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1. Introduction

A balanced array (B-array), which is a generalization of an orthogonal

array, was first studied by Chakravarti [2] under the name of "partially B-

array". A connection between a B-array and a balanced fractional factorial

(BFF) design has been investigated so far by, e.g., Srivastava [31], Yamamoto,

Shirakura and Kuwada [41], Kuwada [20] and Kuwada and Nishii [22]. The

characteristic roots of the information matrix of a 2m-BFF design of resolution

V were obtained by Srivastava and Chopra [33]. By use of the triangular

multidimentional partially balanced (TMDPB) association scheme and its

algebra, Yamamoto, Shirakura and Kuwada [42] extended their results to a 2m-

BFF design of resolution 2£ + 1. The concept of the MDPB association

scheme was introduced by Bose and Srivastava [1] and Srivastava [30] as a

generalization of the ordinary association scheme.

A- and/or D-optimal 2m-BFF designs of resolution V or VII were obtained

by Srivastava and/or Chopra [4-9, 11-14, 34, 35] and Shirakura

[24, 26]. More precise tables of Srivastava-Chopra optimal designs of

resolution V have been presented by Nishii and Shirakura [23] for 4 ^ m ̂  6,

and Chopra, Kipngeno and Ghosh [10] for 7 g m ̂  10. Some optimal

fractional 2m factorial (2m-FF) designs were obtained by Cheng [3] and Kuwada

[21]. Optimal 2m-BFF designs of even resolution derived from B-arrays were

obtained by Shirakura [25-27]. A necessary and sufficient condition for a B-

array of strength 2£ to be a 2m-BFF design of resolution 2£ was obtained by

Shirakura [28]. Yamamoto and Hyodo [38, 39] introduced an extended

concept of resolution, which includes the results due to Shirakura [25-28]. By

utilizing the characterization of the information matrix, Yamamoto and Hyodo

[ 3 8 ^ 0 ] , Hyodo and Yamamoto [17-19] and Hyodo [15, 16] have shown that

there are so many designs having various type resolution including both odd

and even resolution as special cases.

Consider a two-symbol B-array of strength 6, m constraints, index set

{μ(

0

6), μψ\..., /46)} a n d frequency set {z(

o

m), z^"0,..., z<£°}, where zjm) are the

number of row vectors with weight j in the array. Such an array is

traditionally denoted as a BA(ΛΓ, m, 2, 6){μ(

0

6), μψ\...9 μ(

6

6)}, where N is the

total number of assemblies. We, however, denote it here as



542 Yoshifumi HYODO

BA(m, 6; z{™\ z(™\..., zj£°) since the characterization of the information matrix
can be explicitly expressed by zψ) (see [15, 16]). The indices μ\6) are
completely determined by zf > as follows (cf. [15, 26, 32, 36, 37]):

ro,, = o,i 6.

ίa\
Note that the usual boundary convention for the binomial coefficient , i.e.,

W
) = 0 if and only if b < 0 or 0 ^ a < b, will be used throughout this paper.

P)
In this paper, we shall consider a 2m-BFF design derived from a

BA(m, 6; z(

o

m), z^"0,..., zί£°) such that the general mean and the main effects (or
the main effects only) are estimable under the situation in which all four-factor
and higher order interactions are assumed to be negligible. Such a design will
be called a 2m-BFF design having resolution JR*({0, l}|P)(or K*({1}|P)) as will
be seen in Definition 3.3, where P = {0, 1, 2, 3}. For a given pair (N, m), there
are so many 2m-BFF designs having resolution R*({09 l}\P)(oτ R*({1}\P)).
We may note that these designs may be superior to resolution IV designs in the
sense that the confounding of the three-factor interactions and the main effects
can be always avoided even though the latter exist. A design considered here is
explicitly described by some specified simple array (S-array) for the cases of m

)( = v3, say) as will be seen in Proposition 3.3,

where v3 is the total number of factorial effects up to the three-factor
interactions (see [15-19, 38-40]). In Section 4, for the cases of m = 6, 7 and 8,
partial A-optimal 2m-BFF designs having resolution K*({0, 1}|P) and
#*({1}|P)) will be presented for each value of N( < v3). The covariance
matrix of the estimates and the value of its trace are also given for such designs.

2. Preliminaries

Consider a 2m-FF design with m factors F1,..., Fm, each at two levels 0 or
1, where m^β. Further consider the situation in which all four-factor and
higher order interactions are assumed to be negligible. The v3 x 1 vector of
factorial effects is denoted by

where θφ, θtι and, in general, θtXmmΛu denote the general mean, the main effect of
the factor Ftί and the u-factor interaction of the factors Ftι,...,Ftu,
respectively. Here A' and θu denote, respectively, the transpose of a matrix A
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and the ί J x l vector of the u-factor interactions, especially u = 0 and u = 1

stand for the general mean, i.e., θ0 = θφf and the main effects, respectively. Let

The a (0, l)-array of size N x m whose rows denote N assemblies of a design

under consideration. The linear model based on T is then given by

IT = Eτθ + eTi

where yτ, Eτ and eτ denote a vector of N observations, the N x v3 design

matrix whose elements are either 1 or — 1, and an N x 1 error vector with

£ [ e τ ] = 0N and Cov[eΓ] = σ

2IN, respectively. Here 0^ and IN are the N x 1

vector with all zero and the identity matrix of order N, respectively. The

normal equation for estimating θ is given by

Mτθ = Eτyτ,

where Mτ = E'TET is the information matrix of order v3.

Among the four sets of factorial effects {θφ}9 {θtι}, {θtχt2} and {0 ί l ί2ί3}, a

TMDPB association scheme is defined by introducing a natural relation of

association such that 0fl...fM and 0fi...tί; are the α-th associates if and only if

|{ίi,..., ίtt}n {*!,.-., ti}\ =min(w, v)-a,

where \S\ and min(w, v) denote the cardinality of a set S and the minimum of

integers u and v, respectively.

