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The aim of this paper is to study the asymptotic and (y, p)-integral equiv-
alence of differential systems of the form

(a) x'(t) e A(t)x(t) + F(¢, x(t), Sx(t)),
(b) y'(@®) =A@)y@),

where A(t) is an n x n matrix-function defined on J = [0, c0) whose elements
are integrable on compact subsets of J; x and y are n-dimensional vectors, S is
a continuous operator mapping the set B,(J) of continuous and y-bounded
functions defined on J to By(J) in the sense that if x, 4 x then Sx, 4 Sx (precise
definitions are given below) e.g.

t
Sx(t) .= f K{(t, s)x(s) ds,
]
under certain conditions on the function K(t,s), and F(t, u, v) is a nonempty,
compact and convex subset of R" for each (t,u,v)e J x R" x R".
By a solution of (a), we mean an absolutely continuous function x(t) on
some nondegenerate subinterval of J which satisfies (a) almost everywhere (a.e.).

DEFINITION 1 (A. Haitak and M. Svec [10]). Let Y(t) be a positive
continuous function on an interval [t,, c0) and let p > 0. We shall say that
two systems (a) and (b) are (Y, p)-integral equivalent on [t,, oo) iff for each
solution x(t) of (a) there exists a solution y(t) of (b) such that

(© Y (0)lx() — y(t)| € L,([to, ©))
and conversely, for each solution y(t) of (b) there exists a solution x(t) of (a)
such that (c) holds.

By a restricted (, p)-integral equivalence between (a) and (b) we shall mean

that the relation (c) is satisfied for some subsets of solutions of (a) and (b), e.g.
for the y-bounded solutions.
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We shall say that a function z(t) is y-bounded on the interval [¢,, o) iff

sup [y 1 ()z(t)| < © .
t>to
REMARK 1. In [17], two examples are given which demonstrate that, in
general, integral equivalence does not imply asymptotic equivalence, and con-
versely, asymptotic equivalence does not in general imply integral equivalence.

Now we shall define some notions and give preliminary results which will
be needed in the sequel.

We shall write || for any convenient matrix (vector) norm. Let A be a
subset of R". Then |A|:=sup {|al:ae A}. Lj(J) will denote n-th Cartesian
product of L,(J). B(I) will denote the space of all continuous functions from
I:=[t,, o0) to R". Let y(t) be a positive continuous function on [¢,, 0). For
z € B(I), we denote

2]y = sup Y (0)z()]

12t

Let By(J):= {ze B(J):|z|, < 0}. Then B,(J) with the norm ||, is a Banach
space. For p > 0, we denote

B,,(J) = {ze BU):|zl, < p}

Further, let ¢(t) be a positive continuous function defined on J. By
L, ,(J) (1 £p < oo) we shall denote the set of all real-valued measurable func-
tions y(t) defined on J such that

© 1/p
|y|p,¢ = (J‘0 l(D_l(S)y(S)I” ds) < 0.

L, ,(J) with the norm ||, , is also a Banach space.
It is easy to prove the following lemma.

LemMmA 1. Let g: J x J — J be a function such that
i) g(t, x) is monotone nondecreasing in x for each fixed t € J;
ii) g(t, c)e L,(J) for each c =2 0.

Then the set

Ly ,.4J):={y€L, ,(J): there are nonnegative constants c, K
such that |y(t)] < Ko(t)g(t, ) a.e. on J}

is a linear subspace of L, ,(J).

DErFINITION 2. Let a function g fulfil the hypothesis i) of Lemma 1. A set
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A of functions which are defined on J is g-bounded iff there are two non-
negative constants ¢ and K such that

ly(®)| £ Ko(t)g(t, c) ae onJ

for each y € A.

CoOROLLARY 1. Let a function g fulfil the hypotheses of Lemma 1. Then
each g-bounded set A is also bounded in the space L, ,(J).

The converse of Corollary 1 is not true: boundedness in L, ,(J) does not
imply g-boundedness, as the following example shows.

