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I. P. STAVROULAKIS

(Received May 16, 1988)

1. Introduction and preliminaries

A first order functional differential equation in which the present value of

x(t) is expressed in terms of both past and future values of x is said to be of

"mixed" type. A first order equation in which the expression for x(t) involves

x(τ(ή) for some τ(t) φ t is said to be of "neutral" type. So, when both of these

characteristics are present, the equation is of mixed neutral type or a neutral

equation with mixed arguments or simply a mixed neutral equation. See

Driver [6].

Consider the neutral differential equation

(*) jt [*(*) + cx(t - r)] + ΣU Pi*(t ~ τt) = 0

where c, r, ph τi9 i = 1, ..., k are real numbers.

Observe that when c = 0 or r = 0 the above equation reduces to a non-

neutral equation whose oscillatory character has been studied by several au-

thors. See for example the papers by Ladas and Stavroulakis [22, 23], Arino,

Gyori and Jawhari [1], Hunt and Yorke [16] and Fukagai and Kusano

[7]. Also in the case where p{ = 0, i = 1, . . ., k equation (*) reduces to

-

and there exists a (nonoscillatory) solution of the form x(t) = c, c a, constant.

Thus we will assume that

c φ 0, r Φ 0, and pt φO for all i = 1, . . ., k.

The following (duality) lemma is easily established (cf. [11, Lemma 5]).

LEMMA 1.1. Suppose that c φ 0 and pt Φ 0, i = 1, . . ., k. Then x(t) satisfies

the neutral equation (*) if and only if x(t) satisfies the neutral equation

j\x(t) + \*(t- (-r))l + X- ΣU Ptx(t ~ (τ, - r)) = 0 .
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If c < 0 and rpt < 0 or if c > 0, rpt > 0 and p^- < 0, i = 1, ..., k then it is

easily seen that the characteristic equation of (*)

λ + cλe~λr + ΣU Pie~λτi = 0

has a real root and therefore Eq. (*) has a nonoscillatory solution.

On the basis of the above observations in order to obtain sufficient condi-

tions which guarantee the oscillation of all solution of Eq. (*) we need only to

consider Eq. (*) for all quadruplets (c, r, pi9 τf) such that rpt > 0 or c > 0 and

PiXi > 0, ce(—oo, 0)u(0, oo), r e (-oo, 0)u(0, oo), p{ e (-oo, 0)u(0, oo) and

τ tG/?, i = 1, . . . , /c. Using the (duality) Lemma 1.1 and arguments similar to

those in [13] we see that it suffices to consider the following cases only

(C+) ceR-{0} and r > 0 , pt > 0 , τ, > 0 , ί = 1, . . . ,/c,

and

(C~) c e / ? - { 0 } and r < 0 , /? i<0, τ4 < 0, ΐ = 1, . . . ,/c .

These two cases correspond to the neutral differential equations of the retarded

d ^
(1) — [x(ί) + cx(ί - r)] + yk

i=1 ptx(t -Ti) = 0
at

and the advanced type

(2) — [x(ί) + cx(t + r)] - ^f=1 p^x(ί + τf) = 0

where condition (C+) is satisfied.

Thus in this paper we develop oscillatory results for the above neutral

equations (1) and (2). We also combine them to obtain oscillation results for

the solutions of the neutral equations of mixed type

d
(3) - [x(ί) + cx(t - r)] + ΣU Piχ(t ~ τi) + Σί=i Qjxi* + σj) = °

and

(4) j t [x(ί) + cx(t + r)] - Σf=1 Pix(t + τf) - X/=1 qjX(t - σy) = 0 ,

where

CG R , r G (0, oo), p ί 5 f̂; G (0, oo) and
(C)

τi9 σj G [0, oo) for i = 1, . . ., k j = 1, . . . , / .
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To the best of the author's knowledge this is the only paper at the present time

dealing with oscillation of mixed neutral equations.

