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Introduction

This paper is concerned with the Cauchy problem for an abstract quasi-
linear evolution equation of the form

du(t)/dt + A(t, u(t))u(t) = f(t, u(t)), 0<t<T,
(cP)
u(q) = uosf

in a pair of Banach spaces X o Y. Here A(f, w) is a linear operator in X
depending on t and w varies on an open subset W of Y. In [6] T. Kato
established an existence theorem for (CP) in the pair of reflexive Banach spaces
X o Y. To construct C!-solutions of (CP) in the space X it is assumed in [6]
that the operators A(t, w) are the negative generators of (Cg)-semigroups {exp
[ — sA(t, w)]1}ss0 On X such that ||exp[ — sA(t, w) ]|y < e# fors>0,0<t< T,
we Wand some constant f. In the subsequent papers [3] and [7] (see also [8]
and the references therein) he extended the results in [6] to the case in which
llexp[ — sA(t, w)1llx < MeP* for s>0, 0<t<T, weW and some constants
B>0and M > 1.

To emphasize the two cases mentioned above we use the class of negative
generators of (Cy)-semigroups. Given M > 1 and B >0, G(X, M, ) denotes
the set of all negative generators A of (C,)-semigroups {e~ 4} on X satisfying
le " |lx < Me® for t > 0. In [6] the family {A(t, w)} is contained in G(X, 1, f)
and in [3] and [7] it is contained in G(X, M, ). However in these papers
except [7] the Banach spaces X and Y are assumed to be reflexive. In [7] the
reflexivity condition is not assumed for X and Y, but only weak solutions of
(CP) are constructed.

In [11] we eliminated the reflexivity assumption for X and Y and showed
an existence theorem of C!-solutions of (CP) in general Banach spaces under
appropriate assumptions which were also employed in [6]. In particular,
Theorems 4.5 and 5.2 in [11] shows that the conclusions of [8; Theorem A]
remains valid without assuming the reflexivity of X and Y.

This paper is a continuation of the previous paper [11], and the purpose
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here is to extend the results given in [11] to the case in which the family
{A(t, w)} is contained in G(X, M, ) for some M >1 and f§>0. We will
obtain C!-solutions of (CP) in general Banach spaces under weaker assumptions
than those of [11]. The proof of our Main Theorem is based on the theory of
linear evolution equations advanced in [2], [4], [5] and [9] and a method of
successive approximations is applied to construct C!-solutions to (CP). Our
approach is similar to but different from that of [6]. In [6] the convergence of
the successive approximations is shown only in the X-norm, and then it is
shown via the reflexivity of Y that the limit of the approximations remains in Y
and is the unique solution of (CP). In this paper we prove the convergence in
the stronger norm, the Y-norm, as well as in the X-norm, and by this result we
show directly (without assuming the reflexivity) that the limit is the solution of
(CP). This is the reason why we can obtain C!-solutions of (CP) in general
Banach spaces.

In [11] we employed the method of the difference approximations. This
approach gives a more direct proof without going through linear theory, and
also gives an extension of [1] to the case of general Banach spaces. However
the proof given in [11] seems to be somewhat complicated, since the
assumption of [11; (42)] on the t-dependence of A(t, w) is weaker than the
corresponding one in [1]. Our argument in this paper is parallel to [11]
though it is rather simple, and so this paper would point out the essentials of
the previous work [11]. It is not difficult to extend our results here in the
direction as mentioned in [8], but the proof will be more complicated.

Finally, we mention that a simple proof for the convergence of the
difference approximations in the Y-norm is given in the forthcoming paper [12].

§1. Preliminary results on linear evolution equations

In this paper, we consider two real Banach spaces X and Y. We denote
the norms of X and Y by |‘|x and ||y, respectively. The symbol B(Y, X)
denotes the set of all bounded linear operators from Y to X. The operator
norm of AeB(Y, X) is denoted by || 4|y . For brevity in notation we write
respectively B(X) for B(X, X), B(Y) for B(Y, Y), ||A|x for | A|lx.x and | A|ly for
Il A|ly,y if there is no ambiguity. The domain of an operator A is denoted by
D(A). Throughout this paper we impose the following condition on the pair
(X, Y) of Banach spaces:

(X) Y is densely and continuously embedded in X. There is an
isomorphism S of Y onto X.

Under assumption (X), there is ¢, > 0 such that

(1.1) Iyllx <collylly  for all yeY.
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In this section we summarize basic results on the Cauchy problem for the
time-dependent linear evolution equation

(L) du(t)/dt + A(u(t) = f(t), 0<t<T, u(0) = u,

in X obtained in [2], [4], [S] and [9], where T>0, u,eX and
feL}0, T; X). Our objective here is to seek the solution u of (L) satisfying

(1.2) ueC([0, T1; Y)nC! ([0, T]; X).