ExaMPLE 1. Let o(t)=1 and g(t,x) =e™", teJ. It is easy to see that ¢
and g fulfil the assumptions of Lemma 1. Then the set {y,} of functions

1, ted,:=|)[k—27%k]
Yalt) := k=1
0, teR—4,

is bounded in L,.(J), p’ € [1, o), but it is not g-bounded.

Let X and Y be topological spaces. Let us denote by 2¥ the family of all
nonempty subsets of the space Y and let cf (Y) be the set of all nonempty closed
and convex subsets of Y.

DerFINITION 3 (C. Berge [2]). A mapping F: X - 2Y is upper semicon-
tinuous at a point x € X iff for an arbitrary neighbourhood O, of the set-
image F(x) there exists such a neighbourhood O, of the point x that F(O,)
Or(x)» Where

F(0,) := LJ) F(z).

This mapping is said to be upper semicontinuous iff it is upper semicontinuous
at each point x € X.

DErFINITION 4 (W. Sobieszek [14]). A mapping F: X — 2 is upper semi-
compact (sequentially upper semicontinuous) at the point x € X iff from the
assumptions x, — x, x, € X, y, € F(x,) it follows that there exists a subsequence
of the sequence {y,} which converges to some y € F(x).

DEerINITION 4’ (W. Sobieszek and P. Kowalski [15]). A mapping F is said
to be upper semicompact at a point x € X iff it is upper semicontinuous at the
point x and the set F(x) is compact.
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It turns out (see Theorem 1 and Corollary 2 below) that Definitions 4 and
4’ are equivalent under some additional assumptions.

THEOREM 1. Let X fulfil the first axiom of countability and let Y be such
that compactness and sequential compactness are equivalent in Y.

Then F is upper semicompact at a point x € X in the sense of Definition 4 if
and only if it is upper semicompact at x in the sense of Definition 4'.

Theorem 1 is a generalization of Theorem 4 of [15], but its proof is
formally the same. The hypotheses of Theorem 4 of [15] will not be fulfilled in
our case and thus it is not applicable in this case.

COROLLARY 2. Let X and Y be metric spaces. Then F is upper semi-
compact at a point x € X in the sense of Definition 4 if and only if it is upper
semicompact at x in the sense of Definition 4'.

Let I =« R be an arbitrary interval (finite or infinite). By By(I) we shall
denote the Banach space of all bounded continuous functions on I with the
norm

|f|BO(I) = SUFI’ [f()] -

DEFINITION 5 (M. Svec [16]). A sequence f; € B,(I) quasi-converges (g-
converges) to f € By(I) iff

lim f,(x) = f(x) for every xel .
k-0
This convergence will be denoted by f, - f.

DEFINITION 6. A set M < By(I) is said to be g-closed iff, for f, € M, f, 5f
implies f € M.

DerFINITION 7 (A. Hascak [6]). Let Y be a normed linear space. An
operator T: By(I) - 2" is upper g-continuous iff from the assumptions f, 51 fo
f € By(I), yr € T(f) it follows that there exists a subsequence of {y,} converging
to some y € T(f) (in the norm of Y).

CoRrROLLARY 3. If T is upper g-continuous, then T is upper semicompact
(and hence it is upper semicontinuous).

DEFINITION 8 (A. Has¢ak [6]). An operator T: By(I) - 2¥ is weakly upper
g-continuous iff from the assumptions f, 51 S £ €Bo(), yp € T(f,) it follows
that there exists a subsequence of {y,} converging weakly to some y € T(f).



Multivalued differential systems 429

THEOREM 2 (A. Hascak [6]). Suppose that D = By(I) is a nonempty, convex
and q-closed set and T: D — cf (D) is an upper g-continuous operator such that TD
is a uniformly bounded set of functions which are equicontinuous on every compact
subinterval of 1. Then there is a point x € D such that x € Tx.

THEOREM 3 (A. Hascak [9]). Let w-lim,_, x, = x, (i.e. x, > xo weakly) in
L,([a, o0)) and let there exist a function g € L,([a, o)) such that

|x,(0)] = g(t) ae.onla, o),n=12....

Then there exists a subsequence {x,} of the sequence {x,} such that
1
E(x“ + X154+ + Xgy)

converges to x, in the norm of L,([a, o0)).

