
HIROSHIMA MATH. J.
20 (1990), 351-363

The maximal codegree of the quaternionic projective spaces

Dedicated to Professor Akio Hattori on his sixtieth birthday

Mitsunori IMAOKA

(Received July 5, 1989)

§1. Introduction

For a /c-dimensional oriented vector bundle α over a connected finite

CW-complex X, the codegree cd(XΛ) of the Thorn space Xa is defined by

cd(XΛ) = ICoker [h : πk

s(XΛ) -> Hk(X

the order of the cokernel of the stable Hurewicz homomorphism h of the stable

cohomotopy group to the integral cohomology group. We study this codegree

by restricting our attention to

cd2(X ) = v2(cd(X*)) ,

the exponent of 2 in the prime power decomposition of cd(XΛ). The cohomo-

logy groups are always assumed to be reduced.

Let kO (resp. kSpin) be the —1 (resp. 3) connective cover of the KO-

spectrum KO. Then the spectrum j is defined to represent the fiber of

ψ:kO*( )(2) -> kSpin*( )(2) (G(2) is the localization of G at 2)

which is a unique lift of the stable Adams operation ψ3 — 1 : KO*( )(2) ->

KO*( )(2) (cf. [16], [6], [17]); and we have the Hurewicz homomorphism

which factors h : πk(XΛ) -> H k(Xa; Z(2)). Thus we have the -codegree

cdJ

2(XΛ) = v2(|Coker (A,))) with cdJ

2(XΛ) ^ cd2(XΛ) ,

which has another description being available for calculations (see Corollary

2.7).
Now, M. C. Crabb and K. Knapp introduced the notion of the maximal

codegree given as follows:

THEOREM A (Crabb-Knapp[7]). For any integer n, put

(1.1) m2(n) = [n/2] if n = 0, 1, 2, 6, 7 mod 8, = [n/2] + 1 otherwise .
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(i) Then, cd2 (X*) ^ m2 (n) if dim X ^ n.

(ii) For a complex vector bundle α over the complex projective space CPr,

cd2((CPr)Λ) = cd{((CPr)Λ) if cd{((CPrY) ^ m2(2r) - 4 .

The object of this paper is to study cd2(Xa) when X is the quaternionic
projective space HPr. Let ξr be the canonical quaternionic line bundle over
HPr. Then, up to a homeomorphism, we have

X* = HPZ+r = HPn+r/HPn~l when X = HPr and α = nξr

(cf. [3]). Here, the stunted space HP"+r is a CW-complex with one 4ι-cell for
each n ̂  i ̂  n + r. Thus, we consider a finite CW-spectrum W of the form

(1.2) W=S°ve4aίv 've4a< with 1 g α x ^ ••• ^ α, = r

in general, and study the codegrees

cd2(W) = v2(|Coker [fc: π°(»P) -> H°(W; Z) = Z]|),

c^(^) = v2(|Coker [hj :j°(W) -> H°(^; Z(2)) = Z(2)]|),

where h and fy are the Hurewicz homomorphisms. Then, in the above case,

cd2(X*) = cd2(W), cd{(X*) = cd{(W) for W = Σ~4nY

where Y is the suspension spectrum of the CW-complex Y = HP£+r.
Now, as an analogy of Theorem A (ii), we can prove the following main

result:

THEOREM 1. Let W be a CW-spectrum given in (1.2), and put

ε(r) = 3 if r is even, = 5 if r is odd .

(i) // cd{(W) ^2r- ε(r), then cd2(W) = cd{(W).
(ii) For ε < ε(r), cd2(W) = 2r - ε if and only if cd{(W) = 2r - ε.

We also consider the vector bundle ζr over HPr defined by the mixing
construction of the adjoint representation of S3 with the canonical principal
S3-bundle S4r+3 -»HP r, and the quaternionic quasi-projective space Qr+1 which
is the Thorn space of ζr. Then

Xβ = Q"n+r = Qn+r/Qn-ι when X = HP' and β = ζ, 0 (n - l)ξr

(cf. [3]), and we can apply Theorem 1 also for W = Σ~4n+1Qn

n

+r.
By Theorem 1 and by tractable calculations on -codegrees, we can deter-

mine the codegree cd2(Xa) for X = HPr and α = nξr or ζr 0 (n — l)ξr when it is
near maximal. To describe the concrete results, we put
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fn +
(1.3) ( 1 = a mod 8 , ( " ) = ft mod 4 and n I * ) = c mod 2

\rs

for given integers n and r ̂  1, where 0 ̂  α < 8, 0 :g ft < 4 and 0 ̂  c < 2.
Then we have the following theorems.

