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Introduction

This paper is concerned with periodic and almost periodic behavior of

solutions to the following problem:

(0.1)

u' - Δv = /, veβ(u\ in (0, oo) x Ω,

v = g0 on (0, oo) x Γθ9

dvv + p-v = g1 on (0, oo) x (Γ\Γ0),

M(0, ) = u0 in Ω.

Here u' = (d/dt)u, Ω is a bounded domain in RN (N > 1) with smooth boundary

Γ, Γo is a measurable subset of Γ with positive surface measure, p is a non-

negative bounded measurable function on Γ, dv denotes the outward normal

derivative on Γ, and β is a maximal monotone graph in R x R. Damlamian

and Kenmochi have studied in [8,9] the global behavior of solutions to (0.1) in

the case in which β is Lipschitz continuous. The Lipschitz continuous case is

effective for Stefan problems in weak (enthalpy) formulation, but it is in general

required to assume that β is multi-valued. In fact, we do have this situation for

instance in the weak formulations of free boundary problems arising from Hele-

Shaw flows as well as electrochemical machining processes, see [5,18,

19,20]. As observed by Damlamian [6,7], problem (0.1) is formulated as an

evolution equation by means of time-dependent subdifferentials in an

appropriate Hubert space. In Kenmochi-Otani [14,15], the periodic and

almost periodic stability of solutions to a general class of evolution equations

with time-dependent subdifferentials have been studied. However, it does not

seem that their result is directly applicable to the problem (0.1) if both β and

β'1 are multi-valued. In this paper, we extend a part of the result given in [9]

to a class of maximal monotone graphs β so that the inverse of the Heaviside

function may be contained. This is necessarry to treat the problems for Hele-

Shaw flows and electrochemical machining processes, since in these cases β is

the inverse of the Heaviside function. The main results of this paper were

already announced in [17], and this paper contains their complete proofs.

We shall first establish existence theorems of periodic (resp. almost

periodic) solutions of problem (0.1) and then discuss their asymptotic stability,
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provided that / and gt (i = 0,1) are periodic (resp. almost periodic)

functions. Our method employed here is similar to that developed in [9], but

a new version is presented in Lemma 4, Section 3. We note that our class of

functions includes the function β(r) = |r | m ~V(m > 1) which appears in the

porous media equations and functions such that β'1 is non-decreasing,

bounded and Lipschitz continuous; this case occurs in equations of parabolic-

elliptic type. As for the periodic stability of solutions, DiBenedetto-Friedman

[10] have investigated evolutionary dam problem, and Kenmochi and Kubo

[13] have treated a model problem of partially saturated flows in porous media.

In this paper, given a Banach space Y, we denote by | | y the norm of

Y We use various terminologies related to proper lower-semicontinuous

(1. s.c.) convex functions and their subdifferentials; for them we refer to Brezis

[3]. Moreover, we use the following notations:

H = L2(Ω) with inner product ( , ), X = H\Ω)

and

V={zeX\ z = 0 a.e. on Γo}.

By assumption, Γo has positive surface measure and the function p is non-

negative and bounded, and so V becomes a Hubert space with respect to the

inner product

(0.2) (z,y)v =\Vz Vydx + f p(x)z(x)y{x)dl\x) for z, yeV.
J a J r

We write K* for the dual space of V and F for the duality mapping of V:

(0.3) (Fz, y}=(z, y)v for z, yeV,

where <*,-> stands for the duality paring between V* and V. V* becomes a
Hubert space with respect to the inner product (z, y)^ = <z, F ~x y > and the
norm is denned by \z\^ = (z, z)*/2. It should be noted that Fez H c= V* and the
injections are dense and compact.

1. Theorems

We study the problem (0. 1) for functions β belonging to the class denned

below.