LEMMA 2 (A. Hasc¢ak [7]). Let p = 1 and f(t) be a nonnegative function for

t=>0. Then
(Jw (Jw f(s) ds)p dt)llp =< jw sYPf(s) ds .
1] t 0

LEMMA 2’ (A. Ha$tak and M. Svec [10]). Let g(t) = O be continuous on
0 £t < oo and such that

J‘w sg(s)ds < oo .

]

Then

f g(s)dse L,([0,©0)), p21.
t
LemMa 3 (A. Hascak [8]). Let K < L,([to, o0)) and suppose that there
exists g: [to, 00) = [0, ), g € L,([tq, ©)) such that for each f € K
/Ol =g(t)  ae on [ty ).

Then K is weakly relative compact in L,([t,, 0)).

LEMMA 4 (A. Has¢ak and M. Svec [10]). Let y(t) and ¢(t) be positive
functions for t =20, Y(t) a nonsingular matrix and P a projection. Further
suppose that

(I | W O YOPY ™ (s)e(s)l” ds)llp <K
o
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fort 20, K>0,p>0and

ro exp (—K"’ ft PP(s)Y~P(s) ds) dt < oo .
0

0

Then
lim ¢~ 1(t)|Y()P]| =0

t— o0
and

Yy (O Y(®)P| € L,([0, 0)).
Now we shall prove the following theorem.

THEOREM 4. Let Y(t) and ¢(t) be positive continuous functions on
J :=[0, ) and let the mapping F:J x R" x R" — cf (R") satisfy the following
conditions:
(co) F(t, u,v) is a nonempty, compact and convex subset of R" for each (t,u,v) €
J x R" x R%
(c,) for every fixed t € J, the function F(t, u, v) is upper semicontinuous;
(c;) for each x € By(J) there exists a measurable function f.:J— R" such that
f(t) € F(t, x(t), Sx(t)) a.e. on J;
(c3) there is a constant k € (0, o) such that |Sz|, < k|z|,, z € By(J).
Further suppose that there exists g: J x J x J — J such that
i) g(t, u, v) is monotone nondecreasing in u for each fixed teJ, velJ, and
monotone nondecreasing in v for each fixed te J,ue J;
ii) g(t, ¢, c)e L,(J) for any constant ¢ = 0 and some p’ € [1, c©0);
iti) for each u, ve R" |F(t, u, v)| < @(t)g(t, Y~ 1(O)|ul, y "1 (t)|v]) a.e. on J.
Given a function x € By(J) denote by M(x) the set of all measurable functions
y: J = R" such that

y(t) € F(t, x(t), Sx(t)) ae.onJ.

Then the correspondence x — M(x) defines a bounded mapping of B, ,(J) into
cf (LY, 4. ,(J)).

PrOOF. We have to show that for every x € By ,(J) (a) M(x) is nonempty;
(b) M(x) is convex; (c) M(x) is closed; (d) M(x) < L}, , ,(J); (e) for every 6 >0
there is a constant K >0 such that |x|, <¢ implies |y|, , < K for every
y € M(x).

The statements (a) and (b) are trivial. (e) follows from assumptions (ii) and
(i) and obviously implies (d). Thus we have to prove (c) only. Let {y,},

Vn € M(x) be a sequence such that |y, —y|, ,—0 as n— o0, p'€[1, ). By
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the Riesz Theorem there is a subsequence {y,,} of the sequence {y,} such that
{y1a(t)} converges a.e. on J to y(t) as n > co. On the other hand

V1a(t) € F(t, x(t), Sx(t)) ae.onJ.
Because of (c,)

y(t) € F(t, x(t), Sx(t)) ae.onJ.

Thus y € M(x) and the proof of Theorem 4 is complete.

THEOREM 5. Let the hypotheses of Theorem 4 be satisfied. Then the
mapping M: B, ,(J) = cf (L}, , ,(J)) is weakly upper g-continuous.