THEOREM 2. Pwί cd2(HP^+r) = m2(4r) - ε for m2(4r) = 3r - 2[r/2]. Then
ε ^ 0, and ε = 0, 1 or 2 if and only if the following (0), (1) or (2) holds for α, ft
and c in (1.3), respectively:

(0) α is odd.
(1) α = 2 or 6 for any r; or a is even and ft is odd when r is even.
(2) a = 4 — 4c when r is odd;

a = 4, ft is even and c = 0, or a = 0 or 4 and ft = 2, when r is even.

THEOREM 3. Put cd2(Qn

n+\+r) = m2(4r) - ε'. Then ε' ^ 0, and ε' = 0, 1 or 2

if and only if the following (0), (Γ) or (2') holds for a, ft and c in (1.3),
respectively:

(0 ) a is odd.
(Γ) a is even and (a/2) + ft is odd for any r; or a is even and ft is odd when r is

even.
(2) a = n = 2 mod 8 when r = 1;

a is even, a/2 and ft are odd and (a/2) + ft + 2 ( I = 2 mod 4, or

(α, ft, c) = (0, 0, 1), (0, 2, 0) or (4, 0, 0), when r is odd ^ 3;

/ n \
a = 0 or 4, ft = 0 or 2 and I ) - 1 = ft/2 mod 2, or

(α, ft, c) = (0, 2, 0) or (4, 0, 0), w/ien r is even.

We prove these theorems for any n by defining HP"+r and βϋ+ι+r to

be the Thorn spaces of nξr and ζr 0 nξr, respectively, and by putting

fr — n — 1\
(—l) r( j for n ̂  0 as usual. We note that each condition of these

theorems happens really for some n and r. Especially HP^1, HP*r

2~
2, Qo

β-rf * take the maximal codegrees; and the results for HPL^1 and QΌ are already
proved by Crabb-Knapp [8]. The articles related to the codegree of HPϋ+r or
Qn

n

+r are also found in [20] and [10-14].
In §2, we prepare some properties for the j-cohomology and the j-codegree.

We prove Theorem 1 in §3, Theorems 2 and 3 in §4; and we give some
examples in §5.

The author wishes to express his thanks to Professor M. Sugawara for his
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valuable suggestions to clarify the expressions in the paper, and to K. Morisugi,
H. Oshima and T. Watanabe for their helpful information and stimulating
discussions.

§2. Preliminaries

Let j be the spectrum introduced in §1. That is, j is defined to be the
fiber spectrum of ψ : kO*( )(2) -> kSpin*( )(2) which is a unique lifting of the
stable Adams operation ψ3~1:KO*( )(2)->K0*( )(2). Thus we have an exact
sequence

(2.1) -> kSpin-l(Ύ\2) Λ/>(7) Λ /cO°(7)(2) Λ kSpin°(Y\2}

for a finite CPΓ-spectrum Y.

Now, we assume that W is the 4r-dimensional CW-spectrum given in
(1.2), and that Wl is the z-dimensional skeleton of W.

LEMMA 2.2. Let 0 g i ̂  4r. TTien we ftαi e ί/ze following:
( i ) fc0°( W') and kSpin°(Wi) are the free abelian groups.
(ii) kSpίn~1(Wl) is a 2-torsion group.

(in) ί* :kSpin~1(W)^^ kSpin~1(Wl) is an epimorphism for the inclusion
i : Wi -> W.

PROOF. Let i^j ^ 0. Then the Atiyah-Hirzebruch spectral sequence for
KO*(Wl/Wj) collapses, because Wl/Wj has only cells of dimensions divisible
by 4. Hence KO\WlIWj) is a free abelian group and KO~l(Wi/Wj] is a
2-torsion group. It is well known that, for the c-connective cover F of a
spectrum £, we have an isomorphism Fq(Y) ^ Im [Eq(Y/Yc+q) -+ Eq(Y/Ye+q~ί)']
for a CW-spectrum Y and its i-skeleton Yl. Since kO (resp. kSpίn) is the -1
(resp. 3) connective cover of KO, we have isomorphisms kO°(Wi) ^ KOQ(Wi\
kSpin°(Wi)^KO°(Wi/S0) and kSpivΓ^W1)^ KO'^W^S0). Thus we have (i)
and (ii). Since i* : kSpin~l(W) -> kSpin~1(Wi) is identified with an epimor-

phism i* : KQ-^W/S0) -> XO-H^V S'0), we have (iii). Q.E.D.