It is known that a TMDPB association algebra R generated by the thirty

ordered association matrices D(afV)(0 ^a^ min(w, v); w, v = 0,1,2,3) is semi-

simple and completely reducible. It is decomposed into the direct sum of the

four two-sided ideals Rb generated by (4-b)2 ideal bases {D{,M>t>)*: b ^ u, v ^ 3} for

b = 0,1,2,3. The ideal Rb is isomorphic to the complete (4 — b) x (4

i ) "" I i Λ )( = Φb> s a y) The details

b) \b - \)

of the TMDPB association scheme and its algebra can be seen in Yamamoto,

Shirakura and Kuwada [41,42] and Shirakura [26]. It is known

(see [15, 41, 42]) that the information matrix Mτ of a 2m-FF design T derived

from a BA(m, 6; z(

o

m), z^,. . . , z<£°) belongs to the TMDPB association algebra R

and is given by

T — Z*ι" = θZjV = θ2^a = O l\u-v\ + 2aua

where
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for 0 g r g s g 3 - 6; ft = 0,1,2,3

and

Here the matrix Db

u>v)* of order v3 is linearly linked with the ordered association

matrices D%tV) of the TMDPB association scheme as follows (see [26,29,42]):

D(u,v) = {D(v,u)y = Yi^zfcDDfr')* for 0 ^ a ^ u ^ υ ̂  3

and

Diu,v)* = {D(r)*y = J J . ^ ^ D ? ^ ) for 0 ^ 6 g u ^ v^ 3, (2.2)

where

*.-**•*{(:)©(.uj\aj\v —

The matrices Db

UfV)* have the following properties (see [42]):

Σb=o^ίΓ'u)ίt = D<S'U\ (2.4)
•y3 y u £)(u,u)# _ j

and

where δab denotes Kronecker's delta. Each (4 — b) x (4 — b) symmetric matrix

Kb = K ' s ] (0 g r, s ^ 3 - ft; ft = 0,1,2,3) is called the irreducible matrix

representation of Mτ with respect to the ideal Rb with multiplicity φb and it can

be expressed as follows (see [15, 19]):

K.-Σ?4r/(")}*.* fcr»-ftl.W

where few are given by

m \ ϊ 1 / 2
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(2/ - m){{2j - m)2 - 3m + 2}/{6m(m - l)(m - 2)} ι / 2 ) for O ί j ί m ,

( 1 ' ( 2 ; ' ~ m ) / ( m " 2 ) 1 / 2 '

{(2j -m)2-m + 2}/{2(m - 2)(m - 3)}1 / 2) for l^j^m-l,

k'2j = 4 J ( J ~ 2 ) } 1 2 ( 1 ' ( 2 j ' ~ m)/(w ~ 4)1/2) f°Γ 2 ~;" - m ~
and

The matrices Kb have the following properties (see [15,16,19]):

PROPOSITION 2.1. (i) ranklK^ = min(w(zS,m), zf?!,..., z£lb), 4 - ft) /or ft

= 0,1,2,3, where w( x') denotes the number of nonzero elements of a row vector

x'.

(ii) If rank[X fe] = r, //ze« the first r rows in Kb are always linearly

independent.

(iii) There exist (4-ft) linearly independent vectors in kbb>kbb+i>-"> kbm-b>

which are contained in Kb as a column vector each.

If T is an S-array with parameters (m; λ0, λl9...,λm), written

m ; Λ 0 , Λ 1 5 . . . , Λm)

0 = 0,l,...,m) that

Λ.A. Λ. Λ.kJ V^ΆΛ. Kk̂  ^ * Ά Λ. ™* Y * * •* VAA fc-^ ^ * A. V d Λ A A V *-^T Λ. ^T • ff f ^ ^ I I 9 1 9 * * * 9 TYlf 9 V«^AΛ

SA(m; Ao, A l 5..., 2m) for brevity, then it follows from z^m) = ( jΛj

b — Laj^b /ιj!~.bj!zbj 1 U 1 ^ — ^ ί 1 > z '> J

3. 2m-BFF designs having resolution /?*({0, 1}\P) and /?*({1}|P)

For readers' convenience, we recall the definition of resolution here.

DEFINITION 3.1. Let P = {0,1,2,3} and S a P. Then a 2m-FF design is

said to be of resolution R(S\P) if

(i) D(Q'S)Θ, i.e., a vector of s-factor interactions 0S, is estimable for every

seS

and

(ii) D(

O

M)0, i.e., a vector of /i-factor interactions ^Λ, is not estimable for

every he PS

under the situation in which all four-factor and higher order interactions are
assumed to be negligible.
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Note that resolution R({091,2,3} |P) and R{{0,1,2}|P) (or R({1,2}\P)) are,
respectively, resolution VII and VI, where P = {0,1,2,3}.

DEFINITION 3.2. A 2m-FF design of resolution R(S\P) is said to be

balanced and denoted by 2m-BFF design of resolution R(S\P) if the covariance

matrix of the BLUE of £Ses^o' s )0 *s invariant under any permutation on m

factors.

A 2m-FF (or 2W-BFF) design having resolution R*({0, 1}\P) (or R*({1}\P))

is defined as follows:

DEFINITION 3.3. If S is a set such that P => S =D Q for fixed P and Q, then a

2m-FF (or 2m-BFF) design of resolution R(S\P) is called a 2m-FF (or 2m-BFF)

design having resolution R*(Q\P), where Q = {0, 1} or {1}.

The following Propositions 3.1 and 3.2 are due to Hyodo [15] and

Yamamoto and Hyodo [38], respectively.

PROPOSITION 3.1. Let T be a 2m-FF design derived from a

BA(m, 6; z(

o

m), z^, . . . , zjj0). Then T is a 2m-BFF design of resolution R(S\P) if

and only if T satisfies the following conditions:

(i) rank[Kf] = rank[K£:/£s)] for every fce{0,l,..., s}(seS)

and

(ii) rank [*£] Φ rank \_K%: /ίΛ )] for some b e {0,1,..., h} (h e F - S),

P = {0,1,2,3}, X&* = [4")fcb

ί/ze (4-b) x 1 canonical basis vector whose (u — b + \)th element is unity.

PROPOSITION 3.2. Let T be a BA(m, 6; z(

o

m), z^, . . . , z^ }) and P

= {0,1,2,3}.