DEFINITION 1. Let β be a maximal monotone graph in R x R and β: R

-•Rll{oo} be a proper 1.s.c. convex function with β = dβ. Given constants α

> 0 and b > 0, we say that β belongs to the class B(a, b) if β satisffies

β(r)>a\r\2 -b for all r e R .
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For example, if β is the inverse of the Heaviside function, then β(r) = 0 for

0 < r < 1, = oo otherwise, and βeB(l, 1)

LEMMA 1 (cf. Damlamian [6,7]). Let βeB{a,b\ g:R->H, ίeR, and

define the function φu. K*->Ru{oo} by

ί β(z(x))dx - to(ί), z) for zeH,
J Ω

(1.1) φ\z)= ,
oo for zeV*\H.

Then φ* is proper, l.s.c. and convex on V*, and the effective domain of φι is

characterized as follows:

(1.2) D(φ<) = Dβ^{zeH; β(z)eL\Ω)}

Moreover for u and u* in V*, u*edφ\u) if and only if the following (i) and (ii)

hold.

(i) ueD(φt)(=Dβ).

(ii) There is a function v in X such that u — geV, u* = F(v — g) and

v(x)eβ(u(x)) for a.e. xeΩ.

We now reformulate problem (0.1) as an evolution equation of the form

(1.3) ιι'(ί) + dφ\u(t))sf(t) for a.e. teR+ (= [0, oo))

with the initial condition

ιι(0) = i*o.

In fact, system (0.1) excluding the initial condition is written in the following

variational form (see [6,7,8,9] for the details):

(1.4)fl v(t, x)eβ(u(t, x)) for a.e. (ί, x)eR + x Ω,

(1.4), v(t)-g(t)eV for a.e. teR+,

V(v(t, x) - g(t,
J Ω

'(ί), z> + ί V{v{U x) - g(t, x)) Vz(x)dx

p(x)(v(t,x)-g(t9x))z(x)dΓ(x) = (f(t\ z)i
for all z e K a n d a.e. +

Here g(t) is determined by go(ή and g^t) as the solution of the elliptic problem

- Ag(t, ) = 0 in Ω,

p-g(t,') = gx(t9') on Γ\Γ0
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for each t. With the mapping F(cf. (0.2), (0.3)), variational form (1.4) is

expressed as

(1.5) u\t) + F(v(t) - g(ή) = f(t) and veβ(u) for a.e. teR + .

In view of Lemma l-(ii), we see that (1. 3) is equivalent to (1.5) and therefore to

(1.4). In the sequel, we denote equation (1.3) (or (1.5)) by E(β, g9f) and treat

the problem (0.1) in this form

DEFINITION 2. Let βeB(a9b), g e W^1 (R; H) and feLf0C (R; F*). A

function u: J = [ί0, £χ] -* F# is called a solution to E(β, g, f) on J, if u satisfies

the following three conditions (a), (b) and (c):

(a) ueC(J\V*)[\W}£((t» ί j ; F*).

(b) The function ίi—•φί(w(ί)) belongs to L}(J\ where φι is given by (1.1).

(c) u\t) + dφXu{t))3f{t) for a.e. teJ.

Also for a general interval J in R, u: J -• F* is said to be a solution to E(β, g, f)

on J, if u is a solution to £(/?, #, /) on each compact subinterval of J in the

above sense.

We note that if u is a solution to E(β, g, f) on an interval J (in the above

sense), then by (1.2) u(t) belongs to the closure of Dβ with respect to the

topology of V* for all teJ, since ueC(J; V*) and u(t)eD(φt) for a.e. teJ. As

to the solvability of the Cauchy problem for E(β, g, /), we have the following

result which is obtained by applying the abstract theories developed in [6,7,11]

and their slight modifications

LEMMA 2. Let β, g and f be as in Definition 2. Let u0 belong to the closure

of Dβ with respect to the topology of V* and let toeR. Then there exists a

unique solution u to E(β9 g, f) on [ίo?°°) with u(t0) = u0 such that t\—>

{t-toγi2u'eLUίt-o,oo); V*)9 t^(t - to)1'2 MeL&([fo,αo);if) and t^φ\u(ή)

eJF|ofc1((ίo>°°)) V ίn particular uoeDβ, then wΈL?oc([ί0,oo); V*), ueL%c

(lt09co);H) and t \ ( t ) ) W ^ { \ t ) \

In what follows, we shall discuss solutions in the sence of Definition 2 and

Lemma 2. Our first result is concerned with the periodic stability of solutions.