PrROOF. Let x,>x, X, xeB, ,(J) and y,e M(x,). The existence of a
subsequence {y,,} of the sequence {y,} which converges weakly to some
ye L, ,(J) is implied by Lemma 3 in the case p’=1. For p’ > 1 it follows
from

£ 1p’
'ynlp',lp :<: C = <j gp,(s, c, C) ds) < © [}

0
where ¢ = max (p, kp). Thus we have only to prove that ye M(x). By
Theorem 3 (in the case p’ = 1) or by the Banach-Saks Theorem (in the case
p’ > 1), there is a subsequence {y,,} of {y,,} such that

-0 as n— oo .
r,e

)
n & Yo =Y
Now, by the Riesz Theorem, there is a sequence {s,}, g, € N, 6, 2 n such that
— Y yul®) > y@ ae.onJ forn—o0.
Op k=1

On the other hand, by the assumption (c,), for almost every fixed t € J and any
¢ > 0 there is an integer N(, t) such that
F(t, x;(t), Sx;(t)) = F(t, x(t), Sx(t)) + K,
= {u+v:ueF(t, x(), Sx(t)), |v| < e} fori= N, t)-
Thus
Vau(t) € F(t, x(t), Sx(t)) + K,, 2k = N(e, t)

and by the convexity of F(t, x(t), Sx(t)) we get

L3yt € &, x0), Sx(0) + K,y 20,2 NG 0,
n k=1
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so that
y(t) € F(t, x(t), Sx(¢)) ae.onJ.

The proof is complete.

DEFINITION 8. An operator T mapping a subset A of Lj ,(J) into a
Banach space Y is said to be g-compact iff it is continuous and maps each
g-bounded subset of A into a relatively compact set in Y.

COROLLARY 4. Let a function g fulfil the hypotheses of Lemma 1. Then
each compact operator is g-compact. The converse is not true.

COROLLARY 5. The identity operator I: L,(J) — L,(J) is not e”'-compact as
the following example shows.

ExAMPLE 2. Since
|yi(®)] = |e " sin kt| < e™* =: g(¢) fortelJ

and k=1, 2, ..., the set {e'sinkt:k=1,2,...} is e *-bounded in L,(J).
However, no subsequence of the sequence {y,} converges to any y € L,(J) in
the norm of L,(J) since

a0
|Ym = yal3 = J e %(sin mt — sin nt)? dt
0

2n
> e 4m j (sin mt — sin nt)? dt = 2me 4" form#n.
0

THEOREM 6. Let the hypotheses of Theorem 4 be satisfied and D be a
Banach space. Suppose that T: L} ,(J)— D is a g-compact linear operator
(g satisfies i) of Theorem 4). Then the operator TM defined by

TMx:={zeD:z=Tyand y e M(x)}
maps By ,(J) into cf (D) and is upper q-continuous.

Proor. First we shall prove that the operator TM is upper g-continuous.
Let x, > x, X, xeB, ,(J) and z,e TMx,. We have to show that there is a
subsequence of the sequence {z,} that converges (in the norm of D) to some
ze TMx. Letz;= Ty, y;e M(x;). Since M is weakly upper g-continuous (by
Theorem 5), there is a subsequence {y,;} of {y;} which converges weakly to
some ye M(x). Since {y;;i=12,...} < Uxem‘ﬂ(,)M(x) is a g-bounded set
and T is a g-compact operator, there is a subsequence {y,;} of {y,;} such that
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Ty,;—>z€D as i— . We shall show that z= Tye TMx. Because {y,;}
converges weakly to y, we infer that also {y,;} converges weakly to y. By
Theorem 3 (in the case p’ = 1) or by the Banach-Saks Theorem (in-the case
p’ > 1) there is a subsequence {ys;} of the sequence {y,;} such that

V31 +J’32+"'+Y3i_’y

- as i— o0
i

in the norm of L}, ,(J). Since T is g-compact, T is continuous and we have

*) T<Y31 + Yap + 0+ s

; )—»Ty as i— o0

On the other hand, since Ty;; —»z € D and T is linear, we have

(%) z = lim Ty,; = lim Tys, + T,V32.+ 4 Tyy,;

i—o0 i—o 1

— lim T(J’sl + Va2 + e Y3i>‘

i—o0 4

By () and (**) we infer that z = Ty e TMx. Thus the operator TM is upper
g-continuous. From this we conclude that TMx is closed. Further, M(x) is a
convex set and T is a linear operator. Thus TMx is also a convex set.