In the special case where k = 1, Ladas and Sficas [21] studied the asymp-

totic and oscillatory behavior of the solutions of Eq. (1) when c e [— 1, 0], and

then Grammatikopoulos, Grove and Ladas [10] investigated the other possible

cases c < — 1 and c > 0. In this special case Sficas and Stavroulakis [26]

obtained a necessary and sufficient condition for the oscillation of all solutions

of Eq. (1) in terms of its characteristic equation, and then Grove, Ladas

and Meimaridou [13] extended this result for Eq. (*). Kulenovic, Ladas and

Meimaridou [19] proved that all solutions of Eq. (1) oscillate if and only if the

characteristic equation

(5) λ + cλe-» + Σf-i pte~u* = 0

has no real roots. For some oscillation results concerning Eq. (1) or some

special cases of it see also Ruan [17], Gopalsamy [8] and Gopalsamy and

Zhang [9].

Our aim in this paper is to obtain sufficient conditions, involving the

coefficients and the argument only, under which all solutions of (1), (2), (3) and

(4) oscillate. The advantage of working with these conditions rather than the

characteristic equations associated with the equations under consideration is

that they are explicit and therefore easily verifiable, while determining whether

or not a real root to the charactristic equation exists may be quite a problem in

itself. Furthermore our technique is given in such a way that it can be

extended in a straightforward manner to the case of equations with variable

coefficients.

The problem of asymptotic and oscillatory behavior of solutions of neutral

differential equations is of both theoretical and practical interest. Note that

equations of this type appear in networks containing lossless transmission

lines. Such networks arise, for example, in high speed computers where lossless

transmission lines are used to interconnect switching circuits (see [3, 27]).

It is to be noted that, in general, the theory of neutral differential equations

presents complications, and results which are true for delay differential equa-

tions may not be true for neutral equations. For example, see [3, 4, 14, 15, 27,

28].

Let T = max {r, τl9..., τk}. We say that x(t) is a solution of (1) provided

there exists toe R such that x e C([t0 — Γ, oo), /?), x(ή + cx(t - r) is continu-

ously differentiate for t ^ t0 and (1) holds for ί ^ ί0. Solutions for (2), (3) and

(4) are defined analogously. See Driver [5, 6], Bellman and Cooke [2] and

Hale [15] for questions of existence and uniqueness.

As is customary, a solution is called oscillatory if it has arbitrarily large

zeros and nonoscillatory if it is eventually positive or eventually negative.
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In the sequel all functional inequalities that we write are assumed to hold

eventually, that is for all sufficiently large t.

Also, for convenience, we will assume without loss of generality that

τx <-" <τk.

A solution x of (1) [(2), (3) or (4)] may not be differentiable. However, as

the following lemma inidicates, from every solution of (1) [(2), (3) or (4)] we can

construct auxiliary solutions with some "nice" asymptotic properties. Given a

solution x of (1) [(2), (3) or (4)], set

(6) z(t) = x(t) + cx(t - r)

and

(7) w(ί) = z(ί) + cz(t - r)

in the case of equations (1) and (3), while set

(8) z{t) = x(t) + cx(t + r)

and

(9) w(ί) = z(t) + cz(t + r)

in the case of equations (2) and (4). Then the following lemma is easily

established by using arguments similar to those in [10] and [21]. See also

Lemma 1 in [19] and Lemma 2 in [12].

LEMMA 1.2. Let x(t) be an eventually positive solution of (1) [(2), (3) or

(4)]. Then

(a) z(t) is a differentiable solution and w(t) is a twice differentiable solution

o/(l) [(2), (3) or (4)];

(b) cΦ - 1 ;

(c) if - 1 < c in Eqs (1) and (3) or c < -1 in Eqs (2) and (4), then

(10) w(ί) > 0 , w(t) < 0 , w(ί) > 0 and l i m ^ w(ί) = 0 = l i m ^ w(ί)

(d) if c< -\ in Eqs (1) and (3) or -1 < c in Eqs (2) and (4), then

(11) w(t) > 0 , vv(ί) > 0 , w(ί) > 0 and l i m , ^ w(t) = oo = l i m ^ w(ή .

Combining results due to Ladas and Stavroulakis [22, 23] and to Hunt

and Yorke [16], the following lemma is derived.