Let ph : KO°(Y) -» //4*(7; β) = Π^0H
4ί(Y; Q) be the Pontrjagin character.

Then the following lemma is well known (cf. [1], [4]):

LEMMA 2.3. ph®Q\ KO°(Y) ®Q-* H4*(Y; Q) is an isomorphism, and the

composition (ph ® Q) ° (φ3 — 1) ° (ph ® Q)~l maps an element y e H4k(Y; Q) to
(9* _ i)y9 where ψ3 - 1 : KO°(Y) ® Q -> XO°(7) ® Q is ί/iβ yldαms operation.

Let Tor (G) be the torsion part of a finitely generated abelian group G.
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Then the cohomology groups j°(Wl) satisfy the following:

PROPOSITION 2.4. (i) For i ̂  0, Ίor(j°(Wi)) = d(kSpin~l(Wi\2)) and
j°(Wl)/ToT (J0(W1)) ^ Z(2), where δ is the homomorphism in (2.1) for Y = W\

(ii) i* : Tor (j°(W)) -> Tor (j°(W1)) is an epimorphism, where i:Wl^W is
the inclusion.

PROOF. Consider the exact sequence (2.1) for Y = W\ Since kO°(Wl) is
a free abelian group by Lemma 2.2 (i), so is Ker(ι^). Thus we have an iso-
morphism j°(Wl) = Ker (ψ) θ Im (δ), and Im (δ) is a torsion group by Lemma
2.2 (ii). By Lemma 2.3, we have an isomorphism Ker (ψ) ® β ^ HQ(Wl\ β) ̂  β,
since φ is a lifting of ψ3 — 1. Thus we have (i), and δ: kSpin~1(Wi) ->
Ύoτ(jQ(W1)) is an epimorphism. i* : kSpin~1(W) -» kSpin~l(Wi) is an epimor-
phism by Lemma 2.2 (iii), and i* : Tor (j°(W)) -> Tor (j°(W1)) factors the epi-
morphism δ o ί*. Thus we have (ii). Q.E.D.

Recall that cdJ

2(W) = v2(|Coker (hj)\) for the Hurewicz homomorphism hji
j°(W) -> H°(W; Z(2)). Let ί0 : S°-+W be the inclusion to the bottom sphere
of W. Then we have cdJ

2(W) = v2(|Coker (ίg)|) for the homomorphism i j j :
j°(W) -+j°(S°). On the other hand, we have the KO-codegree cdξ°(W) defined
below. Let u e HQ(W\ Z) ̂  Z be the generator. Then by Lemma 2.3 there is

a unique element VeKO°(W)®Q such that (ph®Q)(V) = u in HQ(W\ β).
We define cd2°(W) to be the minimal non negative integer e satisfying
2eVe KO°(W\2}. We will show that these two types of codegree agree.

We regard V also as an element of kO°(W) ® β through the isomorphism

W°(W) ^ KO°(W). Then, by Lemmas 2.2 and 2.3 and the minimality of
cd2°(W\ we have the following lemma, where / and ψ are the homomorphisms

in (2.1) for Y = W:

LEMMA 2.5. Let c = cd$°(W). Then Fe Im (/(x) β), and 2CV is a genera-
tor of Ker (ψ) ^ Z(2) in kO°(W\2).

PROPOSITION 2.6. cd{(W) = cdξ°(W).