Let T> 0 and let {A(t); 0 <t < T} be a family of negative generators of
(Co)-semigroups {exp[ — sA(t)]};»o on X. The family {A(s); 0 <t < T} is said
to be stable if there exist constants M and f such that

(1.3) I n?=1exP[ — 5;A(t) ] lx < exp[B(s; + -+ + s0)]

for every finite family s5;>0, 1<j<k 0<t <t,<--<t, <T and
k> 1. In (1.3) the operator product on the left is assumed to be time-ordered,
namely, exp[ — s;A(t;)] is on the left of exp[ —s;A(t)] if t; > ¢, The pair
(M, ) is called the stability index for {A(t); 0 <t < T}. The set of all stable
families {A(t); 0 <t < T}(T> 0) in X with the stability index (M, f) is denoted
by S(X, M, ). At the beginning of this paper we have introduced a class
G(X, M, P) of negative generators of (Cy)-semigroups. It should be noted that
each A(t) belongs to the class G(X, M, p), if {A(t); 0 <t < T}eS(X, M, p).
For the operators {A(t); 0 <t < T} in (L) we assume (i), (ii) and (iii) below:

(i) There exist constants M and B such that
{A(t); 0 <t < T}eS(X, M, p).

(ii) There is a strongly measurable operator valued function B(-) on [0, T]
to B(X) such that

SA@W)S™ = A(t) + BGt) for te[0, T]
and that
Supoc<r [ B) lIx < 4 for some 1> 0.

(iii) Yc D(A(t)) for each te[0, T] and A(t) is strongly continuous in
B(Y, X) on [0, T].

Detailed explanations concerning conditions (i), (ii) and (iii) are seen in [4].

A major part of the study of (L) consists in constructing an evolution
operator {U(t, s)} = B(X) associated with {A(¢)} which may be formulated
below.

THEOREM 1.1. Under assumptions (X), (i), (ii) and (iii), there exists a unique
Samily {U(t, s)} = B(X) defined on the triangle
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4={(ts);0<s<t<T}

with the following properties:
(@) U(t, s) is strongly continuous in B(X) on 4 and

1U s)x < MePC™  for (t, s)e 4.

b U, U, r)=Ult,r) and U(s, s) =1 for (t, s)ed and (s, r)e 4.
() U, sWY)<c Y, U, s) is strongly continuous in B(Y) on A and

1U(, 9)lly < Me“=>  for (t, s)e 4,

where M = M ||S|ly xS~ |xy and B =M + .

(d) oU(t, s)/ot = — A@)U(t, s) and dU(t, s)/0s = U(t, s)A(s), both of which
exist in the strong sense in B(Y, X) and are strongly continuous in
B(Y, X) on 4.

The family {U(t, s)} obtained by Theorem 1.1 is called the evolution
operator generated by {A(t)}. Theorem 1.1 was previously proved in [9] under
a stronger assumption that B(-) is strongly continuous. However, the family
{U(t, 5)} satisfying (a) and (b) of Theorem 1.1 can be obtained in the same way
as in [9]. We here verify only the third assertion (c) referring to Dorroh
[2]. The last assertion (d) is obtained from (c) via a standard argument.

We first introduce the solution {WAt, s)} = B(X) of the Volterra-type
integral equation

(1.4) WMt, s) = Ult, s) — JI Wt, o)B(o)U (g, s)do.
The integral in (1.4) is taken with respect to the strong topology of B(X). The
solution WAt, s) of (1.4) is unique and is given by
(L.5) W, 5) = ) a=o( — 1) K,(2, 5).
Here {K,(t, s)} = B(X) is defined by
K(t, s) = U(t, s) and

K, (t, s) = fU(t, 0)B(0)K, (0, s)do <= ftK,,_l(t, 7)B(t)U(z, s)dr)

N s

for n>1. Each K,: 4 - B(X) is strongly continuous and satisfies

[AM(E = 9T oy
n!

I Kalt, 8)llx < M

for (t, s)e 4. This implies that the series in (1.5) converges uniformly on 4 with
respect to B(X)-norm and that
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(1.6) W, s)llx < Mexp[(AM + B)(t — 5)]
for (t, s)ed. By (1.4) and (1.5) we have

(1.7) Wi, s) = Ult, s) — Jw U(t, 0) B(o) W(o, s)do.

N

Let us consider another integral equation
t
(1.8) Z(t,s)=S"tU(t, s) — j Z(t, 6)B(c)U (o, s)do.

(1.8) has a unique solution Z = S™'W. On the other hand it is shown (for
instance see [2]) that Z = US™! also satisfies (1.8). Therefore, we have

(1.9) Ut,s)S™ ' =S '"Wt,s) and |U(, s)|ly < MePe=9

by (1.6). Now the relations (1.9) imply the assertion (c) of Theorem 1.1. These
are proved in [2] and [9]. See also [4], [5] and [11; Section 3].