(I) // Tw a 2m-BFF design having resolution K*({0, 1}|P), ίAβΛ ίAβ 5Lί/^

q/1 « vector of estimable parametric functions Σu = o^(o'M)^( = ^oi» ^^j) and the

covariance matrix of its estimate are, respectively, given by

Zoi = XoιEτyj

and

Cov[Ψ 0 1 ] = σ2X01MτX'01eR, (3.1)

where X01(eR) is a v3 x v3 matrix satisfying XO1MT = YJι = 0D^u).

(II) If Tis a 2m-BFF design having resolution R*({1} |P), /A^Λ the BLUE of

a vector of estimable parametric functions D{QΛ) ([( = Ψ l 5 say) and the covariance

matrix of its estimate are, respectively, given by
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and

Cov[ΨJ = σ2X1MτX[eR, (3.2)

where X^eR) is a v3 x v3 matrix satisfying XXMT = D(

o

1>1).

It is known that a BA(m, 6; z(

o

m), z^,. . . , z ^ ) gives an SA(m; Λ0>Λ<i> . λ ι )

for the cases of m = 6 and 7. It has been shown in Hyodo [16] that a

BA(8, 6; z(

0

8), z^,.. ., z(

8

8)) turns out to be an SA(8; λθ9 λί9..., λ8) provided the

information matrix is singular. The following proposition is due to Hyodo

[15, 16].

PROPOSITION 3.3. Consider 2m-BFF designs having resolution K*({0, 1}|P)

and R*({1}\P) for the cases of m = 6,7,8 and N < v3, where P = {0,1,2,3}.

Such designs are explicitly described by some specified SA(m; λo,λu..., λm) as

will be seen in Tables 3.1 and 3.2.

TABLE 3.1. 2m-BFF designs having resolution K*({0, 1}|P) with 6 ̂  m ̂  8

m Resolution Conditions on SA(m; λ0, λ 1?..., λm)

6 R({0,1,2,3}|P), i.e., VII non-exist (since N < v3)

Λ({0,l,3}|P) non-exist (see [15])

Λ({0,l,2}|P), i.e., VI (6a) At>0 (z = 0,2,4,6), λj = O 0 = 1,3,5);

(6b) ^ > 0 (i = 2,4,5), /lo + /l1+/l6>0, A3 = 0;

(6c) A£>0 (i=l,2,4), λo + A5 + λ6>O,λ3=O;

(6d) λt>0(i = l,3,5),λj = 0 0' = 0,2,4,6); or

(6e) λi>0 (/=l,3,5), λo + λ6>0,λj = 0 (7 = 2,4)

R({0, 1}|P) (6f) /l f>0(i=l,4,5), λo + /l6>0, λj = O (; = 2,3); or

(6g) A,>0 (i=l,2,5), A0 + ̂ 6 >0, λj = 0(j = 3,4)

0,1,2,3}|P), i.e., VΠ non-exist (since N < v3)

0,1,3}|P) non-exist (see [15])

Λ({0,l,2}|P), i.e., VI (7a) At>0 (i = 2,5,6), λo + λ^λ^O, λj = O 0 = 3,4); or

(7b) Λf>0 (1=1,2,5), λo + A6 + Λ7>0, ^ = 0 0 = 3,4)

(7c) /l i>0(i=l,5,6),20 + /l7>0,AJ. = 0 0 = 2,3,4);

(7d) /l i>0(i=l,2,6),A0 + λ7>0,AJ = 0 0 = 3,4,5);

(7e) λ f>0(i = 0,1,4,7), ^ = 0 0 = 2,3,5,6);

(7f) λt>0(i = 0,3,6,7), ^ = 0(7 = 1,2,4,5);

(7g) A,>0 (i=l,4,6), Λo + A7>0, ^ = 0 0 = 2,3,5); or

(7h) i ί>0(i=l,3,6),A 0 + /l7>0, ^ = 0 0 = 2,4,5)
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TABLE 3.1. (continued)

m Resolution Conditions on SA(m; λ0, λlt..., λm)

8 R({0,1,2,3}|P), i.e., VII non-exist (since N < v3)

Λ({0,l,3}|P) non-exist (see [15])

K({0,l,2}|P), i.e., VI (8a) λt>0 (i = 2,6,7), λ0 + λx+λ8>0, ^ = 0 0 = 3,4,5);

(8b) ^ > 0 0=1,2,6), λo + λ7 + λ8>0, λj = O 0 = 3,4,5); or

(8c) Λf>0 0=1,4,7), A0 + /l8>0, ^ = 0 0 = 2,3,5,6)

(8d) ^ >0 (ί=l,6,7), Ao + A8>0, ^ = 0 0 = 2,3,4,5);

(8e) λi>0 0=1,2,7), λo + λ8>0, ^ = 0 0 = 3,4,5,6);

(8f) λi>0 0 = 1,5,7), Λ0 + >18>0, ^ = 0 0 = 2,3,4,6); or

TABLE 3.2.

m Resolution

2m-BFF

(8g)

designs

Af>0 0=1,3,7), λo + λ8>0, >

having resolution R*({1}\P)

Conditions on SA(m; Ao, λl5..., Aw

j =

with

,)

6

= 2,4,5,6)

= m = 8

6 R({0,1,2,3}|P), i.e., VΠ non-exist (since N < v3)

non-exist (see [15])

non-exist (see [15])

R({0,1,2}|P), i.e., VI (6a)-(6e) in Table 3.1

#({1,3}|P) non-exist (see [15])

Λ({1,2}|P), i.e., VI non-exist (see [15])

(6f) and (6g) in Table 3.1

(6h) λi > 0 0 = 1,4,5), λj = 0 0 = 0,2,3,6); or

(6i) λt>0 0=1,2,5), λj = O 0 = 0,3,4,6)

7 R({0,1,2,3}|P), i.e., VΠ non-exist (since N < v3)

R({1,2,3}|P) non-exist (see [15])

Λ({0,l,3}|P) non-exist (see [15])

Λ({0,l,2}|P), i.e., VI (7a) and (7b) in Table 3.1

R({1,3}\P) non-exist (see [15])

Λ({1,2}|P), i.e., VI non-exist (see [15])

(7c)-(7h) in Table 3.1

non-exist (see [15])

Λ({0,l,2,3}|P), i.e., VII non-exist (since N < v3)

non-exist (see [15])

e., VI (8a)-(8c) in Table 3.1

non-exist (see [15])

Λ({1,2}|P), i.e., VI non-exist (see [15])

(8d)-(8g) in Table 3.1

non-exist (see [15])
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4. PA-optimal 2M-BFF designs having resolution /?*({0, 1}|P) and R*({1}\P)

with 6 ^ m ^ 8

We shall consider a 2m-BFF design derived from a

BA(m, 6;z(

o

m), z^, . . . , z ^ ) . For P = {0,1,2,3}, PA-optimal 2m-BFF designs

having resolution R*({0,l}\P) and R*({1}\P) are then defined as follows:

DEFINITION 4.1. A 2m-BFF design having resolution K*({0,1}|P) is said to

be partial A-optimal, written PA-optimal 2m-BFF design having resolution

R*({0,l}|P) for brevity, if tr(Cov[Ψ 0 1]/σ 2)( = S 0 1, say) is a minimum for a

given pair (N, m), where Cov[Ψ 0 1 ] is given in (3.1) and tr(5) denotes the trace

of a matrix S.