PROOF. Let i%: E°(Y\2) -+ E°(Y) ® β be the canonical map defined by the
inclusion Z(2) c β for spectra E and Y. Then cd%°(W] = Min {e ^ Q\2eVε
Im(ϊQ°)} by definition. By Lemma 2.5, we have an element Vjεj0(W)®Q

such that (f®Q)(Vj) = V. Then we have (ij ® β)(^ ) = i^(z) in ;°(S0) ® Q for
some unit / ej°(S0) ^ Z(2). Thus we have cd{(W) = Min {e ^ 0|2eP^ E Im (i£)},
since 7°(P^)/Tor (j°(W)) ^ Z(2) by Proposition 2.4 (i). Consider the following
commutative diagram:
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_JL^ kSpin»(W\2)

:KO
1Q

Since W°(W) ^ KO°(W) and i£° is identified with ΐ£° through the isomor-
phism, we have cd2°(W) ^ cd{(W). For c = cd2°(W\ we have an element

y e kO°(W\2) such that ι$>(y) = 2CV, and (igpίn o ^)()>) = 2C(^ ® β)(K) = 0. But
j kspfπ js inject^ by Lemma 2.2 (i). Thus we have an element z 6 j°(WO satisfy-

ing y = f(z\ and so ((/® β) o ί£)(z) = (/(x) β)(2c^ ). Since /®β is injective
by Proposition 2.4 (i), we have ίJ

Q(z) = 2% and this implies cdJ

2(W) g cd%°(W).
Thus we have the required equality. Q.E.D.

Let X be a connected finite CW-complex which has no cells of dimensions
not divisible by 4, α a KO-orientable virtual vector bundle over X of dimension
0, and XΛ the Thorn spectrum of α. Then we have the KΌ-Thom class
Uκo e KO°(X*) and the ordinary Thorn class UH e HQ(X*\ Z). The multiplica-
tive characteristic class s/ι(α) 6 H4*(X+; Q) is defined by the equation ph(UKO) =
UHsh(a) (cf. [2]), where X+ is the disjoint union of X and the base point.
Then, in the case W = XΛ, we can take UH and Uκoph~*(sh( — at)) as the
elements u and V respectively, where ph denotes the ring isomorphism ph® Q
as in Lemma 2.3.

COROLLARY 2.7. cdJ

2(XΛ) = cdξ°(Xa) = Mm {e ^ 0\2eph-l(sh(-κ)} e
KO°(X+\2}}.

REMARK 2.8. The properties concerning the -codegrees and KO-codegrees
of the Thorn spectra are investigated by M. C. Crabb and K. Knapp in a series
of their papers and by H. Oshima [17]. Proposition 2.6 is a simple analogy of
[5; Prop. 3.2] or [9; §4], and Corollary 2.7 is a special case of [17; Th. 3.3].

§3. Proof of Theorem 1

We will apply the method of [7] to the proof of Theorem 1. Then we
need some preliminaries about the mod 2 Adams spectral sequence, which has
Ext^(Z/2, Z/2) as the £2~

term and converges to π^S0), where A is the mod 2
Steenrod algebra. In this section, the spectra and the groups are assumed to
be localized at 2. Let

r»0 V y ^° V 9* V V ^s V
O — I0 < /! < I2

 < ' ' ' * 1s * 1s+l * * * '

be the mod 2 minimal Adams resolution, and g(s) the composition g^g^ ...0s-ι :



The maximal codegree of the quaternionic projective spaces 357

Ys -» S°. Let [Z, ys] be the group of the homotopy classes of maps from a
spectrum Z to Ys, and FS[Z, 5°] denote the image of g(s)^ : [Z, 7J -> [Z, 5°].
Then the mod 2 Adams filtration of an element z e [Z, S°] is the maximal value
of s such that z 6 FS[Z, S°], and we denote it by F2(z) = s. It is known that
πQ(Ys) ^ Z with a generator fe0 and the composition g(s) o 'fe0 : 5° -» 5° is of
degree 2s (cf. [7; §2]).

Let ε(r) = 3 if r is even, =5 if r is odd, as in Theorem 1, and h(j):
π4i-ι( )->J4i-ι( ) the Hurewicz homomorphism. Then by the same way as in
the proof of [7; Prop. 4.1] we have the following:

PROPOSITION 3.1. Assume that s^2r — ε(r). Then the composition h ( j ) o

g(s + 1)̂  : π4ί_1(l^+1) ->./4i-ι(S0) is a monomorphism for 1 ̂  i ̂  r.