With the evolution operator {U(t, s)}, the solution u of (L) is formally
given by

t
(1.10) u(t) = U(t, O)u, + J U(t, s)f(s)ds, 0<t<T
(o]
The function u on [0, T'] defined by (1.10) is called a mild solution of (L). For

the mild solution u to be differentiable, we need further assumptions on u,
and f.

THEOREM 1.2. Suppose that conditions (X), (i), (ii) and (iii) are satisfied, and
that uge Y and fe L* (0, T; Y)NC([0, T1; X). Then the mild solution u of (L) is
a unique solution of (L) satisfying (1.2).

Theorem 1.2 follows immediately from Theorem 1.1 and (1.10). Before
closing this section, we state here the following lemma which will be used in
Section 3.

LemMMmAa 1.3. Let ugeY and feL'(0, T, Y)NC([O, T]; X). Then the
solution u of (L) satisfies

Su(t) = U(t, 0)Suy + Jﬁ U(t, s){Sf(s) — B(s)Su(s)}ds.
o
PrOOF. By (1.9) and (1.10), we have

(1.11) u(t) =U(t, O)uy + Jt Ul(t, s)f(s)ds
o

= S”‘{W(t, 0)Su, + f' Wi, s)Sf(s)ds}.

JO
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By (1.7) and (1.11), we have
W(t’ O)Suo

= U(t, 0)Su, — ftU(t, a)B(o) W, 0)Su, do
0

= U(t, 0)Su, — 'r Ul(t, 0)B(c){Su(o) — Ja Wo, s)Sf(s)ds}do
0 o
and

Jﬁ W, s)Sf(s)ds
[}

= ftU(t, 5)Sf(s)ds — J'{ftU(t, o) B(o) W(o, s)Sf(s)da}ds

= th(t, 8)Sf(s)ds — J‘ do JU U(t, o) B(c) W(a, s)S f(s)ds.
0 0 0
Consequently we obtain

Su(t) = Wit, 0)Sug + j W, 5)Sf(s)ds
()

= U(t, 0)Su, + ft U, s){Sf(s) — B(s)Su(s)} ds. Q.E.D.
[}

§2. Basic hypotheses and main result

In this section we set up basic hypotheses on the operators appearing in
the Cauchy problem (CP) along with some comments. We consider two real
Banach spaces X and Y satisfying condition (X) described in Section 1. For
the operators A(t, w) in (CP) we assume the three conditions (41), (42) and (A43)
below.

(A1) There exist an open subset W of Y and T, > 0 satisfying the following
properties: A(t, w)-is a linear operator in X defined for each t€[0, Ty]
and weW. For each p >0 there are M > 1 and B >0 such that

{A@t, v(t)); 0 <t < To}eS(X, M, B)
Sor all v(-)eD,.
Here D, is defined by
D, = {ve C([0, To]; W); llv(t) — v(s)lix < plt — 5| for 0 <s<t<T,}.
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By (A1), each operator A(t, w) is the negative generator of a (C,)-semigroup
{exp[ — sA(t, w)]}s20 on X. In what follows, we always consider W as a
metric space with respect to the metric d defined by

dw,z)=|w—z|y for w, ze W.
We will find the solutions u of (CP) satisfying
21) ueC([0, T]; WnC* ([0, T]; X)

for some Te(0, T,] which may depend on the initial value uy,e W of (CP).
In [3] and [7] it is assumed that for each t€[0, T,] and we W there is a
norm |||, of X which is equivalent to |||y with the following properties:

(N1) Ixlx < A’X”x”(t,w) and | x "(t,w) < Axllxlix
for te[0, Ty], we W and xe X.

(N2) X Newy < 1%l explulllw — zllx + |t —sl)]
for t,s€[0, Ty], w, ze W and xeX.

Here Ay > 1 and u >0 are constants independent of ¢, s, w,z and x. With
these equivalent norms the following condition is assumed in [3] and [7]:

(A1) There is > 0 such that
A(t, weG(X ¢y, 1,0 for te[0, T,] and weW,

where X, ., denotes the Banach space X with the norm ||, We will show
that these conditions imply (A41).