DEFINITION 4.2. A 2m-BFF design having resolution K*({1}|P) is said to

be partial A-optimal, written PA-optimal 2m-BFF design having resolution

R*({1}\P) for brevity, if tr(Cov[Ψ1]/σ2)( = Sl9 say) is a minimum for a given

pair (N, m), where Covj^ΨJ is given in (3.2).

L e t kfj a n d kltS be, respectively, t h e (i + l9j + l ) - e l e m e n t a n d (r + 1, s + 1)-

e l e m e n t of

( i ) KQ1 and ,Λ n , , , ( = K(1<,, say) (A \\
v i lsί'^' IT * I v * /

for the series (6a), (7e) and (7f) in Proposition 3.3,

(π) 1.1,1 JL1,2

sym.

= X(o)

1,say) and K^1 (4.2)

for the series (6d), (6h) and (6i) in Proposition 3.3

and

(iii) KQ1 and K^1 for the remaining series. (4.3)

Note that from Proposition 2.1, Ko and K(1) in (4.1), K{0) and X x in (4.2)" and

K o and K1 in (4.3) are nonsingular. Then we have the following:

THEOREM 4.1. (I) IfTis an array of Table 3.1, then Cov[Ψ 0 1 ] and S01 are,

respectively, given by

Cov[Ψ 0 1 ] = <τ2Σ»-oΣr1-oΣ.1-ofcf..M*+Γ 6 + ' ) f eΛ (4.4)
and
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(II) If T is an array of Table 3.2, then Cov[ΨJ and S1 are, respectively,

given by

Cov[f J = a2{k°ulD^> + khΛD^l)*}eR (4.6)

and

Si=fc? . i+(w-l) fcJ i 0 . (4.7)

PROOF. (I) Consider T being an array of Table 3.1.

(i) If T is an array of the series (7e) and (7f), then using

it holds from (2.1), (2.3) and (2.4) that XO1MT = Σu = oDo'u) Furthermore

substituting the above X 0 1 into (3.1), we get (4.4) from (2.1), (2.2), (2.3) and (2.4).

(ii) For T being an array of the remaining series, let

v —V 1 V 1~ f tV 3~ b kb -n(b + r,b+s)*- n
^ 0 1 ~ 2jb = 0 2jr = 0 ZuS = 0 κr,s ub E / c

Then from the argument similar to the above, we have (4.4). Applying (2.3)

and (2.5) to (4.4), we have (4.5).

(II) Consider T being an array of Table 3.2.

(i) If T is an array of the series (6a), (7e) and (7f), then using

— V 3 k° πί1^)*-L V 1 k1

0 *Ό,s

as computed in (I) we have (4.6).

(ii) If T is an array of the series (6d), (6h) and (6i), then using

Y —V2 k° n(i,s)# , v 2 k1 n(i,i
Λ l — hs = 0 Kl,s U0 + Ls = 0 K0,s Ul

we obtain (4.6).
(iii) If T is an array of the remaining series, then by use of

Y — V 3 k° n*1 '5)* -i- V 2 k1 π(i.i+«)*(= R

we can obtain (4.6). The formula (4.7) can be otained from (2.3), (2.5) and

(4.6). This completes the proof.

Let 4w'y) be an element of Cov[Ψ 0 1]/σ 2 ( = C 0 1 , say) or Cov[ΨJ/σ 2

( = Cl9 say) corresponding to the θti...ίu-th row and θt.χ...^-th column, which are

the α-th associates. Then the following theorem is immediately obtained from

(2.2) and (4.4) (or (4.6)).

THEOREM 4.2. (I) IfTίs an array of Table 3.1, then the elements c^v) (0 ^ a

^ min(w, υ); u, v = 0,1) of C 0 1 are given by
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c(

0

1Λ) = {k°1Λ + (m -

and

where kb

rs ( O ^ f r r g r f g s ^ 1) are given in (I) of Theorem 4.1.

(II) 7/* Γ w α« array 0/ Table 3.2, rte/i fΛέ? elements c(

a

ul)(a = 0,1) o/Ci are

given by

and

c[1Λ) =

where k\Λ and /CQ$0

 β r ^ given in (II) 0/ Theorem 4.1.

We are interested in the estimation of the general mean and the main

effects or the main effects only. By Theorems 4.1 and 4.2, PA-optimal 2m-BFF

designs having resolution #*({0,1}|P) and R*({1}\P) will be presented for 6

^ m ^ 8, where P = {0,1,2,3}. If N ^ v3, then there always exist a 2m-BFF

design of resolution VΠ. Thus we only consider the case of N < v3. First, we

shall consider 2m-BFF designs having resolution R*({0,1}|P), which satisfy (i)

m = 6, 28 ^ N ^ 41, (ii) m = 7, 36 ^ JV ^ 63 and (iii) m = 8, 45 ^ ΛΓ ^ 92 as in

Table 3.1. Note that the lower bounds of N for the existence of such designs

can be obtained from the series (6f)(or (6g)) for m = 6, (7c) (or (7d)) for m = 7,

and (8d)(or (8e)) for m = 8. In Tables 4.1, 4.2 and 4.3, PA-optimal 2m-BFF

designs having resolution #*({0,1}|P) for m = 6, 7 and 8 are, respectively, given

together with SA(m; λo,λl9...9 λm), resolution, S 0 1 and c{"'v)(0^a

g min(w, v); M, V = 0, 1) for each AT. Next we consider 2m-BFF designs having

resolution R*({1}\P), which satisfy (i) m = 6, 27 ^ TV ^ 41, (ii) m = 7, 36 ^ N

^ 63 and (iii) m = 8, 45 ^ ΛΓ ^ 92 as in Table 3.2. We note that the lower

bounds of N for the existence of such designs can be obtained from the series

(6h)(or (6i)) for m = 6, (7c) (or (7d)) for m = 7, and (8d)(or (8e)) for m = 8. In