PROOF. Let ES^(Y) be the £M-term of the mod 2 Adams spectral sequence
for πjy), which has ExtA(H*(Y; Z/2), Z/2) as the E2-term. Then we have the
connecting homomorphism δs: E^j(Ys+1) -^ Ei

u

+1J+1(Ys) which is compatible with
the differentials du and associated to gs in E^-terms (cf. [18; Chap. 2]). Let
δ(s): Elij(Ys+i) -> £i

2

+ +1 '+ +1(S°) be the composition δ0δ, ...δs. Then δ(s) is an
isomorphism for any i ̂  0 and j ^ 0 (cf. [7; (2.4-5)]). In particular δ(s):
EQ

2

Λί-l(Ys+J -» £3,+1 5+4ί(S°) is an isomorphism for any i ̂  1 and 5 ̂  0. Now

we assume that s and ί satisfy s + 1 ̂  2i — 2 for even i and s + 1 ̂  2i — 5 for
odd i. Let Im (J) be the image of the stable J-homomorphism J: π4l_1(S'O) ->
π4ί_1(5°). Then, by [7; Proof of Prop. 4.1], Es

2

+1 s+4ί(S°) is isomorphic to 0 or
Z/2, and generated by a permanent cycle presented by an element of Im (J).
Thus (5(s) induces a monomorphism between E^ -terms. Note that δ(s):

£^+4|-1(yf+1)^£5,+I+1 *+ +4<(S°) is associated with g(s + 1)* : F*π4l_1(y,+1) -*
Fk+s+1π4i_1(S°). Hence we have a monomorphism g(s +!)„,: π4ί_1(l^+1) ->
π4l_1(5°), and its image is contained in Im (J). Since h(j) is injective on Im (J)
(cf. [16], [5]), we have the desired result. Q.E.D.

Let W be the spectrum given in (1.2). Then we have the following:

PROPOSITION 3.2. // W satisfies cd{(W) ^ 2r — ε(r), then there is an element

x € π°(W) satisfying v2(h(x)) = F2(x) = cd{(W\ where we regard the Hurewicz
image h(x) e H°(W; Z) = Z as an integer.

PROOF. We put s = cdJ

2(W). Then s ^ 2r — ε(r) by the assumption, and
we have an element z e j°(W) satisfying ij(z) = 2s ej°(S°) = Z(2), where J0 is the
inclusion to the bottom sphere of W. Let fc0:5° -* Ys be the generator of

π0(l^) ̂  Z. We will construct an extension kt: W
41 -+Ysoϊk0 inductively on /

for 0 ̂  / ̂  r. Then the element x = g(s) okre n°(W) satisfies v2(h(x)) = F2(x) =
s, because s ̂  F2(x) ^ v2(h(x)) = s, and x is the desired element.
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So we assume that we have already constructed an extension kt for some /
with 0 ̂  / ̂  r - 1. Let φ : V S4l+3 -> W41 be the attaching map of the 4(1 + 1)-
dimensional cells of W. We will show that kt o φ = 0. Then we have an
extension fc/+1 of kh and complete the proof. Consider the element w = h(j) o
g(s) o kt ejQ(W41). Let i0tb : W4a -> W4b be the inclusion map for a g b. Then
we have (i0,ι)*(w) = (i0,n)*(z) = 2s in j°(S°)9 and so we have w - (i,fll)*(z)-e
Tor 0*°(W4ί)) by Proposition 2.4 (i). Then we have an element v e Tor ό'°(W))
satisfying (ίj π)s|t(z + u) = w by Proposition 2.4 (ii). Hence ^*(w) = 0 in

7°(VS4I+3). 'Here ^*(w) = (W)<>0(*)»)(*ι° A and fc, o φ e F^ys41*3, 7J.
Since we have the assumption that s ^ 2r — ε(r) and / :g r — 1, Λ(j) o g(s)^ is a
monomorphism on Fx[\/54/+3, 3 ]̂ by Proposition 3.1. Thus we have kt o φ =
0, and the desired result. Q.E.D.

PROOF OF THEOREM 1. (i) By Proposition 3.2 we have cd2(W) ^ cd2(W).
But it always holds that cd{(W) ^ cd2(W\ and thus we have the desired result.

(ii) By (i) it is sufficient to show that cd2(W) = cd2(W) if cd2(W) = 2r - ε
and ε < ε(r). Suppose that 2r — ε = cd2(W) φ cdJ

2(W) = 2r — u and ε ̂  ε(r) —
1. Then we have u ̂  ε + 1, since cd{(W) < cd2(W). Let zl ej°(W) be an
element satisfying ^(zj = 22r~" ef(S*\ and put y = 2"-ε~1z1 ej°(W). Then
we have iξ(y) = 22r~(ε+1) ej°(S°)9 and ε + 1 ̂  ε(r). Then we can construct an

extension k' : W -> l^r-ε-i of ^o by the same way as the proof of Proposition
3.2, using y instead of z. But this is a contradiction, because the Hurewicz
image of g(2r — ε — 1) o k' € π°(W) is not divisible by 22r~ε and it implies that
cd2(W) ^ 2r — ε — 1. Thus cdJ

2(W) = cd2(W), and we have completed the proof.