ProOPOSITION 2.1. Let W be an open subset of Y and let T, > 0. Suppose
that (N1), (N2) and (A1’) are satisfied. Then for every p > 0 and ve D,, we have

{A(t, v(®); 0 <t < To}eS(X, Azexplulp + ) To], B).
ProOF. Let p>0, veD, and xeX. Then for every finite family
5;20,1<j<kand 0<t, <t, <<, <To, k=1,
we have
I{[T=1exp[ — s;A(t;, v(t))]1} xllx
< AxI{TT5=1 exp[ — s;A4(t;, v(;))1} xllss

by (N1), where we write ||-[|; for [|*[l¢,0¢, 1 <j<k. By (41) and (N2), we
have

| {l_[§= 1exp[ — s;A(L; U(tj))]}x I
< e | {[[s=1exp[ - siA(t;, v(t;))]}x |k
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< {exp[Bsi + ulllv(t) — v(ta-1)llx + |t — -1 D1}
x [I{TI;=1 exp[ — s;A(t; v} x -1
< {exp[Bsi + ulp + D (tx — tx-1)1}
x [I{TI5=1 exp[ — s;4(t;, vt} x le-15
where [[*-1exp[---]1=1 if k =1. Therefore, we have

I {H§=1 exp[ — s;A(t;, v(t)] }xllx
< Ax{explu(p + 1) (& — )1} - {exp[(sy + -+ + sJB1} -l x|l
< Ag{explu(p + DTo1} - {expl(s; + -+ + s)B1} - x lIx- QE.D.

The second assumption (A42) below is stronger than the assumption
employed in [7]. In fact, the assumption imposed in [7] ensures the existence
of weak solutions. However, the condition (A42) is essential for obtaining C!-
solutions.

(A2) For each we W, there is a strongly measurable operator valued
Sfunction B(-, w) on [0, To] into B(X) such that

SA(t, w)S™' = A(t, w) + B(t,w)  for te[0, To] and weW.
There are positive numbers Ag and pg such that
22) IB(t, w)lix <Ag and | B(t, w) — B(t, z)lix < pgllw — zly
for te[0, T,] and w, ze W.

By (A1) and (A2), the semigroup {exp[ — sA(t, w)]} leaves Y invariant and
the restriction of {exp[ — sA(t, w)]} to Y (which will also be denoted by the
same symbol) forms a (C,)-semigroup on Y. The infinitesimal generator of this
restriction on Y is the part of A(t, w) in Y in the sense of [4; p.242], which will
also be denoted by the same symbol A(t, w). Furthermore, for p >0 and
veD, we have

{A(t,v()); 0<t < To}eS(Y, M| S|yx- (Nl lx,y» B+ Map),

where (M, p) is the stability index for {A(t, v())} in X determined by (41). See

[4].
Assume for the moment that (N1), (N2), (4A1') and (A42) are satisfied. Put

Yy = 1SYlew) for ye Y, we W and t€[0, T,],

and let Y, ,, be the Banach space Y equipped with the norm ||, ,, Then it is
easy to see that

(NT) Iylly < Ayl¥lewy — and  |¥lew < Arllyly
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for te[0, T,], we W and yeY,

(N2) |Y|(t,w) < |Y|(s,z)‘exp[ﬂ(“W —z|x + [t —s])]
for t, se[0, Tyl, w, ze W and yeY, and

(A42) A(t, WeG (Y, 1, By)  for te[0, T,] and we W,

where Ay = Ay max{|S|lyx S 'llxy} and By = B + Agiy. Instead of (A1)
and (A2), it is assumed in [7] that the equivalent norms ||, and |*|,.,, exist
for each te[0, Ty] and we W, and that conditions (N1), (N1'), (N2), (N2'), (41"
and (A42') hold for some Ay, Ay, u, f and By. Under these assumptions together
with (43), (2.5) and (2.6) below, the existence of weak solutions of (CP) is proved
in [7]. Our condition (A42) is stronger than the corresponding ones in [7] in
the sense described above, however, we obtain sharper results concerning C!-
solutions than those of [7] as mentioned in the Introduction.

The third assumption on A(t, w) is concerned with the (¢, w)-dependence of
A(t, w).

(43) For each te[0,T,] and weW, D(A(t,w)>Y (and hence
A(t, w e B(Y, X) by the closed graph theorem). For each weW,
A(-, w) is strongly continuous in B(Y, X) on [0, To]. There is a
positive number u, such that

23)  A@ w) — AW 2)llyx < pallw—zllx  for te[0, To] and w, ze W.

From (A43), it follows that for any bounded subset B of W there is c¢(B) > 0
satisfying

2.4) A, w)lly.x < c(B) for te[0, Ty] and weB.
We next make an assumption on the operators f(t, w).

(f) For each te[0, T,] and we W, f(t, w) is defined and belongs to Y. For
each weW, f(-,w) is continuous in X on [0, T,] and is strongly
measurable in Y. There are positive numbers Ay, u, and ji, such that

2.5) 11wy < 4,
(2.6) £ w) —f(t, 2)llx < prllw —zllx  and
1/ w) —f(t, DIy < frllw —zlly
for te[0, Ty] and w, ze W.
Now our main result in this paper is stated as follows:

MAIN THEOREM. Suppose that conditions (X), (A1) through (A3) and (f) are
satisfied. Then for each initial value u,e W, there is a Te(0, T,] such that (CP)
has a unique solution u satisfying (2.1).
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To prove the Main Theorem, we prepare some notations and
lemmas. For any initial value uye W of (CP), we choose r, > 0 and ¢,€ W so
that

uo€B(¢o, ro) = W,
where B(@y, ro) = {WeY; |[w — @olly <ro}, and then we put

Po = Coly + c(B(Po, 70)) (| o lly + 7o)

