. Yamamoto, Algebraic structure of information matrices of fractional factorial designs derived from simple two-symbol balanced arrays and its applications, Statistical Theory and Data Analysis II (Ed., K. Matusita), North-Holland, Amsterdam (1988), 457-468.
[20] M. Kuwada, Balanced arrays of strength 4 and balanced fractional 3^{m} factorial designs, J. Statist. Plann. Inference 3 (1979), 347-360.
[21] M. Kuwada, On some optimal fractional 2^{m} factorial designs of resolution V, J. Statist. Plann. Inference 7 (1982), 39-48.
[22] M. Kuwada and R. Nishii, On a connection between balanced arrays and balanced fractional S^{m} factorial designs, J. Japan Statist. Soc. 9 (1979), 93-101.
[23] R. Nishii and T. Shirakura, More precise tables of Srivastava-Chopra balanced optimal 2^{m} fractional factorial designs of resolution V, $m \leqq 6$, J. Statist. Plann. Inference 13 (1986), 111116.
[24] T. Shirakura, Optimal balanced fractional 2^{m} factorial designs of resolution VII, $6 \leqq m$ $\leqq 8$, Ann. Statist. 4 (1976a), 515-531.
[25] T. Shirakura, Balanced fractional 2^{m} factorial designs of even resolution obtained from balanced arrays of strength 2ℓ with index $\mu_{\ell}=0$, Ann. Statist. 4 (1976b), 723-735.
[26] T. Shirakura, Contributions to balanced fractional 2^{m} factorial designs derived from balanced arrays of strength 2ℓ, Hiroshima Math. J. 7 (1977), 217-285.
[27] T. Shirakura, Optimal balanced fractional 2^{m} factorial designs of resolution IV derived from balanced arrays of strength four, J. Japan Statist. Soc. 9 (1979), 19-27.
[28] T. Shirakura, Necessary and sufficient condition for a balanced array of strength 2ℓ to be a
balanced fractional 2^{m} factorial design of resolution 2ℓ, Austral. J. Statist. 22 (1) (1980), 6974.
[29] T. Shirakura and M. Kuwada, Covariance matrices of the estimates for balanced fractional 2^{m} factorial designs of resolution $2 \ell+1$, J. Japan Statist. Soc. 6 (1976), 27-31.
[30] J. N. Srivastava, Contributions to the construction and analysis of designs, University of North Carolina, Chapel Hill, NC, Mimeo Series No. 301. (1961).
[31] J. N. Srivastava, Optimal balanced 2^{m} fractional factorial designs, S. N. Roy Memorial Volume, Univ. of North Carolina and Indian Statist. Inst. (1970), 689-706.
[32] J. N. Srivastava, Some general existence conditions for balanced arrays of strength t and 2 symbols, J. Combinatorial Theory (A) 13 (1972), 198-206.
[33] J. N. Srivastava and D.V. Chopra, On the characteristic roots of the information matrix of 2^{m} balanced factorial designs of resolution V, with applications, Ann. Math. Statist. 42 (1971a), 722-734.
[34] J. N. Srivastava and D. V. Chopra, Balanced optimal 2^{m} fractional factorial designs of resolution $V, m \leqq 6$, Technometrics 13 (1971b), 257-269.
[35] J. N. Srivastava and D. V. Chopra, Balanced trace-optimal 2^{7} fractional factorial designs of resolution V, with 56 to 68 runs, Utilitas Math. 5 (1974), 263-279.
[36] S. Yamamoto and K. Aratani, Bounds on number of constraints for balanced arrays, In Contributed Papers, 46th Session of the ISI (1987), 483-484.
[37] S. Yamamoto and K. Aratani, Bounds on number of constraints for balanced arrays, TRU Math. 24-1 (1988), 35-54.
[38] S. Yamamoto and Y. Hyodo, Extended concept of resolution and the designs derived from balanced arrays, TRU Math. 20-2 (1984), 341-349.
[39] S. Yamamoto and Y. Hyodo, New concept of resolution and designs derived from balanced arrays, In Contributed Papers, 45th Session of the ISI, book 1 (1985), 99-100.
[40] S. Yamamoto and Y. Hyodo, Resolution of fractional 2^{m} factorial designs derived from balanced arrays, Proc. 2nd Japan-China Simposium on Statistics (1986), 352-355.
[41] S. Yamamoto, T. Shirakura and M. Kuwada, Balanced arrays of strength 2ℓ and balanced fractional 2^{m} factorial designs, Ann. Inst. Statist. Math. 27 (1975), 143-157.
[42] S. Yamamoto, T. Shirakura and M. Kuwada, Characteristic polynomials of the information matrices of balanced fractional 2^{m} factorial designs of higher $(2 \ell+1)$ resolution, Essays in Probability and Statistics (Ed., S. Ikeda et al.), Birthday Volume in honor of Professor J. Ogawa, Shinko Tsusho Co. Ltd., Tokyo (1976), 73-94.

> Department of Applied Mathematics, Faculty of Science, Okayama University of Science, Ridai-cho, Okayama