§4. Proof of Theorems 2 and 3

We assume that n and r are integers with r ^ 1. As mentioned in §1,
fjpn+r (resp ρ;£|+Γ) is considered as the Thorn space of nξr (resp. ζr®nξr).

Let x e H4(HPr; Z) and X = [_ξr - 1H] e KO4(HPr) be the Euler classes of ξr in
the respective cohomology groups, and gt the generator of KO~4i(S°) ^ Z. We
put Y = (gί/2)XeKO0(HPr)®Q. Then it is known that there are ring iso-
morphisms H*(HPΪ'9 Z) s Z[x]/(xr+1) and KO°(HPr

+) (x) Q * β[y]/((y)r+1), and
we have Y2i = g2iX

2ί and Y2i+l = (g2i+1/2)X2M for i ̂  0. Consider the
power series

sinh(>;)=

Then the following is known (cf. [13], [14]):

LEMMA 4.1. In H*(HP'+;Q), sh(ξr) = (sinh (ι/x/2)/(Jx/2))2 and sh(ζr) =
(d/dy)((2smh(^/y/2))2)\y=x.
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Let Sinh"1^) E QW be the inverse power series of sinh (y). That is, it
satisfies Sinh"1 (sinh (y)) = y. Consider the power series

Then we have an element G(Y) of KO°(HP+)® Q. Let ph denote ph®Q
as in Lemma 2.3. Since ph(Y) = ph(X) = (2sinh (^/x/2))2 and ph is a
ring isomorphism, we have ph~1(x) = G(Y). On the other hand, by Lemma 4.1

we have sh(-nξr) = (sinh (^/x/2)/(^c/2)Γ2n and sh(-(ζr θ <)) = (n + l)x"/
((d/dy)(2 sinh (<Jy/2))2n+2\y=x), since sΛ(-α) = s/φΓ1 and sΛ(α + )8) = sh(φh(β)
for XO-orientable vector bundles α and /?. Thus we have the following equation:

PROPOSITION 4.2. (i) p/Γ1 (sh( - nξr)) = (G( Y)/Y)n.
(ii) Ph-i(sh(-(ζr@nξr))) = (\/((n + l)Yn))'((d/dy)(G(y)

n+1)\y=γ).

By Corollary 2.7 and Proposition 4.2 we have the following:

COROLLARY 4.3. (i) cdJ

2(HP^+r) = Min {e ^ Q\2e(G(Y)/Y)n e KO°(HPr

+)(2)}.

(ϋ) cd2(Qn

n

+

+l+r) = Min{^0|2e(l/((n+l)n) ' ((d/dy)(G(yγ
+1)\y=γ) e

KO°(HPr

+\2}}.

Now, we put

(4.4) GΛ(y) = (G(y)/y)n = g ai(n)yi for afyi) e Q .
i = 0

Then we have a0(n) = 1 and the following:

LEMMA 4.5 (F. Sigrist-U. Suter [19; (3.6)]).

m-l _ι

. /or m ̂
ί=o \m — ϊ/

COROLLARY 4.6. 4mαm(n) e Z(2) for m ^ 0.

For a non zero rational number a = b/c, we define v2(α) = v2(b) — v2(c),
where fc and c are integers, and we put

(4.7) v2(ar(n)) = -2r + fil and v2(αr_1(n)) = -2(r - 1) + e2

for given integers n and r ^ 1. Then ε£ ̂  0 for i = 1, 2 by Corollary 4.6, and

we have the following:

LEMMA 4.8. For r ^ 1, ε^ = 0, 1, or 2 ί/ and on/y ι/ the following holds
respectively:
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= 1 mod 2 , I ) = 2 mod 4 or ( } - ( 4 n / 3 ) H + ) = 4 mod 8 .
r r r r - l

some / e Z(2) we have
PROOF. We have al(n)= -(n/12) by Lemma 4.5. Then for r ^ 2 and

ve

22'(1 - 4')a,(n) = - (4n/3) + 161

by Lemma 4.5 and Corollary 4.6. Thus the desired equivalences are obvious
from this equation. Q.E.D.