Here, c,, A, and c(B(¢y, 1)) are the constants as mentioned in (1.1), (2.5) and
(2.4), respectively. Let (M, ) be the stability index given by (A1)
for p = po,. We choose r >0 and ¢e W so that

luo — dlly <r/(MP™|Sllyx IS lxy) (<r) and
@2.7)
B(¢, r)(={weY; |w— @y <r}) < By, 1)

In the rest of this paper we fix

2.8) uoeW, po >0, (M, f) and B(¢, r)

as defined above. Let E be the set of all v satisfying

2.9) veC([0, T]; Y), v(t)e B(¢, r) for all te[0, T] and
(2.10) lo@) — v(s)llx < polt — s| for 0<s<t<T

Here Te(0, T,] will be determined after Lemma 3.5. With this T we define the
triangle 4 appearing in Theorem 1.1. It should be noted that E is considered
as a suset of D,. For brevity in notation we write

A*(r) = A(t, v(t)), B°(t) = B(z, v(1)) and f°(t) = f(t, v(1))
for each veE and te[0, T].

LEMMA 2.2. The families {A°(t);0<t < T,veE} and {f*; veE} satisfy

the following:

(@) {4°@); 0 <t < T}eS(X, M, B) for all veE.

) SA°(t)S~ = A°(¢) + B*(t), and || B°(t)||x < Ay for all te[0, T] and veE.
BY(*) is strongly measurable on [0, T] into B(X) for each veE.

(c) Y < D(A*(t)) for each t€[0, T] and ve E, and A*(") is strongly continuous
on [0, T] into B(Y, X).

d  f°eL*® (0, T; Y)nC([0, T]; X) and | f°(t)|y < A; for all te[0, T] and
veE.

Here (M, p) is the stability index in (2.8). Lemma 2.2 follows immediately

from (A1), (42), (43) and (f). By Lemma 2.2, we can apply Theorem 1.1 to the
family {A4°(2)}.
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COROLLARY 2.3. Let (X), (A1), (A2), (A3) and (f) hold. Then for each
veE there exists a unique evolution operator

{U*(t, s);(t, s)ed} = B(X)nB(Y)

generated in the sense of Theorem 1.1 by {A°(t); 0 <t < T}. In particular, we
have

IUSE 9)lx < MBS and | UG, )lly < MeP

for (t,s)ed and veE, where M =M ||S|yx IIS™!llxy and B=B+ Mig
It should be noted that (M, f) and (M, B) are independent of (¢, s)e 4 and
veE. By Corollary 2.3, we have:

LemMA 2.4. For each v, weE, yeY and (t, s)e 4, we have

I1U°@, s)y — U™, s)yllx
@2.11)

t
< p MMt Ilyllrj llv(e) — w(o)lIx do.
Proor. By Corollary 2.3, we have

U, s)y — U"(t, s)y = f U®(t, 0)[A"(6) — A®(6)]U"(o, s)y do,

S

which is obtained by differentiating U°(t, 6) U% (o, s)y in ¢ and then integrating
the resultant derivative over ge€[s,t]. On the other hand, by (2.3) and
Corollary 2.3, we have

U, a)[A™(0) — A®(6)]U™(a, s)yllx
< pMMeP= 2|y ||y ||v(0) — (o) | x.
Therefore, we have (2.11). Q.E.D.

In the rest of this section, we give an outline of the proof of the Main
Theorem. Firstly, we construct approximate solutions {u"} of (CP). These
are defined inductively by u® = u, (the initial value of (CP)) and

13
u(t) = U, (2, O)uo +f Ui, 9f(s, u"" () ds, 0<t<T, nx1,
0

where {U,(t, 5)} is the evolution operator generated by {A4(t, u™(t))} for each
n>0. We can choose Te(0, T,] so that {u"} =« E. We then show that the
limit

u(t) = lim,,_, L u"(t)
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exists in C([0, T]; X). It should be noted that if X and Y are both reflexive,
then

(2.12) u(t)e B(¢, r) for each te[0, T],

and u satisfies (CP) since B(¢, r) is closed in X. See [6]. However, in general,
B(¢, r) is not closed in X and so one cannot conclude (2.12) at once. Therefore
we need more detailed argument.

Secondly, we show the strong convergence in X of {U,(t, s)}:

(2.13) U, s)x =lim,_ U, s)x  for (t, s)ed and xeX.