Tables 4.4, 4.5 and 4.6, PA-optimal 2m-BFF designs having resolution R*({1}\P)

for m = 6, 7 and 8 are, respectively, given together with SA(m; λ0, A1?..., λm),

resolution, Sx and 4 1 ' 1 ) (α = 0,1) for each N. Note that for the designs in

Tables 4.1 through 4.6, their complementary designs are also optimal and have

the same resolution. In Tables 4.4, 4.5 and 4.6, the designs which are not PA-

optimal designs having resolution #*({0,1}|P) will be indicated by the asterisk *.



552 Yoshifumi HYODO

TABLE 4.1. PA-optimal 26-BFF designs having resolution

Λ*({O,1}|P) (28 ^ JV^

N SA(6;λOtλ1,...,λ6) Resolution S 0 1 c(

0°
 0 ) c$Λ)

<$Λ) c[1Λ)

28 SA(6; 1,1,0,0,1,1,0) Λ({0,l}|P) 0.58333 0.08333 -0.01042

0.08333 -0.01042

29 SA(6;2,l,0,0,l,l,0) 0.57552 0.07552 -0.01042

0.08333 -0.01042

30 SA(6;2,l,0,0,l,l,l) 0.57224 0.07549 -0.01055

0.08279 -0.01096

31 SA(6;3,l,0,0,l,l,l) 0.56963 0.07292 -0.01042

0.08279 -0.01096

32a SA(6; 1,0,1,0,1,0,1) Λ({0,l,2}|P) 0.21875 0.03125 0.00000

0.03125 0.00000

32b SA(6;0,1,0,1,0,1,0)

33 SA(6; 1,0,1,0,1,0,2) 0.21533 0.03076 -0.00049

0.03076 -0.00049

34 SA(6;2,0,1,0,1,0,2) 0.21191 0.03027 0.00000

0.03027 -0.00098

35 SA(6;2,0,l,0,l,0,3) 0.21077 0.03011 -0.00016

0.03011 -0.00114

36 SA(6;3,0,l,0,l,0,3) 0.20964 0.02995 0.00000

0.02995 -0.00130

37 SA(6;3,0,l,0,l,0,4) 0.20907 0.02987 -0.00008

0.02987 -0.00138

38 SA(6;0,1,0,1,0,2,0) 0.19824 0.02832 -0.00195

0.02832 -0.00098

39a SA(6; 0,1,0,1,0,2,1) 0.19824 0.02832 -0.00195

0.02832 -0.00098

39b SA(6; 1,1,0,1,0,2,0)

40 SA(6; 1,1,0,1,0,2,1) 0.19711 0.02811 -0.00177

0.02817 -0.00113

41a SA(6; 1,1,0,1,0,2,2) 0.19693 0.02808 -0.00174

0.02814 -0.00116

41b SA(6;2,1,0,1,0,2,1)
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TABLE 4.2. PA-optimal 27-BFF designs having resolution

Λ ({O,1}|P) (36^JVg63)

N SA(7;λo,λlt...,λΊ) Resolution S 0 1 c(

0°
 0 ) c$Λ)

- ( 1 ,Co

-(1,1)
C
o

36 SA(7; 1,1,0,0,0,1,1,0) Λ({0,l}|P) 1.10500 0.13812 -0.01812

0.13812 -0.01813

37 SA(7;2,1,0,0,0,1,1,0) 1.07750 0.11281 -0.01531

0.13781 -0.01844

38 SA(7; 3,1,0,0,0,1,1,0) 1.06833 0.10437 -0.01437

0.13771 -0.01854

39 SA(7;4,1,0,0,0,1,1,0) 1.06375 0.10016 -0.01391

0.13766 -0.01859

40 SA(7; 5,1,0,0,0,1,1,0) 1.06100 0.09762 -0.01362

0.13762 -0.01863

41 SA(7;5,1,0,0,0,1,1,1) 1.05870 0.09564 -0.01332

0.13758 -0.01867

42 SA(7; 6,1,0,0,0,1,1,1) 1.05666 0.09377 -0.01311

0.13756 -0.01869

43 SA(7; 1,1,0,0,0,1,2,0) 0.91250 0.13594 -0.01719

0.11094 -0.01406

44 SA(7; 1,1,0,0,1,0,0,1) 0.26389 0.03299 -0.00868

0.03299 0.00868

45 SA(7; 2,1,0,0,1,0,0,1) 0.24826 0.03103 -0.00673

0.03103 0.00673

46 SA(7;2,1,0,0,1,0,0,2) 0.24132 0.03016 -0.00760

0.03016 0.00586

47 SA(7;3,1,0,0,1,0,0,2) 0.23611 0.02951 -0.00694

0.02951 0.00521

48 SA(7;4,1,0,0,1,0,0,2) 0.23351 0.02919 -0.00662

0.02919 0.00488

49 SA(7;4,1,0,0,1,0,0,3) 0.23119 0.02890 -0.00691

0.02890 0.00459

50 SA(7; 1,1,0,0,1,0,1,0) 0.22271 0.03969 -0.00875

0.02615 0.00184

51 SA(7; 1,1,0,0,1,0,1,1) 0.21346 0.03270 -0.00725

0.02582 0.00152

52 SA (7; 2,2,0,0,1,0,0,1) 0.19965 0.02496 -0.00239

0.02496 0.00412

53 SA(7; 2,2,0,0,1,0,0,2) 0.19271 0.02409 -0.00326

0.02409 0.00326
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T A B L E 4.2. (continued)

N SA(Ί;λ
o
,λ

l9
...,λ

Ί
) Resolution S

0 1
 c

(

0
°'

0)
 c$

Λ )