Using Corollary 4.6 and the minimality of the codegree in Corollary 4.3 (i),
we have the following lemma:

LEMMA 4.9. Put cdJ

2(HPχ+r) = m2(4r) - ε for m2(4r) = 3r - 2[r/2]. Then

ε ^ 0, and ε = 0, 1 or 2 if and only if the following (0), (1) or (2) holds for ε^ and
ε2 in (4.7), respectively:

(0) ε 1 =0.
(1) εί = 1 for any r; or εx > 1 and ε2 = 0 w/zen r is ei en.
(2) εx = 2 when r is odd;

ε1 ^ 2, ε2 ^ 1 0/ιd (εt — 2)(ε2 — 1) = 0 when r is even.

PROOF. By Corollary 4.3 (i) and (4.4), cdJ

2(HPχ+r) is equal to the minimal
integer e satisfying 2eaf(n) e Z(2) (resp. 2e~1αί(n) e Z(2)) for any even (resp. odd)

integer i with 0 ̂  i ^ r. Then we have ε ̂  0 by Corollary 4.6, which is
also clear by Theorem A (i). We put M = w2(4r). Since 2M~1αί(n) e 2Z(2) for
0 ^ i ̂  r - 1 by Corollary 4.6, ε = 0 if and only if ε^ = 0. We have 2M~2ai(n) e
2Z(2) for 0 ̂  i ̂  r - 2, 2M~2ar_l(n) e 2Z(2) for odd r ̂  1, and 2M-2ar_!(n) e Z(2)

for even r ^ 2, by Corollary 4.6. Thus ε = 1 if and only if (1) holds. Similarly

we have the equivalence for ε = 2 and (2), because we have 2M~3αί(n) e 2Z(2) for
0 ̂  i ̂  r - 2 and 2M~20r_1 e 2Z(2) for odd r ̂  1. Thus we have completed the
proof. Q.E.D.

Consider the power series

Hn(y) = (l/((n + l)y"))-^((2 Smh^(^/y/2))2n+2) = £ bi(n)yi ,
(ty i=0

where b0(n) = 1 and ^(nJeQ. Then we have Hn(y) = Gn(y)(d/dy)(yG^(y)\
where Gn(y) is the power series of (4.4). Thus we have the following relation

between the coefficients bf(n) and a^n):

LEMMA 4.10. bm(n) = ΣΓ=0 (i + l)am-i(nK(l) far m ̂  0.
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COROLLARY 4.1 1. 4mbm(n) e Z(2) for m^O.

We also have the following corollary of Lemma 4.10:

COROLLARY 4.12. Put v2(br(n)) = -2r + ε3. Then ε3 ^ 0, and ε3 = 0, 1 or
2 if and only if the following (0), (1) or (2) holds for ε1 and ε2 in (4.7),
respectively:

(0) fil=0.
(1) n = 0 mod 4 when r = 1;

£ι ^ 1, ε2 ^ 0, (ε1 - I)ε2 = 0 and (εl5 ε2) 7^ (1, 0), when r ̂  2.
(2) H = 2 mod 8 when r = 1;

βl = 1, ε2 = 0 and 22r~iar(n) - (l/3)22r~2ar.l(n) = 2 mod 4, or
βi ^ 2, ε2 ^ 1, (εx - 2)(ε2 - 1) = 0 and (εl9 ε2) ̂  (2, 1), w/zen r ̂  2.

PROOF. We notice that b^ή) = -(n + 2)/12 by Lemma 4.10. Thus the
assertions for r = 1 are clear, and so we assume r ^ 2. By Lemma 4.5 we
can easily see the values of at(l) for 1 ̂  ί ̂  3, and by Lemma 4.8 we have
v2(^(l)) ̂  4 — 2i for i ̂  4. Then the equation in Lemma 4.10 is written as
follows:

b,(n) = ar(n) - (\/6)ar.,(n) + (l/30)αr_2(n)
i=3

where dt are some elements of Z(2). Thus the desired results are obvious from
this equation and Corollary 4.6. Q.E.D.

PROOF OF THEOREM 2. By Theorem A (i) we have ε ̂  0. For 0 ̂  ε ̂  2,
cd2(HPZ+r) = m2(4r) - ε if and only if cdJ

2(HP^+r) = m2(4r) - ε by Theorem 1
(ii). Then we have the desired results by Corollary 4.3 (i) and Lemmas 4.8 and
4.9.