COROLLARY 5. Let the hypotheses of Theorem 4 be satisfied and D be a
Banach space. Suppose that T:L} ,(J)— D is a g-compact linear operator.
Then the operator TM maps B, ,(J) into cf (D) and is upper semicompact (upper
semicontinuous).

ReMARK 2. There are a few papers on asymptotic and integral equivalence
of differential systems which are based on a theorem similar to Theorem 6 with
only linearity hypothesis about T (but not compactness). However, such a
theorem is not valid, as shown by the following example.

ExaMpPLE 3. Let the mapping F: [0, 00) x (—o0, o0) = cf ((—o0, c0)) be
defined by the formula

F(t,x):=[—e " e™].

It is easy to see that F fulfils all the assumptions of Theorem 4 (with n = 1, for
arbitrary number p’ = 1, Y(t) = ¢(t) = 1 and ¢(¢, u) = e¢™*) and thus the mapping
M: B, ,(J) = cf (L, ,(J)) is bounded and upper g-continuous.

Now suppose that p’ = 2 and that T: L,(J) —» L,(J) is the identity operator
(thus T is a linear operator but T is neither compact nor e ‘-compact (see



434 Alexander HASCAK

Corollary 5)). However, the operator TM: B, ,(J) — cf (L,(J)) is neither upper
g-continuous nor upper semicompact. In fact, if fk—'i fs foo f€B; ,(J) (or
= fi fio f€ By ,(J) respectively), then y,:= e 'sinkte TMf, and no sub-
sequence of the sequence {y,} converges to any y € TMf in the norm of L,(J)
(see Example 2).

LEMMA S. Let the function g fulfil the hypotheses of Lemma 1. Let Y(t) be
a continuous matrix for t = 0 with det Y(t) # O for each t =20 and P be an n X n

constant matrix with P? = P.
Suppose that there exist constants K, > 0 and 1 < p < oo such that

) ( f WO YOPY el ds>”p <K, forallt20;
0
© f " exp { _K? f ' w(s)n/rp@} dt <0
0 0
(d) fw [PY "1(s)(s)|g(s, c) ds < oo for any constant ¢ 2 0.

Then the linear operator T,: L} ,(J)— By(J), (1/p) + (1/p') =1 defined by the
formula

(Tyy)(@) == f Y(©)PY ™ (s)y(s) ds

0

is g-compact.
Proor. For each ye L}, ,(J) we have

ITyyly = sup Y (T )

< sup L WO Y()PY " (s)@(s) |9~ (s)y(s)| ds

t=0

© 1/p’
§K1<f lo~ ()Y (s)IP dS> =KilYlp,o>

0

which implies that T, is bounded and hence continuous on Lj. ,(J). Further,
take any g-bounded sequence {y,} from L} ,(J). We have to show that the
sequence {7 y,} contains a subsequence which is convergent in B,(J). Let

zi(t) := ft Y(O)PY (s)y;(s) ds, i=12...
0
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Since {y;:i=1,2,...} is g-bounded subset of L} ,(J), p'€(l, c0) there is a
subsequence {y,;} of {y;} which converges weakly to an element y e L%, ,(J), i.e.

t

z3i(t) = (T y1) (©) > (Tyy)(0) := J Y(O)PY ' (s)y(s) ds =: z(t).

0
Further, there are nonnegative constants ¢ and K such that
(1) lyu(®)] = Ko(t)g(t,c)  ae. onl, i=12,...
Using this fact, the Holder inequality and (v), we have
© Up’
YOz < K1K<J g7 (s, 0 dS> ,  i=1,2,....
[}
The the functions z,;, i =1, 2, ... are uniformly y-bounded, and from the
inequalities holding for 0 < ¢, <¢,
I (t2)z44(t2) — () 20(ty)
ty
< j 1Y~ (t2) Y(22)PY T (5)@(9) |9 ! (8)y1:(5)| ds
ty
+ W) Y () — ¥ ) YN IPLHY () Y2y

f W) YE)PY )0 o )y ds
0

.2 Up [ [t Up
= <J Y () Y(E) PY ()@ ()P dS) (J lo~! (8)y ()" dS>
+ T ) Y () — ) YE)IIPIY () Y7 (2y)]

ty 1/p ty 1/p’
<f It//"(tl)Y(tl)PY“(S)rp(S)I"dS) (J Irp"(S)yu(S)I”'dS>

0 0o

1/p

<K (Jw g7 (s, 0) dS>W <f’2 Y7 () Y(e) PY T () ()l d8>

0

o up
+KK1<J g"'(S,C)dS> ()Y ) YT (E2) Y () — Y (8) ()