LEMMA 1.3. Consider the inequality with retarded arguments

(12) x(t) + X?=1 Pix(t - τ;) g 0
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and the inequality with advanced arguments

(13) x(t) - ΣU PiX(t + τ,) ^ 0

where p{ and τh i = 1, 2, ..., n are positive constants. Then any of the following

conditions

(14) Σ " = i O T > ^

or

(15) [Π?-ift] 1 / ( Σ f - i T l ) > ^

implies that (12) and (13) Aαi g no eventually positive solutions.

It is easily seen, see also [16], that the above conditions (14) and (15) are

independent. They are also sharp in that the lower bound 1/e cannot be

improved.

2. Retarded arguments

In this section we study the neutral equation (1) and we obtain sufficient

conditions under which all solutions of (1) oscillate.

THEOREM 2.1. Consider equation (1) under condition (C). Assume that

(i) -1 <c,r<τu

or

(ii) c < -1, r > τk.

Then any of the following conditions

(16) Σ { . 1 p | ( τ i Γ ) >

or

(17) γ ^ ίUi-i PiVlk (Σf-i fo - Ό) > \

implies that all solutions of (1) oscillate. Moreover if

(iii) - 1 < c < 0

then any of the following conditions
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(18) Σΐ-iPfiι>l

or

(19) ίUUPiyik(ΣUh)>-e

implies that all solutions of (\) oscillate.

PROOF. Assume, for the sake of contradiction, that Eq. (1) has an even-

tually positive solution x(t). Then, by Lemma 1.2,

(20) w(ί) + cw(t - r) + ΣU PMt ~h) = 0.

Consider now the following cases:

(i) — 1 < c and r <τx. In this case (10) holds and therefore

w(ί - r) + cvv(ί - r) + £*«i Λ w(ί - τ,) < 0

or

w(ί) + — — Σf«i PMt - (τ, - r)) < 0 .
A i C

But, by Lemma 1.3, any of the conditions (16) or (17) implies that the last in-

equality can not have an eventually positive solution. This is a contradiction,

(ii) c < — 1 and r > τk. In this case (11) holds and so (20) yields

w(t - r) + cw(t - r) + Σ*=i p,w(ί - τf) < 0 .

Hence

or

-(r-τ

which, as before, leads to a contradiction.

(iii) - 1 < c < 0. Then (10) holds and therefore

cw(t - r) > 0 .

From (20), we have
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This is a contradiction since by Lemma 1.3 any of the conditons (18) or (19)

implies that the last inequality can not have an eventually positive solution.

The proof of the theorem is complete.

3. Advanced arguments

In this section we obtain sufficient conditions under which all solutions of

the neutral equation (2) oscillate.

THEOREM 3.1. Consider equation (2) and assume that condition (C) is satis-

fied. Under the hypotheses of Theorem 2.1 all solutions of (2) oscillate.

PROOF. Assume, for the sake of contradiction, that Eq. (2) has an even-

tually positive solution x(ί). Then, by Lemma 1.2,

(20)' vv(ί) + cw(t + r) - ΣU PMt + τ,) = 0 .

Consider now the following cases:

(i) — 1 < c and r < τλ. In this case (11) holds and therefore

w(t + r) + cw(t + r) - ΣU Piw(t + τ,) > 0

or

w(ί) - j - j — ΣU Piw(t + (τ, - r)) > 0

which, in view of Lemma 1.3, leads to a contradiction.

(ii) c < — 1 and r > τk. In this case (10) holds and therefore

w(t + r) + cw(t + r) - ΣU PMt + τ,) > 0

or

w(t) + ̂ L £f=1 PiW(t - (r - Tί)) < 0

and again we are led to a contradiction.

(iii) — 1 < c < 0. Then (11) holds and therefore

cw(t + r) < 0 .

From (20)', we have

Mt) - ΣU PMt + τf) > 0

which again leads to a contradiction.

The proof of the theorem is complete.
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4. Mixed arguments

In this section we employ the oscillatory character of retarded and ad-

vanced differential equations to obtain sufficient conditions under which all

solutions of certain mixed neutral equations are oscillatory. To the best of the

author's knowledge this is the only paper at the present time dealing with

oscillation of mixed neutral equations.