PROOF OF THEOREM 3. By Theorem A (i) we have ε' ^ 0. For 0 ̂  ε' ^ 2,
cd2(Qn

n+{+r) = m2(4r) - ε' if and only if cd{(Q£\+r) = m2(4r) - ε' by Theorem 1.
The assertion for r = 1 is clear by Corollary 4.12. Thus, we assume that
r ^ 2. In Lemma 4.9, if we replace cdJ

2(HP2+r) to cdJ

2(Qn

n+\+r\ εl to ε3 given in
Corollary 4.12 and ε2 to v2 (î  (n)) + 2(r — 1), then the analogous results are
obtained by using Corollaries 4.3 (ii) and 4.11 instead of Corollaries 4.3 (i) and
4.6 respectively. Then cd{(Q£\+r) = m2(4r) if and only if ε3 = 0, and thus (0) is
necessary and sufficient for ε' = 0 by Corollary 4.12 and Lemma 4.8. By the
same way, we have the equivalence between the conditions ε' = 1 and (Γ).
Similarly, as a necessary and sufficient condition for ε' = 2, we obtain a condi-
tion formed by those in (2') and the two other conditions, the latter of which
are given using α, b and c in (1.3) as follows:
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(α, fo, c) = (0, 0,1) when r is even, or (α, b, c) = (4, 2, 1).

But each of these conditions has a contradiction in itself, and must be excluded.
Thus we have the desired results.

§5. Examples

In this section, we give some examples of (π, r) which satisfy the conditions
(0)-(2) of Theorem 2 or (0)-(2') of Theorem 3.

First we assume that n^r^l. Let α(i) be the number of 1 in the diadic
expansion of an integer L Then it is well known that

v2( Γ J } = α(/) + α(Jk - /) - α(/c) for k ̂  1 ^ 0 .

Using this relation, we can examine (n, r) whether it satisfies the condition. As
for (0) of Theorems 2 and 3, a is odd if and only if α(r) + a(n — r) = α(n).

We put

(n, r) = [ί, s] if n = t + m1 + w2 and r = s + Wi

for integers t ^ s ̂  1 and mf ^ 0 (i = 1, 2) satisfying α(mx + w2) = α^) + α(m2)
and 2V2(mί) > ί if mi > 0.'

LEMMA 5.1. Assume ί/iαf fe ̂  1. TTien (1), (2) of Theorem 2, or (I'), (2') o/
Theorem 3 /zo/ds z/ (n, r) ίαfcβs the value in the following (1), (2), (Γ) or (2')
respectively:
(1) [2fc+1 + 1, 2k + 1] (wλέ?n r is odd);

[2*+1, 2k] or [2* + 2fc - 1, 2fc] for I > k (when r is even).
(2) [2fc+1 + 2, 2* + 1] or [17, 3] (0<W r);

[2fc+2 + 4, 2fc+1 + 2] or [9, 6] (ei en r).
(!') [2fc+1 + 2, 2* + 1] or [2fc+2 + 2k+1 + 1, 2k+1 + 1] (odd r);

[/, 2*] /or / - 2fc+1 + 1 or 2k (even r).
(2') [/, 2k+1 + 1] for I = 2k+2 + 1 or 2fc+3 + 2, [2*+2 + 7, 2fc+2 + 1] or [36, 5]

(odd r);
[2

fc+2
 + 1, 2

k
], [2

fc+2
 + 2

fc+1
 + 1, 2

k+1
 + 2], [2

k+3
 + 2, 2*

+2
 + 2] or [20, 12]

(even r).

As examples for n < 0, we have the following by Theorems 2 and 3:

LEMMA 5.2. Put cd2(HP^+r) = m2(4r) - ε(n, r) and cd2(Qn

n+\+r) = m2(4r) -

ε'(n, r).
(i) ΓΛew, ε(-1, r) = ε(-2, 2r) = ε'(-1, r) = ε'(-2, 2r) = 0 /or αnj; r ^ 1.
(ii) ε( — 2, r) = 1 (resp. 2) if r = 1 mod 4 (resp. r = 3 mod 8), and ε'( —2, r) = 1
. 2) if r = 3 mod 4 (resp. r = 5 mod 8).
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