THEOREM 1. Let β e B(a, b\ g e W\£ (R; H) andfe Lfoc(R; V*). Assume that

there exists a constant T> 0 such that

g(t+T) = g(t) and f(t + T) =f(t) for a.e. teR

Then we have the assertions (i) through (iii) below.

(i) There exists a T-periodic solution to E(β, g,f) on R. In other words, the

set Pτ = {u: R -> F*; u is a solution to E(β, g, f) on R satisfying u(t + T) = u(t)

for all teR} is not empty.

(ii) For each solution u to E(β, g, f) on [ίo,oo), ί o eR, there exists ωsPτ

such that
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u(t) — ω(t) —>0 in V* and weakly in H as t —•oo.

(iii) Let ωl9 ω2ePτ,
 and tet 1Ίie β(ωι) be such that ω[ + F(ηι — g) =f a.e.

on R, i = 1, 2. Then η^t) = η2(t) for a.e. teR and there is an element oc in H
such that ω^t) = ω2(ή + α for all teR.

We shall prove the above theorem as a corollary to the second theorem

which is concerned with the almost periodic stability.

DEFINITION 3 (cf. [1]). Let E be a Banach space. A continuous function

/: R -» E is said to be E-almost periodic if for any sequence {ίn} in R there is a

subseqence {tnk} of {tn} such that/(ί + tnj) converges in E uniformly in teR.

Given a function feLfoc(R; £), we define / : -»L2(0,1;£) by [/(ί)](s) =

f(t 4-5) for ί e R and a.e. se(0, 1). We say that a function feLfoc(R; E) is E-

almost periodic in the sense of Stepanov if the mapping / : R-»L 2 (0,1; E) is

L 2 (0,1; £)-almost periodic.

THEOREM 2. Let βeB(a,b). Assume that geWf^QBL; H) is H-almost

periodic and that feLfoc(R; V*) is V*-almost periodic in the sense of

Stepanov. Suppose that the following two conditions (a) and (b) hold:

(a) SUpf6R|0'|Li<ίft+l:H)< 00.

(b) If {tn} is a sequence in R such that g(t + tn) -» g(ή in H uniformly on R,

then geWf^iR; H) and supί6R| #'1/^+1:*) < o°
Then we have the assertions (i) through (iii) below:

(i) There exists a V*-almost periodic solution to E(β9 g,f) on R. In other

words, the set AP = {u: R -• F*; u is a solution to E(β, g,f) on R and V*-almost

periodic] is not empty.

(ii) For each solution u to E(β9 g9 f) on [ίo,oo), toeR, there exists ωeAP

such that

u(t) — ω(t) —• 0 in V* and weakly in H as t —• oo

(iii) Let ωu ω2eAP, and let ηieβ(ω^ be such that ω + F(fyf — g) = / a.e.

on R, i = 1, 2. Then ηx(t) = η2(t) for a.e. teR and there is an element oc in H

such that ωx{t) = ω2(t) + α for all teR.

REMARK 1. (a) Assumption (b) of Theorem 2 is valid if, for instance, the

following holds:

|flf'|LP(M+l:H) < °° f θ Γ S O m e 1 < P < 00.

(b) In general AP as well as Pτ is not necessarily a singleton set.

The third theorem of this paper is concerned with the characterization of

periodicity and almost periodicity of solutions by means of global boundedness.

THEOREM 3. Under the same assumptions as those in Theorem 1 (resp.

Theorem 2), a solution u to E(β, g,f) on R is T-periodic (resp. F*-almost periodic)



504 Masahiro KUBO

if and only if u is V*-bounded on R in the sense that sup ίeR | u(t) | ̂  < oo.

In the next section, we recall some known results. Some key lemmas are

prepared in Section 3. And Theorems 1, 2 and 3 are proved in Section 4.