0

it follows that the functions y~!(t)z,;(¢), i = 1, 2, ... are equicontinuous on every
compact subinterval of J. By the Ascoli theorem as well as by Cantor’s
diagonalization process, the sequence {z,;} contains a subsequence {z,;} such
that {y"1(¢)z,,(¢)} is uniformly convergent on every compact subinterval of J.
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This fact together with the inequality
W Oz S Y1) Y()PIK f IPY () (s)lg(s, c) ds
V]

(note that, by Lemma 4, |y "'(t)Y(t)P| - 0 as t - co and use d)) guarantees the
convergence of {z,;} on J in the norm of B, (J).

COROLLARY 6. Let p= oo (and p'’ =1). Let the conditions (v) and (c) of
Lemma 5 be replaced by
Sup W O YOPY ' ()els) < K,
<s<t
and
lim [y () Y(®)P| =0
t— o0

and let the other assumptions of Lemma 5 hold. Then the linear operator
T,: Lt ,(J) = By(J) defined by the formula

t

(Ly)@) = J Y(©)PY ™' (s)y(s) ds

0

is g-compact.

LEMMA 6. Let the function g fulfil the hypotheses of Lemma 1. Let Y(t) be
a continuous matrix for t = 0 with det Y(t) # O for each t 20 and P be an n x n
constant matrix with P? = P.

If there exist constants K3 >0 and 1 < p < oo such that

(vi) (Jw WO YR)PY (s)p(s)|? ds>1/p§ K; foralt=0,

then the linear operator Ty: L}, ,(J)— By(J), (1/p) + (1/p’) = 1, defined by the
formula

<)

(L)) = J Y(O)PY ' (s)y(s) ds

t

is g-compact.
Proor. The proof of Lemma 6 proceeds analogously to that of Lemma 5.

COROLLARY 7. Let p= oo (and p’' = 1). Let the condition (vi) of Lemma 6
be replaced by

sup [y OYOPY ' ()p(s) < K,

t<s<ow
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and let the other assumptions of Lemma 6 hold. Then the linear operator
T,: Lt ,(J) = By(J) defined by the formula

o]

(Ty)() = j Y(®)PY ™ (s)y(s) ds

t

is g-compact.

COROLLARY 8. Let the mappings F;: X —2Y, i =1, 2 be upper g-continuous.
Then the mappings —F; (i = 1, 2) and F, + F, are upper q-continuous.

THEOREM 7. Let ¢(t) and Y(t) be positive continuous functions for t = 0,
Y(t) a fundamental matrix of (b) and let the hypotheses (c,), (c,), (c;) and (c3) of
Theorem 4 be satisfied.

Suppose that

a) there exist supplementary projections P, P, and constants K >0 and

2 < p < oo such that

t 0
J Y~ ) YO P, Y () (s)IP ds + f W O YO)P, Y (s)e(s)IF ds < K”
0 t
for all t = 0.
b) there exists g: J x J x J — J such that
(i) g(t, u, v) is monotone nondecreasing in u for each fixed te J, ve J;
monotone nondecreasing in v for each fixed t € J, u € J and integr-
able on compact subsets of J for fixed ue J, veJ,
(ii) [¥sP/Pg¥(s,c,c)ds < co for any constant ¢ =0, where (1/p)+
1/p) =1
(i) for each u, ve R"|F(t, u, v)| £ @(t)g(t, Y1 (O)|ul, y~1(t)|v|) a.e. on J.
c) [Fexp{—K7[o0P(s)y P(s) ds} dt < co.
d) [§IP Y (5)e(s)lg(s, ¢, ¢) ds < 0.
Then the set of Wy-bounded solutions of (a) and of (b) are (, p)-integral equivalent.