54 SA(7; 3,2,0,0,1,0,0,2) 0.18750 0.02344 -0.00260

0.02344 0.00260

55 SA(7; 4,2,0,0,1,0,0,2) 0.18490 0.02311 -0.00228

0.02311 0.00228

56 SA(7; 4,2,0,0,1,0,0,3) 0.18258 0.02282 -0.00257

0.02282 0.00199

57 SA(7;5,2,0,0,l,0,0,3) 0.18102 0.02263 -0.00237

0.02263 0.00179

58 SA(7;2,2,0,0,l,0,l,0) 0.17406 0.02654 -0.00354

0.02107 0.00024

59 SA(7;3,2,0,0,l,0,l,0) 0.17146 0.02508 -O.OO3O5

0.02091 0.00008

60 SA(7;3,2,0,0,l,0,l,l) 0.17013 0.02376 -0.00309

0.02091 0.00008

61 SA(7;4,2,0,0,l,0,l,l) 0.16905 0.02329 -0.00289

0.02082 -0.00001

62 SA(7;5,2,0,0,l,0,l,l) 0.16837 0.02299 -0.00276

0.02077 -0.00006

63 SA(7;4,3,0,0,l,0,0,3) 0.16638 0.02080 -0.00112

0.02080 0.00112

TABLE 4.3. PA-optimal 28-BFF designs having resolution

Λ*({0,l}|P) ( 4 5 ^

N SA(8;λo,A1,...,λβ) Resolution S01 c(

0°
 0 ) cg > 1>

c(oi.D c(i,i)

45 SA (8; 1,1,0,0,0,0,1,1,0) R({0,l}\P) 2.01000 0.22333 -0.02667

0.22333 -0.02667

46 SA (8; 2,1,0,0,0,0,1,1,0) 1.94750 0.16778 -0.01972

0.22247 -0.02753

47 SA(8; 3,1,0,0,0,0,1,1,0) 1.92667 0.14926 -0.01741

0.22218 -0.02782

48 SA (8; 4,1,0,0,0,0,1,1,0) 1.91625 0.14000 -0.01625

0.22203 -0.02797

49 SA(8; 5,1,0,0,0,0,1,1,0) 1.91000 0.13444 -0.01556

0.22194 -0.02806
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TABLE 4.3. (continued-1)

N SA(8;A0,λ1,...,λ8) Resolution S 0 1 c(

0°
 0 ) c (

o

o a )

c0 cx

50 SA (8; 5,1,0,0,0,0,1,1,1) 1.90494 0.12940 -0.01567

0.22194 -0.02806

51 SA (8; 6,1,0,0,0,0,1,1,1) 1.90039 0.12531 -0.01518

0.22189 -0.02811

52 SA (8; 7,1,0,0,0,0,1,1,1) 1.89714 0.12239 -0.01484

0.22184 -0.02816

53 SA(8; 1,1,0,0,0,0,1,2,0) 1.51000 0.21639 -0.02580

0.16170 -0.01799

54 SA(8;2,1,0,0,0,0,1,2,0) 1.44750 0.16083 -0.01885

0.16083 -0.01885

55 SA(8; 3,1,0,0,0,0,1,2,0) 1.42667 0.14231 -0.01654

0.16054 -0.01914

56 SA(8;4,1,0,0,0,0,1,2,0) 1.41625 0.13306 -0.01538

0.16040 -0.01929

57 SA (8; 5,1,0,0,0,0,1,2,0) 1.41000 0.12750 -0.01469

0.16031 -0.01938

58 SA(8; 6,1,0,0,0,0,1,2,0) 1.40583 0.12380 -0.01422

0.16025 -0.01943

59 SA(8; 7,1,0,0,0,0,1,2,0) 1.40286 0.12115 -0.01389

0.16021 -0.01947

60 SA(8; 8,1,0,0,0,0,1,2,0) 1.40063 0.11917 -0.01365

0.16018 -0.01951

61 SA(8; 1,1,0,0,0,0,1,3,0) 1.34333 0.21407 -0.02551

0.14116 -0.01509

62 SA(8; 2,1,0,0,0,0,1,3,0) 1.28083 0.15852 -0.01856

0.14029 -0.01596

63 SA(8; 3,1,0,0,0,0,1,3,0) 1.26000 0.14000 -0.01625

0.14000 -0.01625

64 SA(8; 4,1,0,0,0,0,1,3,0) 1.24958 0.13074 -0.01509

0.13986 -0.01639

65 SA(8; 1,0,1,0,0,0,1,1,0) K({0,l,2}|P) 0.89702 0.04253 0.00045

0.10681 -0.01428

66 SA(8; 1,0,1,0,0,0,1,1,1) 0.89087 0.03638 0.00047

0.10681 -0.01428

67 SA(8; 2,0,1,0,0,0,1,1,1) 0.88740 0.03323 0.00012

0.10677 -0.01432

68 SA (8; 2,0,1,0,0,0,1,1,2) 0.88529 0.03112 0.00011

0.10677 -0.01432
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TABLE 4.3. (continued-2)

N SA(& ,λ09λl9...,λs) Resolution SOί c(

0°
 0 )