THEOREM 4.1. Consider equations (3) and (4) and assume that condition (C)

is satisfied. Under the hypotheses of Theorem 2.1 all solutions of (3) and (4)

oscillate.

PROOF. First we consider Eq. (3) and assume, for the sake of contradic-

tion, that it has an eventually positive solution x(t). Then, by Lemma 1.2,

vv(ί) + cw(t - r) + ΣU PM* ~ τ ) + ΣU ^M1 + σj) = °

or

w(ί) + cvv(ί — r) + ΣU Piw(t - τi) < 0

since w(ί) is eventually positive. From the last inequality we are led to a

contradiction as from equation (20) in the proof of Theorem 2.1.

Consider now Eq. (4) and assume that it has an eventually positive solution

x(ί). Then, by Lemma 1.2,

w(ί) + cw(t + r) — ΣU PiW(l + τi) — Σί=i <?jw( ί ~ σj) = 0

or

w(ί) + cvv(ί + r) — ΣU PiW{t + τi) > 0

since w(ί) is positive. From the last inequality we are led to a contradiction as

from equation (20)' in the proof of Theorem 3.1.

The proof of the theorem is complete.

5. Summary and examples

Combining the above results into a single statement we have the following.

THEOREM 5.1. Consider the neutral equations

(1) j t [x(ί) + cx(t - r)] + ΣU Pιx(t - τt) = 0 ,

(2) j t [x(ί) + cx(t + r)] - ΣU PΛt + τ,) = 0 ,



Oscillations of mixed neutral equations 449

(3) ~ O(ί) + cx(t - r)] + ΣU PiX(t ~ τt) + Σί-i 9jx(t + σ}) = 0,

and

(4) jt [*(f) + cx(t + r)] - Σi-i Prt* + tι) ~ Σί=i «;*(» - βj) = 0 -

where

ceR, re(0, oo), ph qf e (0, oo) and
(Q

τf, σ,e[0, oo) for i = 1, . . . , fc;; = 1, . . . , / .

77ιen in any o/ the following cases all solutions of (1), (2), (3) and (4) oscillate:

(i) c = - l ;

(ii) —l<c,r<τ1orc<—ί,r>τk and furthermore

(16) r ^ - Σ ί - i f t ( * ι - » " ) > -

or

(17) r b ( Π ? = i P')1/k^?=! (τ, - r)) > \

is satisfied;

(iii) — 1 < c < 0 and

(18) Σ*=iP^>i

or

(19) (Πf-i Pi)m(ΣU *ι) > \

is satisfied.

Observe that

(21) λ + λce~λr + £ ? = 1 Pie-λτi = 0

is the characteristic equation of (1) and (2), and

(22) λ + λce-» + ΣU Pi*~λτi + Σί=i 4 ^ ' = 0

is the characteristic equation of (3) and (4). As a corollary of Theorem 5.1 we

can obtain sufficient conditions under which the characteristic equations (21)
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and (22) have no real roots something that cannot be so easily determined by
investigating directly the exponential equations (21) and (22).

COROLLARY 5.1. Assume that condition (C) is satisfied. Then in any of the

following cases:

( i ) c= - 1 ;

(ii) — 1 < c, r < τ1 or c< — 1, r > τk and furthermore (16) or (17) is

satisfied;

(iii) — 1 < c < 0 and (18) or (19) is satisfied,

the characteristic equations (21) and (22) have no real roots.

REMARK 5.1. In view of the above corollary and the Theorem in [19]
the conclusion of Theorem 3.1 is obvious. Indeed, under the hypotheses of
Theorem 2.1 the characteristic equation (21) has no real roots. But this is also
a sufficient condition for all solutions of Eq. (2) (associated with the charac-
teristic equation (21)) to oscillate.

EXAMPLE 5.1. In the following mixed neutral equation

— x(t) - xit - IJ + xit - y J + x(t + π) = 0 ,

c= — 1; and by Theorem 5.1 all solutions of this equation oscillate. For
example, sin t and cos t are oscillatory solutions.

