A note on Picard principle for rotationally invariant density

Michihiko Kawamura
(Received August 24, 1989)

A nonnegative locally Hölder continuous function P on the punctured closed unit disk $0<|z| \leq 1$ will be referred to as a density on $\Omega: 0<|z|<1$. For a density P on Ω we consider the Martin compactification Ω_{P}^{*} of Ω with respect to the equation

$$
\begin{equation*}
L_{P} u \equiv \Delta u-P u=0 \quad\left(\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right) \tag{1}
\end{equation*}
$$

on Ω. We say that the Picard principle is valid for P if the set of Martin minimal boundary points over the origin $z=0$ consists of a single point. In the case that P is a rotationally invariant density on Ω, i.e., a density P satisfying $P(z)=P(|z|)(z \in \Omega)$, the Martin compactification Ω_{P}^{*} is characterized completely by Nakai [3] in terms of what he calls the singularity index $\alpha(P)$ of P at $z=0$:

$$
\Omega_{P}^{*} \simeq\{\alpha(P) \leq|z| \leq 1\} ;
$$

in particular, the Picard principle is valid for P if and only if $\alpha(P)=0$.
Take two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}(n=1,2, \cdots)$ in the interval $(0,1)$ satisfying $b_{n+1}<a_{n}<b_{n}$ with $\left\{a_{n}\right\}$ tending to zero as $n \rightarrow \infty$. We consider a sequence of annuli:

$$
A_{n} \equiv\left\{z \in C: a_{n} \leq|z| \leq b_{n}\right\}, \quad A=\bigcup_{n=1}^{\infty} A_{n},
$$

in Ω and set

$$
P_{n} \equiv(2 \pi)^{-1} \iint_{A_{n}} P(z) d x d y+1
$$

The purpose of this note is to show the following
Theorem. Let P be a rotationally invariant density. If sequences $\left\{a_{n}\right\}$, $\left\{b_{n}\right\}$, and $\left\{P_{n}\right\}$ satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left\{\log \left(b_{n} / a_{n}\right)\right\}^{2}}{1+P_{n} \log \left(b_{n} / a_{n}\right)}=+\infty, \tag{2}
\end{equation*}
$$

then the Picard principle is valid for P at $z=0$.
Corollary 1. If sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy the conditions

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{\log \left(b_{n} / a_{n}\right)\right\}^{2}=+\infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n} \iint_{A_{n}} P(z) d x d y \equiv \sup _{n} 2 \pi \int_{a_{n}}^{b_{n}} P(r) r d r<+\infty \tag{4}
\end{equation*}
$$

then the Picard principle is valid for P.
Corollary 2. If sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy the condition (3) and if

$$
\begin{equation*}
P(|z|)=O\left(|z|^{-2}\right) \quad(|z| \rightarrow 0) \quad \text { on } A \tag{5}
\end{equation*}
$$

then the Picard principle is valid for $P(c f .[1])$.

1. To prove the theorem, we recall the P-unit criterion for rotationally invariant densities $P(z) \equiv P(r) \quad(|z| \equiv r)$, (cf. [4], [2]). Change the variable $r \in(0,1]$ to $t \in[0, \infty)$ by $r=e^{-t}$. The function $Q(t)$ associated with $P(r)$ is the function on $[0, \infty)$ defined by $Q(t)=e^{-2 t} P\left(e^{-t}\right)$. The Riccati component a_{Q} of Q is the unique nonnegative solution of the equation

$$
\begin{equation*}
-\frac{d a(t)}{d t}+a(t)^{2}=Q(t) \tag{6}
\end{equation*}
$$

on $[0, \infty$). It is known ([4], [2]) that the Picard principle is valid for P if and only if

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{a_{Q}(t)+1}=+\infty \tag{7}
\end{equation*}
$$

2. To apply this criterion we need the following

Lemma. Let a_{Q} be the Riccati component of Q. Then

$$
\begin{equation*}
a_{Q}(\beta)<(\alpha-\beta)^{-1}+\int_{\beta}^{\alpha} Q(t) d t \quad(0 \leq \beta<\alpha) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{Q}(x)<2(\alpha-\beta)^{-1}+\int_{\beta}^{\alpha} Q(t) d t \quad(\beta \leq x \leq(\alpha+\beta) / 2) . \tag{9}
\end{equation*}
$$

Proof. Letting $\beta=x$ in (8) and then letting x lie in $[\beta,(\alpha+\beta) / 2]$ for $0 \leq \beta \leq \alpha$, we easily deduce (9). Thus we have only to prove (8).