69 SA(8; 3,0,1,0,0,0,1,1,2) 0.88406 0.03000 -0.00001

0.10676 -0.01434

70 SA (8; 3,0,1,0,0,0,1,1,3) 0.88300 0.02893 -0.00001

0.10676 -0.01434

71 SA (8; 4,0,1,0,0,0,1,1,3) 0.88236 0.02835 -0.00008

0.10675 -0.01434

72 SA(8; 0,1,1,0,0,0,1,1,0) 0.59750 0.04500 0.00000

0.06906 -0.00906

73 SA (8; 1,1,0,0,0,1,0,1,0) K({0,l}|P) 0.32000 0.08000 -0.01922

0.03000 0.00266

74 SA(8; 2,1,0,0,0,1,0,1,0) 0.29000 0.06000 -0.01422

0.02875 0.00141

75 SA(8; 3,1,0,0,0,1,0,1,0) 0.28000 0.05333 -0.01255

0.02833 0.00099

76 SA(8; 3,1,0,0,0,1,0,1,1) 0.27493 0.04927 -0.01184

0.02821 0.00086

77 SA(8;4,1,0,0,0,1,0,1,1) 0.27107 0.04679 -0.01118

0.02804 0.00069

78 SA(8; 5,1,0,0,0,1,0,1,1) 0.26869 0.04525 -0.01078

0.02793 0.00059

79 SA(8; 6,1,0,0,0,1,0,1,1) 0.26708 0.04421 -0.01051

0.02786 0.00051

80 SA(8; 6,1,0,0,0,1,0,1,2) 0.26588 0.04320 -0.01035

0.02783 0.00049

81 SA(8; 1,2,0,0,0,1,0,1,0) 0.26141 0.06438 -0.01434

0.02463 0.00168

82 SA(8; 2,2,0,0,0,1,0,1,0) 0.23141 0.04438 -0.00934

0.02338 0.00043

83 SA(8; 3,2,0,0,0,1,0,1,0) 0.22141 0.03771 -0.00767

0.02296 0.00001

84 SA(8;4,2,0,0,0,l,0,l,0) 0.21641 0.03438 -0.00684

0.02275 -0.00020

85 SA(8; 5,2,0,0,0,1,0,1,0) 0.21341 0.03238 -0.00634

0.02263 -0.00032

86 SA(8; 6,2,0,0,0,1,0,1,0) 0.21141 0.03104 -0.00600

0.02255 -0.00040

87 SA(8; 1,1,0,0,1,0,0,1,0) Λ({0,l,2}|P) 0.16574 0.01173 -0.00100

0.01925 0.00710
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TABLE 4.3. (continued-3)

N SA(&;λo,λlt...,λa) Resolution

557

88 SA(8; 1,1,0,0,1,0,0,1,1)

89 SA(8; 2,1,0,0,1,0,0,1,1)

90 SA(8; 2,1,0,0,1,0,0,1,2)

91 SA(8; 3,1,0,0,1,0,0,1,2)

92 SA(8; 3,1,0,0,1,0,0,1,3)

0.14331

0.13848

0.13530

0.13381

0.13257

0.01136

0.01649

0.01129

0.01590

0.01116

0.01552

0.01111

0.01534

0.01104

0.01519

0.00000

0.00434

-0.00022

0.00375

0.00000

0.00336

-0.00010

0.00318

0.00000

0.00304

TABLE 4.4. PA-optimal 26-BFF designs having resolution

N SA(6; Λo, λίt..., λ6) Resolution

*27 SA(6;0,1,0,0,1,1,0) R({1}\P) 0.49680 0.08280 -0.01095

*28a SA(6;0,1,0,0,1,1,1) Λ({0,l}|P) 0.50000 0.08333 -0.01042

28b SA(6;0,1,1,0,0,1,1)

*29 SA(6; 1,1,0,0,1,1,1) 0.49688 0.08281 -0.01094

*30 SA(6; 1,1,0,0,1,1,2) 0.49632 0.08272 -0.01103

*31 SA(6; 1,1,0,0,1,1,3) 0.49609 0.08268 -0.01107

32a SA(6; 1,0,1,0,1,0,1) Λ({0,l,2}|P) 0.18750 0.03125 0.00000

32b SA(6;0,l,0,l,0,l,0)

33 SA(6; 1,0,1,0,1,0,2) 0.18457 0.03076 -0.00049

34 SA(6;2,0,1,0,1,0,2) 0.18164 0.03027 -0.00098

35 SA(6;2,0,l,0,l,0,3) 0.18066 0.03011 -0.00114

36 SA(6;3,O,1,O,1,O,3) 0.17969 0.02995 -0.00130

37 SA(6;3,0,1,0,1,0,4) 0.17920 0.02987 -0.00138

38 SA(6;0,1,0,1,0,2,0) 0.16992 0.02832 -0.00098

39a SA(6;0,1,0,1,0,2,1) 0.16992 0.02832 -0.00098

39b SA(6;0,2,0,l,0,l,l)

40 SA(6; 1,1,0,1,0,2,1) 0.16900 0.02817 -0.00113

41a SA(6; 1,1,0,1,0,2,2) 0.16885 0.02814 -0.00116

41b SA(6;2,l,0,l,0,2,l)
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TABLE 4.5. PA-optimal 27-BFF designs having resolution

R*({1}\P) ( 3 6 ^

N SA(7; j , . . . , λΊ) Resolution c[1Λ)

36 SA(7; 1,1,0,0,0,1,1,0) Λ({0,l}|P)

37 SA(7;2,1,0,0,0,1,1,0)

38 SA(7;3,1,0,0,0,1,1,0)

39 SA(7;4,1,0,0,0,1,1,0)

•40 SA(7;4,1,0,0,0,1,1,1)

41 SA(7;5,1,0,0,0,1,1,1)

42 SA(7;6,1,0,0,0,1,1,1)

43 SA(7; 1,1,0,0,0,1,2,0)

44 SA(7; 1,1,0,0,1,0,0,1)

45 SA(7;2,1,0,0,1,0,0,1)

46 SA(7;2,1,0,0,1,0,0,2)

47 SA(7;3,1,0,0,1,0,0,2)

48 SA(7;4,l,0,0,l,0,0,2)

49 SA(7;4,l,0,0,l,0,0,3)

50 SA(7; 1,1,0,0,1,0,1,0)

•51 SA(7;2,1,0,0,1,0,1,0)

52 SA(7; 2,2,0,0,1,0,0,1)

53 SA(7; 2,2,0,0,1,0,0,2)

54 SA(7; 3,2,0,0,1,0,0,2)

55 SA(7; 4,2,0,0,1,0,0,2)

56 SA(7; 4,2,0,0,1,0,0,3)

*57 SA(7; 1,2,0,0,1,0,1,0)

58 SA(7;2,2,0,0,l,0,l,0)

59 SA(7;3,2,0,0,l,0,l,0)

*60 SA(7;4,2,0,0,l,0,l,0)

•61 SA(7;5,2,0,0,l,0,l,0)

*62 SA(7;6,2,0,0,l,0,l,0)

*63 SA(7;7,2,0,0,l,0,l,0)