The following examples illustrate that the above conditions (16) and (17)
for oscillations are independent. They are chosen in such a way that only one
of the two conditions (16) and (17) is satisfied. As we have already mentioned,
conditions (18) and (19) are also independent. Furthermore in all these condi-
tions (16), (17), (18) and (19) the lower bound 1/e cannot be improved.

EXAMPLE 5.2. (Only condition (16) is satisfied.) For the equation

- f ) - o,

- + 2πJ > -,1 r / Λ , « 1 0 0 0

Γ T 7 [ p 1 ( τ 1 - r) + P2(τ2 - r)] = —

that is, condition (16) is satisfied. Therefore, by Theorem 5.1, all solutions of
this equation oscillate. For example, sin t and cos t are oscillatory solutions of
the above equation. Note, however, that condition (17) is not satisfied.

EXAMPLE 5.3. (Only condition (17) is satisfied.) Consider the equation
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jtix(t) - 2x(t + 3)] - {-xίt + ̂  - lχ(ί + 1) = 0 .

Observe that

- r) + (τ2 - r)] = — > - ,

that is, condition (17) is satisfied. Therefore all solutions of this equation

oscillate. Note, however, that condition (16) is not satisfied.

EXAMPLE 5.4. (None of the conditions is satisfied.) The equation

j t [x(ί) + x(ί - 1)] + ^ x ( ί - 4) + i χ ( ί - 2) = 0

has the nonoscillatory solution x(t) = e~\ while the equation

— [x(ί) - 3e3x(t - 3)] + ex(t - 1) 4- e2x(t - 2) = 0
at

has the nonoscillatory solution x(ή = e\ As expected none of the conditions of

Theorem 5.1 is satisfied for these equations.

6. Generalizations

In this section we generalize our results to differential equations with

variable coefficients of the form

d
(iy — [x(ί) + cx(t - r)] + Σ*=i Pι(t)x(t - τt) = 0 ,

(2)' j t lx(t) + cx(ί + r)] - Σf β l P,(ί)x(ί + T ί) = 0 ,

(3)' j t [x(ί) + cx(ί - r)] + Σf-i ^Wx(ί - τ,) + ΣU QAM* + */) = 0 ,

(4)' j t [x(ί) + cx(ί + r)] - Σf-i ^Wx(ί + *t) ~ ΣU Qj(t)x(t ~ σj) = 0

where

c e R , r G (0, oo), τ, , σ. e [0, oo) and

(cy
Pi,QjeC(ltθ9 o o ) , i ? + ) for i = 1, . . . , fe = 1, . . . , / .
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The following lemma is the variable coefficient analogue of Lemma 1.3 and

it can be derived by combining results in [16, 18, 22, 23].

LEMMA 6.1. Consider the inequalities

(12)' x(t) + Σ?= 1 Pi(t)x(t - τt) ί 0

and

(13)' x(t) - ΣU Pι(t)x(t + τ,) ^ 0

where τi are positive constants and Pt are positive and continuous functions for

ί = 1, ..., n. Then any of the following conditions

(14)' ] i m i n ϊ t ^ Σ i = i ^

or

π?-i fe=ilim inf^oo Γ P,(s)(15)'

implies that (12)' and (13)' have no eventually positive solutions.

The proofs of Theorems 2.1, 3.1 and 4.1 are given in such a way that they

can be extended in a straightforward manner to the case of differential equa-

tions (l)'-(4)'.

The following theorems provide sufficient conditions for all solutions of (1)',

(2)', (3)' and (4)' to oscillate.

THEOREM 6.1. Assume that —1 < c < 0. Then any of the following con-

ditions

(23) ^

or

(24) Γπί-i fe-i lim inf,^ Γ Pt(s) ds^jT > 1

implies that all solutions of (1)', (2)', (3)' and (4)' oscillate.