Integrating both sides of the equality

$$
-\frac{d a_{Q}(t)}{d t}+a_{Q}(t)^{2}=Q(t)
$$

over $[\beta, x](\beta \leq x \leq \alpha)$, we have

$$
\begin{equation*}
p+\int_{\beta}^{x} a_{Q}(t)^{2} d t \leq a_{Q}(x) \tag{10}
\end{equation*}
$$

where $p=a_{Q}(\beta)-\int_{\beta}^{\alpha} Q(t) d t$. If $p \leq 0$, then (8) is evident. Assuming $p>0$, we shall show that

$$
\begin{equation*}
\sum_{k=0}^{n} p^{k+1}(x-\beta)^{k} \leq a_{Q}(x) \quad \text { for } x \in[\beta, \alpha], \quad n=0,1, \cdots \tag{11}
\end{equation*}
$$

Since $a_{Q}(\alpha)<\infty$, it follows that $p(\alpha-\beta)<1$, which implies (8).
To prove (11), let $f_{n}(x)$ denote the left-hand side of (11). By (10), $f_{0}(x)=$ $p \leq a_{Q}(x)$ for $x \in[\beta, \alpha]$. Assume $f_{n}(x) \leq a_{Q}(x)$ for $x \in[\beta, \alpha]$. Then

$$
\sum_{k=0}^{n}(k+1) p^{k+2}(t-\beta)^{k} \leq f_{n}(t)^{2} \leq a_{Q}(t)^{2} \quad \text { for } t \in[\beta, \alpha]
$$

Integrating both sides over $[\beta, x]$ and using (10), we obtain

$$
p+\sum_{k=0}^{n} p^{k+2}(x-\beta)^{k+1} \leq p+\int_{\beta}^{x} a_{Q}(t)^{2} d t \leq a_{Q}(x) \quad \text { for } x \in[\beta, \alpha]
$$

i.e., $f_{n+1}(x) \leq a_{Q}(x)$. Therefore, by induction, (11) is valid for all n.
3. Proof of the theorem. We set $\alpha_{n}=-\log a_{n}$ and $\beta_{n}=-\log b_{n}$. We estimate from below the integrand of the left-hand side of (7).

By the inequality (9) in the lemma we have

$$
\left\{a_{Q}(t)+1\right\}^{-1} \geq 2^{-1}\left(\alpha_{n}-\beta_{n}\right)\left\{1+\left(\alpha_{n}-\beta_{n}\right)\left(\int_{\beta_{n}}^{\alpha_{n}} Q(t) d t+1\right)\right\}^{-1}
$$

on each interval $I_{n} \equiv\left[\beta_{n},\left(\alpha_{n}+\beta_{n}\right) / 2\right]$. Integrating both sides of the above inequality on I_{n} with respect to t and adding resulting inequalities with respect to n, we obtain

$$
\int_{0}^{\infty}\left\{a_{Q}(t)+1\right\}^{-1} d t \geq 4^{-1} \sum_{n=1}^{\infty}\left\{\log \left(b_{n} / a_{n}\right)\right\}^{2}\left\{1+P_{n} \log \left(b_{n} / a_{n}\right)\right\}^{-1}
$$

since $\log \left(b_{n} / a_{n}\right)=\alpha_{n}-\beta_{n}$ and $P_{n}=\int_{\beta_{n}}^{\alpha_{n}} Q(t) d t+1$. Hence condition (2) in the theorem implies condition (7) in the P-unit criterion.

The proof of the theorem is herewith complete.
4. Proof of the corollaries. Assume that (4) in Corollary 1 is valid. In the case that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \log \left(b_{n} / a_{n}\right) \leq 1 \tag{12}
\end{equation*}
$$

it is easy to see that (2) is valid if and only if (3) is valid. If (12) is not valid,
then there exist infinitly many n such that $\log \left(b_{n} / a_{n}\right)>1$, and hence, in this case, (2) is valid. Next, assume that (5) in Corollary 2 is valid. Observe that

$$
P_{n} \leq c \log \left(b_{n} / a_{n}\right)+1
$$

for a positive constant c. As in the proof of Corollary 1, we can show that if (3) and (5) are both valid, then (2) is valid.

Remark. In the following example, (4) in Corollary 1 is not valid, while (2) in the theorem is valid: Take a constant λ in $(0,1)$ and set $a_{n}=\lambda^{2 n+1}$ and $b_{n}=\lambda^{2 n}$, and set $P(r)=|\log r| r^{-2}$ on A_{n}.

References

[1] M. Kawamura, On a conjecture of Nakai on Picard principle, J. Math. Soc. Japan, 31 (1979), 359-371.
[2] M. Kawamura and M. Nakai, A test of Picard principle for rotation free desities II, J. Math. Soc. Japan, 28 (1976), 323-342.
[3] M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-504.
[4] M. Nakai, A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431.

Department of Mathematics, Faculty of Education, Gifu University