Proor. Let y(t) be a y-bounded solution of (b) on [t,, o), t, >0. Then
there is p >0 such that ye By, ,([ty, ©)). Define for x e B, ,,([to, ©)) the
operator

t

TMx = {z: z(t) := y(t) + j Y(6)P, Y 1(s)f.(s) ds

to

- fw YO P, Y ' (s)f(s)ds, f. € M(x)} .

By Lemmas 5 and 6, Theorem 6 and Corollary 8 the operator TM maps
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By 1,([to, o)) into cf (By([to, 00)) and is upper g-continuous on B, ,,([ty, 0)).
Further, for each z € TMx, x € B, ,,([t,, ©©)), we have

WOz = Y Oy + f W OYOP, Y ()9(s)lg(s, 2p, 2kp) ds

+ J W O YOP, Y (5)(s)lg(s, 2p, 2kp) ds

t

t 1/p 1/p’
Sp+ (J WY O Y@OP, Y ()o(s)I? dS) (J g7 (s, 2p, 2kp) dS)

0

1/p’

0 1/p e}
+ (f WO YOP, Y (5)o(s)? ds) (f 47 (s, 2, 2kp) ds)
<p+K ( f " 47 (s, 20, 2kp) ds)w

o 1p'
Sp+K < J g¥'(s, ¢, c) ds) , where ¢ =max (2p, 2kp).
to

L] , 1/p’
K(J g"(s,c,C)dS> <p,
to

then we see that TM maps B, ,,([to, o)) into cf (B, ,,([to, ©)). The functions
in TBy ,,([ty, ©)) are evidently uniformly bounded for each t=1t, because
TMBW-ZP c Cf (Bw,zp).

Let x € By ,,([to, ©)) and z € TMx. Then there is f, € M(x) such that

If we choose t, so that

Z'(t) = A@)z(t) + f.() a.e. on [t,, ©0).

Therefore by (iii) of b) we have for t, <t, <t,

't

|z(t5) — z(t)| = f

t

" 1A |2(9)] ds + f C1fu9)l ds

31

t

<2p f V() AW ds + f " 0(9)g(s, ¢, ¢) ds .

ty

Thus the functions in TMB, ,,([t,, ©)) are equicontinuous on every com-
pact subinterval of [t,, o0). Then Theorem 2 ensures the existence of x e
By, »,([ty, ©)) such that x e TMx. Clearly this fixed point x(t) is a y-bounded
solution of (a).
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Conversely, let x(t) be a -bounded solution of (a). Define

t [eo)

Y(O)P Y 7 (9)fc(s) ds + j Y(OP, Y™ (s)f.(s) ds

t

y(@) = x(t) — I

fo

where
fi(®) == Xx"(t) — A(t)x(¢t) € F(t, x(t), Sx(¢)) a.e. on [ty, o).

It is easy to prove that y(t) is a y-bounded solution of (b). It remains to prove
that

Y1 (0)Ix(t) — y(®)] € L,([to, ).

Since

Y (x(r) — y() = J YO Y(OP Y T (5)fils) ds

- ‘ro YO YOP,Y T (5)fis) ds,

it is sufficient to show that the terms on the right-hand side belong to
L,([to, ©)). By the assumptions of the theorem and the Holder inequality we
get

J YHOYOP Y (5)fils) ds éf W O YOP, Y (s)lo(s)g(s, ¢, ) ds

ST OY@E)P] J IP Y (s)@(s)g(s, ¢, c)l ds .
Since (from Lemma 4)

Y (O Y()Py| € L,([to, ))

and d) holds, it is evident that this first term belongs to L,([t,, c0)). For the
second term we have

J‘w W OYOP,Y ()l fus)] ds

< jw W O YOPY T (5)lp(9)g(s, ¢, c) ds

© 1/p © 1/p’
é(f Ilﬁ"(t)Y(t)PzY“‘(S)(/)(S)I”dS) (J g"'(s,c,C)dS>

© 1/p’
< K(j g7 (s, ¢, ¢) ds) .
t



440 Alexander HASCAK

Thus from (ii)) of b) and Lemma 2 we see that this term also belongs to
L,([ty, ©)). The proof of the theorem is thus complete.