PROOF. We present the proof for Eq. (1)'. The proof for equations (2)',

(3)' and (4)' can be treated in a similar fashion. To this end suppose that there

exists an eventually positive solution x(t) of (l)r. Set

z(t) = x(t) + cx(t - r).
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Then, by (1)',

which implies that z(ί) is decreasing and, as in Lemma 1.2, we can easily show

that z(t) is eventually positive. Furthermore z(ί) < x(ί) and therefore

m + Σ ϊ - i Pt(t)z(t -τt)<0.

In view of (23) or (24) and Lemma 6.1, the last inequality cannot have an

eventually positive solution. This is a contradiction and the proof is complete.

In the sequel we will assume that there exist pf > 0, i = 1, . . . , k so that

Pi(ή ^ Pi eventually.

THEOREM 6.2. Assume that c < — 1 and r > τk. Then any of the following

conditions

(25) -l-lim inf,^ (£? = 1 (r - τ ^ W ) > \

or

i/fc 1

(26) [ Π ί i ( Σ ί i ^ o o J , ( ) J J

α// solutions of (1)', (2)', (3)' and (4)r oscillate.

PROOF. We present the proof for Eq. (2)'. The other cases can be treated

in a similar way. To this end suppose that there exists an eventually positive

solution x(t) of (2)'. Set

z(ή= -

Then, by (2)',

which implies that z(t) is decreasing and as in Lemma 1.2, we can show that z(t)

is eventually positive. Moreover

z(t) = -x(t) - cx(t + r) < (-c)x(ί + r).

From this inequality and Eq. (2)', we find that eventually

and, in view of (25) or (26), we are led to a contradiction.
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THEOREM 6.3. Assume that — 1 < c, r<τt and Ph Qj for i = 1, . . . , k;

7 = 1 , . . . , / are r'-periodic. Then any of the following conditions

(27) — lim inf,^ (£?= 1 (τ, - r)Pf(ί)) > \

or

(28) - J — Γπ?=i (ΣU « m ω — Γ P»(S) <faYΓ > -
1 "•" C L \ Ji-(tj-r) / J e

implies that all solutions of (1)', (2)', (3)' and (4)' oscillate.

PROOF. We present the proof for Eq. (3)'. To this end suppose that there

exists an eventually positive solution x(t) of (3)'. Set z(t) and w(ί) as in (6) and

(7) and observe that since Ph Qj are r-periodic it follows that z and w are

continuously differentiable solutions of (3)' and w(ί) > 0, w(ί) > 0. Thus

w(ί) + cw(t - r) + ΣU PiitMt ~ τt) + ΣU QiWw(ί + σs) = 0

or

vv(ί) + cw(t - r) + Σ? = 1 Pi(t)w(t - τ,.) < 0 .

Since vv(ί) is increasing the last inequality yields

w(ί - r) + cw(ί - r) + J]f=1 P,(ί)w(ί - τ,) < 0

or

w(t) + Σϊ=i pi(θ>v(ί - (tj - r)) < 0 .

In view of (27) or (28) and Lemma 6.1, this is impossible and the proof is

complete.

THEOREM 6.4. Assume that c< — 1, r > τk and Ph Qj for i = 1, . . . , fe;

7 = 1 , . . . , / are r-periodic. Then any of the following conditions

(29) - j ί - lim inf,^ (£?= 1 (r - τ ^ W ) > -
1 + c e

or

U/fc !

(30) , , „, „ . . _ ' /J e

implies that all solutions of(l)', (2)', (3)' and (4)' oscillate.
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PROOF. In this theorem we present the proof for Eq. (4)'. To this end

suppose that there exists an eventually positive solution x(t) of (4)'. Set z(ί)

and w(ί) as in (8) and (9) and observe that z and w are solutions of (4)' and

moreover w(ί) > 0, w(ή > 0. Thus

w(t) + cw(t + r) - Σϊ=i Pi(t)w(t + τ( ) - ΣU QM* ~ <?j) = 0

or

vv(ί) + cw{t + r) - ΣUi Pi(t)w(t + Tf) > 0

and since w(ί) is increasing

[t ~ (r - τt)) < 0

which in view of (29) or (30) leads to a contradiction. The proof is complete.
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