2. Continuous dependence of solutions on boundary, forcing and initial data

In this section, we collect some results concerning key estimates for

solutions to E(β, g9f) and the continuous dependence of solutions on the data g,

/ a n d u0 given in [8] and [9]. Although the following results are stated in [8]

and [9] under the assumption that β is Lipschitz continuous, the proof for the

case in which βeB(a, b) is almost the same as in those of [8,9]. The same

results can also be obtained from the abstract results due to Kenmochi [11]

and Kenmochi and Kubo [12].

PROPOSITION A. Let βeB(a,b) and let gsW\£{& H)n L°°(R; H) and

/ E L ? 0 C ( R ; V*). Assume that

S1Λ(θ) = | 0IL«( R ;H) + s u p ί e R | < 7 ' | L 1 ( M + 1 ; H ) < oo

and

S°*2(f) = sup^l/l^.t + i K ) < oo.

Let u be a solution to E(β,g,f) on [ίo»°°) Then the following holds:

+ sup ί 0 < ί < f 0 + 1(ί -

+ sup f :>jM|L2 ( f f f + 1 : H ) + |( - ί o ) 1 / 2 u'\mto,t

+ sup ί> ί o + 1 | u ' | L 2 ( ί > ί + 1 ; F * ) + sup ί 0 < r < f 0 + 1(ί

+ sup f 2 i f 0 + 11 ̂ M ί ) ) ! + s u p ί > ί o | φ ( )(M( ))|Li(

< M, = M^a, b, S^(g% S$2(f), Wίo)U) < oo,

where Mγ\ (R + \{0}) x R 4

+ - > R + ( R + = [0, oo)) is an appropriate locally bounded
function. If in particular u(t0) e Dβ, then we have

< M 2 = M2(a, b, S^(g), S^'2(/), \u(to)\^ \φt0(u(t0))\) < oo,

where M2: (R + \{0}) x R 5

+ - ^ R + is an appropriate locally bounded function.

PROPOSITION B. Let βe B(a, b\ gn, g e W\£(R: H), and let /„, / e Lfoc(R; H),
n = 1, 2, . Assume that
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S^() ^ ' 2 ( / J + S%2(f) < oo,

gn(t)-+g(t) in H for all teR

and that

fn —•/ in L2 (J; V*) for each compact set J in R.

Let un9 n= 1, 2, , <z«<i w te solutions to E(β, gn9 fn) and E(β, g, f) on \_tQ, oo),

respectively. Assume that

{φt0(un(t0))}n^ is bounded

and that

un(t0)-+u(t0) in V*.

Then we have:

( i ) un(t) —• u(t) in V* and weakly in H uniformly on each compact interval

in [ίo> oo).

(ii) uf

n-*u' weakly in L2(t0, tx; V*) for all tx > t0.

(iii) vn^v weakly in L2(t0, tx; X) for all tx > t0,

where vn, v are the functions such that

< + F(vn - gn) =fm vneβ(un\ n = 1, 2 , - ,

u' + F(υ-g)=f9 veβ(u).

These propositions will be used in various limit processes in the proofs of

Theorems 1, 2 and 3.

3. Lemmas

In this section, we prepare four lemmas which will be used in the proofs of

Theorems 1, 2 and 3.

LEMMA 3. Let uί and u2 be solutions to E(β, g, f) on J= [ί0, ί j and set

(3.1) u\ + F(υt - g) = / , Όteβ(ud, i = 1, 2.

Then the following equality holds:

(3.2) 2"1 |t/1(ί) - u2(t)\l + f*(Όl{τ) - v2(τ),u1(τ) - u2(τ))dτ

= 2"1|w1(5) - u2(s)\l for all t0 < s < t < tv

PROOF. Multiplying the identity derived from (3.1)

u\ - u'2 + F{v1 - υ2) = 0
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by uγ — u2, we obtain

l-^d/dt^u.it) - u2(t)\l + (F(Vl(ή - υ2{t)\ Uί(ή - u2{t))* = 0

for a.e. teJ.

Since u^ί), u2(t) e D(φf) c H for a.e. ί eJ , ( F ^ ί ) - υ2(t))9 vx(t) - u2(ί))* =
(v^t) - v2{t\ u^t) - u2(t)). Hence we have (3.2). q.e.d.