After the Main Theorem is proved, we will see that {U(t, s)} defined by (2.13) is
the evolution operator generated by {A(t, u(t))}.
Thirdly, we consider the integral equation

() Su(t) = U(t, 0) Suy + ﬁ U(t, s){Sf(s, 4(s)) — B(s, ii(s))Si(s)}ds, 0<t<T.
In view of Lemma 1.3, we see that the solution of (CP) must be the solution # of
(I) if it exists. In fact, we find the solution @ of (I) satisfying
ueC([0, T]; B(¢, 1)),
and then we obtain
lim,_, ,, supo <7 llu"(t) — @(®)lly = 0.

It follows immediately that & = u is the solution of (CP) satisfying (2.1).

§3. Proof of Main Theorem
We begin by defining an operator ¥ from E into C([0, T]; Y). We put

[Wol(®) = U°(t, O)uy + Jt U®(t, s)f°(s) ds
0

for 0<t<T and veE. By Corollary 2.3, ¥ is a mapping from E into
C([0, T]; Y)nC*([0, T]; X), and u = W satisfies the linear evolution equation
(L) du(t)/dt + A*(t)u(t) = f*(¢), 0<t<T, u(0) = u,.

LEMMA 3.1. There is Te(0, T,] such that YveE for veE.

Proor. Let veE and u =¥v. Then, Corollary 2.3 and Lemma 1.3
together imply ue C([0, T]; Y)nC*([0, T]; X) and the relation

Su(t) = U*(t, 0)Su, + Jt U®(t, s) {Sf°(s) — B®(s)Su(s)}ds.
0
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Therefore, we have

lu@®) — @lly < IS lx,y- 1 Su(®) — Solix
< 187 ixy 10U, 0)Suo — S lix

+ 187! le,y'f0 U, s){Sf*(s) — B*(s)Su(s)} lIx ds,
and
U*(, 0)Sup — SPlix
<UE, 0)S(uo — P)llx + 1UE, 0)(SP — »)x + 1UE 0)y — ylix

+ 1y —Solx
< MePT([Slyx lug — @lly + (MePT + 1)[[Sp — ylix + U, 0)y — ylix
for ye Y. Furthermore,

t
U, 0y —y=— J A*(MU"(z, )y dr,
(V]

and |A°(t)|ly.x < c(B(¢, r)) by (2.9) and (2.4), and so we have
1S~ x,y- 1U°( 0)Suo — Sl x
< MeﬂT”S”Y,x' ||S_1 "x,y' luo — @lly

+ 187 xy {(MePT + 1)[5¢ — yllx + c(B(#, ) TMe || ylly}.

We write r, for the right hand side of the above inequality. Since

MePT|S|lyx IS  Hixy llg — @lly <r by (2.7) and Y is dense in X, we can
choose yeY and Te(0, T,] so that r;, <r. Next, by (2.2) and (2.5) we have

f NU*(t, s){Sf°(s) — B*(s)Su(s)} | x ds
0

< Meprj {lf”S“y,x + /13||S“y,x(”u(s) — Plly + ”¢”y)} ds

t
< MEPT Sy x(As + A5l @I T+ ABMeﬂTHSIIy,Xf lus) — @lly ds.
0
Thus, letting ry =7y + MePT | S|y x IIS™ Ixy(A; + A5l @ly) T, we have

lu(®) — @lly <7y + AgMe’T||Sllyx- IIS_‘le,yL llu(s) — @lly ds,

which implies that

lu(®) — @lly < rexp[(AgMe’ T[Sy x IIS™ x,) T].
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Since r, <r, we can choose a smaller number Te(0, T,] so that

lu®) — @lly <r

for te[0, T] and veE. This implies (2.9). Finally, since u = Wv is the
solution of (L*) and u(t)e B(¢,, r,) for te[0, T], (2.4) implies

ldu/dt|y < CO'{f + c(B(¢o, ro)) lu(®) Iy < po-
From this we obtain the Lipschitz condition (2.10). Q.E.D.

In what follows, let Te(0, T,] be an arbitrary but fixed positive number
satisfying W(E) < E. We make E into a metric space by the distance function

dx(v, w) = supo<,<7llv() — w(t) | x for v, we W.

It should be noted that E is not always complete.

LemMA 3.2. Let ¢; = pMMeP(|uqlly + A, T) + u,Me?T. Then we have

(e, TY
n!

3.1)  dx(¥"v, ¥"w) < ~dy(v, w) for v, weW and n=1,2,---.

ProOOF. Let v, weE. By Lemma 2.4 and (2.6), we have

IT¥v](e) — (YWl llx
< 1U°(t, O)uo — U™(2, O)uo i x

N f 1LV, ) — U*(t, 9176y ds
+ f 10" L6 — ")l ds
< 1 MM |, uy-ﬁ 106) — w(s) . ds
+ A MMePT ﬁ ds £ llv(e) — w(o)|lx do
Ty MebT- f 06 — w(s) I ds

t
<c J lv(s) — w(s)llx ds.
o
It follows that

0¥ v]()) — [¥" wl®) ]l x < cl'j {ler ¢ = )1 Hin — D} Hlo(s) — wls)lIx ds,
0
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for n=1,2,---. From this (3.1) follows. Q.E.D.
We define a sequence {u"} in E as follows:

3.2) u®(t)=u, on [0,T] and u"=Pu"! for n=1,2,-.-.