0.96687

0.96469

0.96396

0.96359

0.96331

0.96306

0.96289

0.77656

0.23090

0.21723

0.21115

0.20660

0.20432

0.20229

0.18302

0.17960

0.17470

0.16862

0.16406

0.16178

0.15976

0.15094

0.14752

0.14638

0.14581

0.14547

0.14524

0.14508

0.13812

0.13781

0.13771

0.13766

0.13762

0.13758

0.13756

0.11094

0.03299

0.03103

0.03016

0.02951

0.02919

0.02890

0.02615

0.02566

0.02496

0.02409

0.02344

0.02311

0.02282

0.02156

0.02107

0.02091

0.02083

0.02078

0.02075

0.02073

-0.01813

-0.01844

-0.01854

-0.01859

-0.01863

-0.01867

-0.01869

-0.01406

0.00868

0.00673

0.00586

0.00521

0.00488

0.00459

0.00184

0.00135

0.00412

0.00326

0.00260

0.00228

0.00199

0.00073

0.00024

0.00008

0.00000

-0.00005

-0.00008

-0.00011
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TABLE 4.6. PA-optimal 28-BFF designs having resolution

R*({1}\P) ( 4 5 ^

N SA (8 λ0, λ!,..., λ8) Resolution

45 SA(8; 1,1,0,0,0,0,1,1,0) R({0,l}\P)

46 SA(8;2,1,0,0,0,0,1,1,0)

47 SA (8; 3,1,0,0,0,0,1,1,0)

48 SA(8;4,1,0,0,0,0,1,1,0)

49 SA(8;5,1,0,0,0,0,1,1,0)

*50 SA (8; 6,1,0,0,0,0,1,1,0)

•51 SA(8;7,1,0,0,0,0,1,1,0)

*52 SA(8;8,1,0,0,0,0,1,1,0)

53 SA(8; 1,1,0,0,0,0,1,2,0)

54 SA(8; 2,1,0,0,0,0,1,2,0)

55 SA(8; 3,1,0,0,0,0,1,2,0)

56 SA(8;4,1,0,0,0,0,1,2,0)

57 SA(8; 5,1,0,0,0,0,1,2,0)

58 SA(8; 6,1,0,0,0,0,1,2,0)

*59 SA(8;6,1,0,0,0,0,1,2,1)

*60 SA(8; 7,1,0,0,0,0,1,2,1)

61 SA(8; 1,1,0,0,0,0,1,3,0)

62 SA(8;2,1,0,0,0,0,1,3,0)

63 SA(8;3,1,0,0,0,0,1,3,0)

64 SA(8;4,1,0,0,0,0,1,3,0)

65 SA(8;l,0,l,0,0,0,l,l,0)K({0,l,2}|P)

*66 SA(8; 2,0,1,0,0,0,1,1,0)

*67 SA(8; 3,0,1,0,0,0,1,1,0)

*68 SA(8;4,0,1,0,0,0,1,1,0)

*69 SA(8; 5,0,1,0,0,0,1,1,0)

*70 SA(8; 6,0,1,0,0,0,1,1,0)

*71 SA(8;7,0,1,0,0,0,1,1,0)

72 SA(8;0,1,1,0,0,0,1,1,0)

73 SA(8; 1,1,0,0,0,1,0,1,0) R({0,1}|P)

74 SA(8;2,1,0,0,0,1,0,1,0)

75 SA(8;3,1,0,0,0,1,0,1,0)

*76 SA(8;4,1,0,0,0,1,0,1,0)

*77 SA(8; 5,1,0,0,0,1,0,1,0)

*78 SA(8;6,1,0,0,0,1,0,1,0)

*79 SA(8; 7,1,0,0,0,1,0,1,0)

*80 SA(8;7,1,0,0,0,1,0,1,1)

81 SA(8; 1,2,0,0,0,1,0,1,0)

82 SA(8;2,2,0,0,0,l,0,l,0)

1.78667

1.77972

1.77741

1.77625

1.77556

1.77509

1.77476

1.77451

1.29361

1.28667

1.28435

1.28319

1.28250

1.28204

1.28166

1.28136

1.12926

1.12231

1.12000

1.11884

0.85449

0.85417

0.85406

0.85401

0.85398

0.85396

0.85394

0.55250

0.24000

0.23000

0.22667

0.22500

0.22400

0.22333

0.22286

0.22245

0.19703

0.18703

0.22333

0.22247

0.22218

0.22203

0.22194

0.22189

0.22185

0.22181

0.16170

0.16083

0.16054

0.16040

0.16031

0.16025

0.16021

0.16017

0.14116

0.14029

0.14000

0.13986

0.10681

0.10677

0.10676

0.10675

0.10675

0.10674

0.10674

0.06906

0.03000

0.02875

0.02833

0.02813

0.02800

0.02792

0.02786

0.02781

0.02463

0.02338

-0.02667

-0.02753

-0.02782

-0.02797

-0.02806

-0.02811

-0.02815

-0.02819

-0.01799

-0.01885

-0.01914

-0.01929

-0.01938

-0.01943

-0.01948

-0.01952

-0.01509

-0.01596

-0.01625

-0.01639

-0.01428

-0.01432

-0.01434

-0.01434

-0.01435

-0.01435

-0.01435

-0.00906

0.00266

0.00141

0.00099

0.00078

0.00066

0.00057

0.00051

0.00046

0.00168

0.00043
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TABLE 4.6. (continued)

N SA(8; λcAj,..., λ
8
) Resolution SΊ

SA(8;3,2,O,O,O,1,O,1,O) 0.18370

SA(8;4,2,0,0,0,l,0,l,0) 0.18203

SA(8;5,2,0,0,0,l,0,l,0) 0.18103

SA(8;6,2,0,0,0,l,0,l,0) 0.18036

SA(8; 1,1,0,0,1,0,0,1,0) K({0,l,2}|P) 0.15401

SA(8; 1,1,0,0,1,0,0,1,1) 0.13194

SA(8; 1,1,0,0,1,0,0,1,2) 0.12720

SA(8;2,1,0,0,1,0,0,1,2) 0.12413

SA(8;2,1,0,0,1,0,0,1,3) 0.12270

SA(8; 3,1,0,0,1,0,0,1,3) 0.12153

83

84

85

86

87

88

89

90

91

92

0.02296

0.02275

0.02263

0.02255

0.01925

0.01649

0.01590

0.01552

0.01534

0.01519

0.00001

-0.00020

-0.00032

-0.00040

0.00710

0.00434

0.00375

0.00336

0.00318

0.00304
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