REMARK 2. We note that in the above lemma (υ1 — v2, vγ — u2) > 0 by the

monotonicity of β. Hence ίi— |̂Wi(ί) — M 2 (0I* is non-increasing.

LEMMA 4. Let β e B(a, b\ g e W^L1 (R; H) andfe Lfoc(R; V*). Let ux and u2

be solutions to E(β9 g, f) on J = [ί0, ί j . Assume furthermore that

(3.3) t\-^\u1{t) — M2(ί)U ^ constant on J.

Then the following (i) α«d (ii) hold:

(i) 77zere w α« element a in H such that

Ul(t) = u2(t) + α for all teJ.

(ii) ξux + (1 - ζ)u2 is an solution to E(β, g9 f) on J for all 0 < ξ < 1.

PROOF OF LEMMA 4-(ii). We first show assertion (ii) by assuming that

assertion (i) of Lemma 4 is valid. We give the proof of (i) after this. From (i)

it follows that v1 = F~\f- u\) + g = F~\f- u2) + g = v2 a.e. on J. There-

fore if we put w = ξut + (1 - ξ)u2 (£e[0, 1]), then the relation ^ G ^ ) , i = 1, 2,

and the maximal monotonicity of β together imply that v = vx = v2eβ(w) a.e.

on J x Ω. On the other hand we infer from (3.1)

w' = ξu\ + (1 - 0ιι'2 = ξ{f- F(vx - g)} + (1 - ξ){f-F(v2 - g)}

= f—F(v — g) for a.e. teJ.

Hence w is a solution to E(β, g, /) . q.e.d.

Before proving (i) of Lemma 4, we observe that the proof is immediate

provided that β or β'1 is single-valued. In fact, under the assumptions of

Lemma 4, (3.2) and (3.3) together imply

{υί(t,x)-v2(t,x)}{u1(t9x)-u2(t9x)}dtdx = 0.
Jto J Ω

The integrand on the left hand side is non-negative by the monotonicity of

β. Hence

{v&x) - v2{ux)} {u^x) - u2(t,x)} = 0 for a.e. (t,x)eJ x Ω.

Consequently, (a) if β is single-valued, then vx = v2 a.e. on J x Ω\ (b) if β~x is
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single-valued, then ux = u2 a.e. on J x Ω. In both cases (i) of Lemma 4
follows. However, as mentioned in Introduction we are interested in the case
where both β and β~x are multi-valued.

PROOF OF LEMMA 4-(i) (cf. Remark 3). Let ψ be defined by (1.1). First

using Kenmochi-όtani [15; Lemma 4.4] and (3.3) we have

(3.4) f(t) - u'2(t)e dφ'iuώ)) and /(*) - u\(t)edφ\u2{t)) for a.e. te J.

Next we see from (3.1) and β = δβ that the following inequality holds for

i = 1, 2

φt + h(Ui(t + h)) - φ\ult))

= f β(utt + Kx))dx - f β(Ui(t,x))dx - (g(t + h\uί
J Ω J Ω

h))

> (υj&ujf + h)- M,(ί)) - (g{t + h),Ui(t + h)) + (g(t),tφ))

= {υt{t) - g(t),uit + h)- ujt)) ~ (ff(t + h) - gfaujt + h))

= <v,{t) - g(t), u(t + h)- uίf) > - (g(t + h)- g(t), Mί(ί + h))

={F{Vι{t) - g(t)),u,{t + h) - uM). - (g(t + h) - g(t),u,{t + h))

= (/(ί) - «/(ί), ult + h) - Mi(ί))* - (git + h) - g(t), uίf + h)).

Dividing both sides of the above inequalities by h, letting h -* 0, and noting that

t\-*u,{t) is weakly continuous in H, we have

(3.5) {d/dt)φ\uit)) = (f(t) - «/(t), «/(£))„

for a.e. teJ and i = 1, 2.