Then we have
COROLLARY 3.3. The sequence {u"(t)} converges in X uniformly on [0, T].
Corollary 3.3 follows directly from Lemma 3.2. It will be proved that the

limit

(3.3) u(t) = lim,_, ,u"(¢)

gives a unique solution of (CP) satisfying (2.1). In what follows {U,(t, s)}
denotes the evolution operator generated by {A(t, u,())}.

LEMMA 3.4. There is a family {U(t, s); (t, s)e 4} of operators in B(X) such
that (a) and (b) of Theorem 1.1 hold with U replaced by U, and such that

(3.4) lim,, o SUP(.gea | Unlt, $)x — U, 5)x|lx =0  for xeX.
Proor. For xeX, yeYand 1 <m < n, we have
| U2, 5)x — Uylt, 5)x|Ix

SNUn(t 8)(x = Y)lx + [ Unlt, )y = Un(t, 8)ylix + (U2, 8)(y — x)lIx
<2MeT||x — yllx + paMMTlylly &7 dy(™, u™),

by Lemma 2.4 and Corollary 2.3. Since Yis dense in X and dy(u™, u") -0 as
m, n —» oo by Corollary 3.3, we have
sup(t,s)eA” Um(t’ s)x - Un(t5 S)x ”X i 09

as m, n > c0. From this it follows that there is a family {U(t, s)} of operators
in B(X) satisfying (3.4), and that U(t, s) has the properties (a) and (b) since each
U,(t, s) has the corresponding properties. Q.E.D.

We denote by Ey the set of all functions v in C([0, T]; Y) satisfying
v()eB(¢, 1) for te[0, T].
We make E, into a metric space through the distance function

dy(v, W) = supocr | 0(1) — w(D)|ly

for v, weEy. Ey is a complete metric space. For each ve Ey, we put

[@v](t) = S™1T(t, 0)Sup + j s T(t, s) {Sf*(s) — B*(s)Sv(s)} ds.
0
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® is a mapping from Ey into C([0, T]; Y). In the following, we will find a
smaller Te(0, To] so that @ has a fixed point.

LEMMA 3.5. There is Te(0, Ty] such that ®veEy for veE,.

Proor. Let veEy,. In the same way as in the proof of Lemma 3.1, we
have

Pv — &lly
<187 Hixy {I1U(E 0o — P)lix + 1UE 0S¢ — Sy}

+ IIS"llix,y'j 1T, $){Sf*(s) — B*(s)Sv(s)} Ix ds
0

< MePT(ISlly,x 187 xy- lluo — Blly
+ IS lx,y Suposisr UL 0)SP — Slix
+ TMPT(|S ly x IS lxy {As + A5 + | Blly)}-
Therefore, by (2.7), we can choose Te(0, T,] so that
[@v— @y <r,
since supg<,<r |U(t, 0)S¢p — S|y =0 as T]O. Q.E.D.

In the rest of this section, we fix Te(0, T,] so that W(E) = E and ®(E)
c E.

LEMMA 3.6. There is a unique fixed point i€ Ey of .

Proor. We apply the contracting mapping principle. Let v, we Ey. Then
we have

I[®v](2) — [Pw]@)lly

<|s! |Ix,y'L 10, $)S{f*(s) = ()} Ix ds
+187! le,y'fo 1T, s){B°(s) — B*(s)} Sv(s) | x ds
+ ”S_l“x,y'fo 1T, s)B*(s)S{v(s) — w(s)} lx ds

< Cz'fo lo(s) — w(s)lly ds,

where ¢, =[S lxy I Slly.x- Me?T{u; + (r + | @lly) g + Ag}. It follows that
(e, T)

n!

dy(®"™, ®"w) < ~dy(v, w),



Quasi-linear evolution equations 537

for n=1,2,---. Q.E.D.

LeEMMA 3.7. Let {u"} = E be the sequence defined by (3.2) and i€ Ey the
unique fixed point of ®. Then we have

lim, .,  supo << [|4"(t) — @(®) [y = O.