ReEMARK 3. If we substitute in Theorem 7 the condition (ii) of b) by the
condition

<fw g7 (s, ¢, c) ds>l/p’ € L,([0, c0))

with p such that 1 < p < oo, then the conclusion of Theorem 7 still holds.

REMARK 4. Let p= o0 (and p’ = 1). Let the conditions a), ¢) and (ii) of b)
of Theorem 7 be replaced by
sup YO Y(OP Y (s)o(s) + sup YT OYOPY ' (s)e(s) =K,
t<s<ow

0ssst

lim [y ()Y ()P =0,

t—o0

WO Y@P| € L([0, ), v>1,

J sg” (s, c, ) ds < o© for any constant ¢ =0,
0

and let all the other assumptions of Theorem 7 hold. Then the sets of -
bounded solutions of (a) and (b) are (i, v)-integral equivalent.

THEOREM 8. Let Y(t) be a fundamental matrix of (b), ¢(t) and Y(t) be
positive continuous functions for t = 0, and let the hypotheses (c,), (c,), (c,) and
(c3) of Theorem 4 be satisfied. Suppose that

a) there exist supplementary projections P,, P, and constants K > 0 and

1 < p < oo such that

t 0
f WY O YR P, Y (5)p(s)|P ds + f Y OYOP, Y ()p(s)P ds < K?
0 t
for all t = 0;
b) there exists g: J x J x J — J such that
(i) g(t, u, v) is monotone nondecreasing in u for each fixed te J, ve J;
monotone nondecreasing in v for each fixed t € J, u € J and integr-
able on compact subsets of J for fixedue J,veJ;
(ii) [5g" (s, c,c)ds < oo for any constant ¢ = 0, where (1/p) + (1/p’) =
L
(iii) for each u, v e R"

IF(t, u, )| < @(®)g(t, Y O)lul, y ' @®)v])  ace.on J;
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c) [3exp{—K7?[o0P(s)y"(s) ds} dt < co;

d) [FIP,Y ' (s)p)lg(s,c,c)ds < 0.
Then, to each y-bounded solution y(t) of (b) there exists a solution x(t) of (a) such
that

© YOIx@ - yOl >0  as  t—o0,

and conversely, to each y-bounded solution x(t) of (a) there exists a solution y(t)
of (b) such that (e) holds.

Proor. The proof of Theorem 8 is essentially the same as that of
Theorem 7.

REMARK 5. Let p=o0 (and p’=1). Let the conditions a) and c¢) of
Theorem 8 be replaced by

Sup W OYOP Y ()| + sup [y OYOP,Y (o) =K,
ssst t<s<w
and
lim [y~' () Y()P,| =0,
t— oo
and let the other assumptions of Theorem 8 hold. Then, to each y-bounded
solution y(t) of (b) there exists a solution x(t) of (a) such that (e) holds.

REMARK 6. For many years the problem of existence of oscillatory solu-
tions of differential equations has been extensively studied. It turns out that
the asymptotic equivalence is a good tool for solving this problem for differen-
tial inclusions.

DEerFINITION 9. A vector-function y(t) = col (y,(t), ..., y.(t)) € By(J) is s-
oscillatory iff there is ¢ > 0 such that for each its component y;(t), i=1, ..., n
there is an increasing sequence {t;} such that lim,_, t; = 00, y(t5)yi(ti x+1) <O
fork=1,2,...,and |y;(t,) >efork=1,2,....

It is easy to prove the following theorem

THEOREM 9. Let the systems (a) and (b) be 1-asymptotically equivalent and
let y=y(t), t € J be an s-oscillatory solution of (b). Then there is an s-oscillatory
solution x = x(t) of (a), and conversely.

As a consequence of this theorem we have

THEOREM 10. Let the systems (a) and (b) be l-asymptotically equivalent.
Then the system () is s-oscillatory if and only if the system (b) is s-oscillatory.
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