Next it follows from (3.4) and Lemma 1 that for a.e. teJ there exist ίJ^f) and
u2{f)eX such that

f(f) - u'2(t) = F{ux(t) - gf(ί)), ύ^eβμM

and

f(t) - u[(t) = F(ύ2(t) - g(t)), ύ2(t)e β(u2(t)).

Therefore

(3.6) v2=F-1(J-u'2) + g = ύιeβ(u1)

and

(3.7) v1=F-1(f-u'1) + g = ά2eβ(u2).

Using (3.6), we obtain as before
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φ ί + W + ft)) - φ\Ul(t))

> (v2(t)9 ux(t + ft) - MiW) - (g(t + ft), ii^ί + ft)) +

= (F(v2(t) - </(*)), «i(ί + ft) - «i(ί)), - (βf(ί + ft) - g(t), ut(t + ft))

= (fit) ~ u'2(t), u±(t + ft) - W l(ί))* - (<?(ί + ft) - tft), ux{t + ft)).

Therefore, in the same way as in the derivation of (3.5), we get

(3.8) (d/dtMuά)) = (f(t) - iι'2(f), iiiίί)),, - to'(ί), uM).

Similarly, by (3.7),

(3.9) (dldt)φ\u2{t)) = (/(ί) - ιιi(ί), u'2{t))* - (flf'(ί), iι2(ί)).

From (3.5) with i = 1 and (3.8) it follows that

Similarly, (3.5) with i = 2 and (3.9) together imply

(ιι2(t), ϋ2(ί))* = ("iW, «2W)*.

Hence

|ιιi(ί) - κ2(ί)|ϊ = (ιιi(ί), iiJίί)), - (u2(ί), ui

+ (ιι2(ί), ^ ( 0 ) ^ - ^ 1 ( 0 ,

= 0 for a.e. teJ.

Thus there is oceV* such that u^t) = u2(t) + α for all ίeJ . But, note that
UiβL^iJ; H)f] WU2(J; V*) by Lemma 2, and so oceH. This proves the desired
assertion (i). q.e.d.

REMARK 3. Our proof of Lemma 4-(i) is a modification of that of Baillon-
Haraux [2], in which the periodic behavior of solutions to evolution equations
formulated with time-independent subdifferential is studied, and they used the
equality (d/dt)φ(u(ή) = (u'(t), u*(t)) with u*(t)edφ(u(ή). In the time-dependent
case, this type of equality can no longer be expected. But for our {φ*}, it is
possible to compute (d/dt)φ\u(t)) explicitly and apply the same technique as in
[2]

Now the application of Lemma 4 implies the following two lemmas, which
play an important role in the proofs of the theorems.

LEMMA 5. Let β e £(α, 6), g, g* e W\£ (R; H) andf, f* e L?OC(R; V*). Let ut

and uf, i = 1,2, be solutions to E(β, g,f) on [ί0, oo), ί o e R , and to E(β, g*,f*)
on R, respectively. Suppose that {tn} is a sequence in R such that tn -• oo and
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(3.10) Ui(t + ίπ) —• uf{t) in F * as n —* oo /or all teR i = 1,2.

77ze« w Λ#ι;e the following (i), (ii) α«d (iii):

(i) l « ? ( ί ) - H 5 W U = d /or β// t e R ,

(3.11) <t = l i m ^ J i i ^ ) - M2(5)U ( < oo).

(ii) There is an element α in H such that

iij(ί) = iι5(ί) + α for all teR.

(iii) £u? + (1 - ζ)uξ is a solution to E(β, g*,f*) on R for all 0 < ξ < 1.

PROOF. We first observe that the limit (3.11) exists (cf. Remark

2). Therefore by (3.10)

K W - w*(OI* = l i m ^ J i i i ί t + tn) - u2(t + ί J U

= lim s^00 |M1(s)-M2(s)|J ie

= d < oo for all ί G R.

Thus (i) is obtained, so that (ii) and (iii) follow from Lemma 4. q.e.d.