Proor. Since # = @i, we have
Si(t) = U(t, 0)Suy + J: U(t, s){Sf(s, ii(s)) — B(s, (s))Si(s)} ds.
Since u" = Wu"" !, Lemma 1.3 gives
Su(t)=U,_4(t, O)Suo+£ Up-1(t; ) {Sfu-1(5)—Byu-1(s)Su"(s)} ds,

where we write
fa8) =f(s,u"(s)) and  B,(s) = B(s, u"(s))

for n >0, and {U,(t, 5)} is the evolution operator generated by {A(t, u"(t))} as
before. Then we have

| Su™(t) — Sua(®)llx
< U,-1(t, 0)Suy — U(t, 0)Sug |l x

r~

+ 1 U= 1, S {f(s, um2(5) = £(s, @(s))} 1x ds
N 1{Un_ 16 $) — T(t, 5)} SFGs, @(s))lx ds
N 1 Us-1(t 5By s (5)S{u"(s) — ()} 1y ds
N | Un- (&, 9) {BGs, 4"~ 1)) — B(s, @(s))}Si(s) 1 ds
+ 0 {Un=1(t ) — T2, 5)} BGs, @(5))Sa(s) 1 ds

<é+ J {csISTu™(s) — a(s)llx + callS[u"™ ' (s) — a(s)]llx} ds,
0

where c; = AgMePT, ¢, = Me””S”y,x' Is~1 llx,y- {ﬂf + pup(r + | #lly)} and
0 = $UPosear | Un— 1 (&, 0)Sup — T (2, 0)Sug 5

+ SUPosisT L H{Un-1(t, 5) = U(t, )} Sf(s, a(s))lx ds
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+ SUPo<isT Jt {Un-1(2, 5) — U, 5)} B(s, u(s))Sia(s) | x ds.
(0]

Put p,(t) = ||Su"(t) — Si(t)|x for n=0, 1,---. Then by the Gronwall’s inequ-
ality, we have

pn(t) < &n 'CXp(C3t) + Cq” Jl DPn- l(s)' CXp[C3 (t - S)] ds.
0

Therefore, for any 0 < m < n, we have
Pa(t) < explcst) Yo en—i(cat)/k!
+cptt J: {(t — sy"/m!} - py_pm—1(s) explcs(t — )] ds.
Put J, = sup;,, & for k > 0. Then p,(s) < 2r| S|y x for k > 0, and so the above
inequality reduces to
Pa(t) < 8- expL(cs + ca) T + 2r(|S|lyx - exp(c3T) (e T)™ " f(m + 1)!

for 0 <m<n. We have lim,_, 6, =0 by Lemma 3.4 and the dominated
convergence theorem, and hence

limsup, - o [SUPo<is Pa()] < 2r[[Slly.x-exp(csT) (caTI™* Ym+1)!
for any m > 0. Thus we have

lim, ., SUPo<r<r | Su"(t) — Su(t)[|x = O. Q.E.D.

We are now in a position to complete the proof of our Main Theorem.

PrOOF OF MAIN THEOREM. Let u be the function defined by (3.3) and @ the
unique fixed point of ®. By Lemma 3.7, we have u = ic E, and

limn-*oo Sup05t5T” un(t) - u(t) ”Y =0
Furthermore, we have
lu@® —u(s)llx < polt —s|  for (t, s)e 4,

since each u" belongs to E. Therefore, we have ue E and we see that both 4%(¢)
and f*(t) are well defined. We will prove that {U(t, s)} is the evolution
operator generated by {A“(t)}. For each yeY, 0<o<s<t<T and
n=1,2---, we have

U,(t, )y — Uy(t, o)y = f Uyt DA, uy(2)y de.

a

Passing to the limit as n — o0, we have
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U, s)y —U(t, o)y = Js U(t, 1)A%(7)y dx.

This implies that
0/0s)U(t, s)y = U(t, s)A*(s)y  for (t, s)ed and yeY.

Let {U“(t, s)} be the evolution operator generated by {4"“(t)}. Then for yeY
and 0 <o <s<t<T we have

(0/05)TU(t, s)U¥(s, o)y = U(t, 5) {A"(s) — A*(s)} U"(s, o)y = 0.
This implies that U(t, s)y = U¥(t, s)y. Since Y is dense in X, it follows that
U(t, s)x = U¥(t, s)x

for xe X and (¢, s)e 4. Now, using the relations
t
u'(t) = U,_(t, Ouy + f U, s)f(s, u" 1(s)) ds for 0<t<T,
(4]

we have

(3.5) u(t) = U“(t, O)u, + JI U“(t, s)f*(s) ds for0<t<T

0o

By Theorem 1.2, this implies that u is a solution of (CP) satisfying (2.1). To
prove the uniqueness, let v be any solution of (CP) satisfying (2.1). Then, in
view of the identity

(0/0s) U (t, s)v(s)
= U(t, s) {A¥(s) — A*(s)}v(s) + U“(t, s)f*(s),

we have

t

(3.6) o(f) = U*(t, O)ug + L U, 5)f*(s) ds
+ f UG, 5) {4%6) — A%S)}os) ds
¥ J Ut ) {f°5) — ()} d.
By (3.5) and (3.6), we have
Ju(®) — 00) 5 < MePT {pe-max, o(3) Iy + s} j Ju(s) — o)l ds.

Thus we conclude that u = v. Q.E.D.
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