LEMMA 6. Let β, g, g*,fandf* be as in Lemma 5. Let ut and uf, i= 1,2,

6e solutions to E(β, g, f) on R α«ί/ to E(β, g*, /*) o« R, respectively. Suppose

that {tn} is a sequence in R such that tn -• — oo «.s n -• oo and (3.10)

. Furthermore, assume that

(3.12) supteR|M l(f)|a|B < oo, i = 1,2.

Then we have the same assertions (ii) and (iii) as in the statement of Lemma 5 and

the following (i)':

(i)' l«?(t)-«5(t)U = d' for all teR,

where

(3.13) d' = U m ^ . ^ l i i ^ ) - «2(S)U ( < c»).

PROOF. By (3.12) and Remark 2, the limit (3.13) exists and is

finite. Therefore the lemma is proved in the same way as Lemma 5. q.e.d.

4. Proofs of Theorems

In this section, we prove Theorems 1, 2 and 3 by applying the argument in

[9]. We first prove Theorem 2, then Theorem 1 as a special case of Theorem

2, and then Theorem 3.
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PROOF OF THEOREM 2-(i). We employ the min-max principle. Fix

zoeDβ. For n = 1,2, , let wn be the solution to E(β, g,f) on [ — n, oo) with

wn( — ή) — z0. Note that the existence of vvπ follows from Lemma 2, since

supW6Nφ~π(z0) < oo. In view of Propositions A and B in Section 2 and the fact

that the injection from H into V* is compact, we see that there is a subsequence

{wΛk} such that

wπk(0 • w(0 strongly in K* and weakly in H

and the convergence is uniform in t on each compact set in R, and that w is a

solution to E(β,f,g) on R. Moreover

Cx = sup ί e R |w(ί)|H + sup ieR |w'|L2( i>i+1;K*) + supίeRφr(w(ί)) < oo.

Therefore the following set K is not empty.

K = {«; u is a solution to E (β9 g9 f) on R and condition (*) below holds},

(*) SUp ί e R |u(ί)|H + SUPtejK'lL^ί+l K ) + SUpf61<jφ(t)) < Cv

We then put

I(u) = sup^lwWU for MEL°°(R;V*)

and

J o = inf{/(w); UEK}

We want to show that there is a unique u*eK satisfying I(u*) = / 0. To this

end, we take a sequence {un} in K so that /(MΠ)J,/ 0 as n -• oo. As before, there

is a subsequence {MΠJ and a solution u* to E (β9 g, f) on R such that

Mπk(0 ^ M*(0 strongly in V* and weakly in i/

and the convergence is uniform in t on each compact set in R. Clearly u*eK

and I(u*) = /0. Next let uί9 u2 be two elements in K such that /(uj = /(w2)

= /0. By the almost periodicity of/and g, there is a sequence tn -• — oo in R

such that (cf. [1])

#(ί + ίπ) > g(t) in // uniformly in t e R

and

/(* + *» + •) >fif + •) in L2(0, 1; K*) uniformly in ίeR.

Moreover, taking a subsequence of {£„} if necessary and referring to

Propositions A and B in Section 2, we may assume that for i = 1, 2 there exist

solutions vvf to E (β, g9 f) on R and

Ui(t + ίπ) • wf(ί) strongly in F* and weakly in if,



Periodic and almost periodic stability 511

where the convergence is uniform in ί on each compact set in R. Clearly wl5

w2eK and Io = /(wj = /(w2). Hence by Lemma 6

kiW - w2(ί)U = d = l im^-Ju^s) - u2(s)\* for all ίeR

and

w =

On the other hand

MOIΪ + ^ H ^ i W - w2(t)}li = 2-1{|w1(ί)iJ + |w2(t)|J}

<2"1(/g + /g) = /g.

Therefore J§ < /(w)2 <I2

0- 2~2d2. Hence d = 0 and

l«i(ί) - "2WI* ^ lims^_ J W l ( s ) - 1̂ 2(5)̂  = d = 0 for all ίeR,

which shows that 1^ = w2. Thus it is concluded that there is one and only one

element w* in K such that I(u*) = /0. Once this is proved, the K*-almost

periodicity of u* is derived in the same way as in [9] or [1]. We refer to [9]

or [1] for the rest of the proof. q.e.d.

PROOF OF THEOREM 2—(ii). Fix ώeAP. Then by the almost periodicity of

g9 f and ώ, there is a sequence {tn} such that tn -• 00 as n -• 00 and

g(t + tn) > g(t) in // uniformly in ί e R ,

f(t + ίπ + •) • /(ί + •) in L2(0, 1; V*) uniformly in ί e R ,

ώ(ί + tn) • ω(ί) in V* uniformly in ί e R .

We now put un(t) = u(t + tn) for ί > ί0 — tn. Then using Proposition A in

Section 2 and taking a subsequence of {ίπ} if necessary, we find a function

ω: R -• K* such that

Mπ(0 • ω ( 0 i n ^* uniformly in ί on each compact subset in R.

Moreover by Proposition B in Section 2, we observe that ω is a solution to

E (/?, #, /) on R. Therefore by Lemma 5, there is an element α in H such that

ω(ί) = ω(ί) + α for all ί e R.

Hence ω belongs to AP and

ω ( ί + ίπ) = ω(ί + ίπ) + α • ώ(ί) + α = ω(ί) in V* uniformly in ί e R .

Moreover

lim f_Jw(ί) -
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From this and the fact that supfS:ίo+1|M(ί)lH < °°> w e mfer (u) q.e.d.

PROOF OF THEOREM 2-(iii). Let ωί9 ω2eAP. Then l im^^lω^ί) — ω2(ί)|*

= d exists. Since t\—>\ω1{t) — co2(t)\^ is R-almost periodic, we conclude that

|ωx(ί) — ω2(ί)l* = d on R. Therefore, by Lemma 4, there is an element OLGH

such that

ω^ί) = ω2(ί) + α for all ίeR.

From this we obtain the relation

nάt) = Q(t) + F~\f{t) - ω[(ή) = g(t) + F ~\f{t) - ω'2(ή) = η2(t)

for a.e. ί eR. q.e.d.

PROOF OF THEOREM 1. By Proposition A in Section 2, any solution u to

E(β, g,f) on [0, oo) is F*-bounded, that is sup^0 |M(ί)|* < °° Therefore, the

assertion (i) follows from Remark 2 in Section 2 and the well-known theorem by

Browder-Petryshyn [4]. Next note that all the assumptions of Theorem 2 are

satisfied. It is clear that Pτ a AP. This relation and the assertion (iii) of

Theorem 2 together imply that Pτ = AP. Hence assertions (ii) and (iii) of

Theorem 1 follows from those of Theorem 2. q.e.d.

PROOF OF THEOREM 3. The "only if" part is evident, so it suffices to prove

the "if" part. First we treat the almost periodic case. Fix any ωeAP. Then,

since u is F*-bounded, we have (cf. Remark 2 in Section 2)

d = \\mt^Ju{t) - ω(t)\* < oo.

By the almost periodicity of g, f and ω, there is a sequence tn —• — oo such that

g(t + tn) • g(t) in H uniformly in t e R,

/(* + *» + •) • /(* + •) i n L 2 ( 0 , 1; v*) uniformly in teR,

ω(t + tn) • ω(t) in V* uniformly in t e R.

Moreover, putting un(t) = u(t + ίπ), we may assume that there exists a solution

u* to E(β,g9f) on R and

un(t) • w*(ί) in V* uniformly on each compact set in R.

Therefore, by Lemma 6, one finds cceH such that

M*(ί) = ω(ή + α for all ί e R .

Consequently u* belongs to AP and

u*(t + tn) = ω(t + tn) + α • ω(t) + α = u*(t) in V* uniformly in ίeR.

Hence
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\u(t) - M*(0U < l i π w J u ( s ) - u*(s)\+

= limn^oo\u(tn)~u*(tn)\*

= 0 for all teR.

Thus we have u = u* e AP.

As for the periodic case, repeat the above argument with ω in Pτ instead of

AP and with tn = — nT, n = 1,2,•••. Then, exactly in the same way as above,

we have u = u* = ω + ocePτ. q.e.d.
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