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Asymptotic behavior and domain-dependency
of solutions to a class of reaction-diffusion systems

with large diffusion coefficients
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§1. Introduction

A lot of reaction-diffusion equation models have been recently used to
study pattern formation in population ecology, morphogenesis, neurobiology,
chemical reactor theory and in other fields. These are usually described by the
following weakly-coupled parabolic systems:

(l.la) ut = DAu+f(u), (ί, x) e (0, oo) x Ω ,

where Ω is a bounded domain in Rn with smooth boundary dΩ9

u = *(uί9 u2,..., wm), D = diag (dί9 d2,..., dm) with diffusion coefficients d{ > 0
(i = 1, 2,..., m\ A is the Laplacian and / is a smooth mapping of Rm into itself.

One of the familiar boundary conditions for the system (l.la) is the
homogeneous Neumann boundary condition:

(Lib) ^ = 0, ( i ,x )e(0 ,oo)x3f l ,

where d/dn denotes the outer normal derivative on dΩ.
One of the important topics for (1.1) is the problem as to whether or

not stable spatially inhomogeneous equilibria or periodic solutions exist from
pattern formation point of view.

It is shown by Chafee [3] that any stable equilibrium solution of the
scalar reaction-diffusion equations of (1.1) (m = 1) in one dimensional interval is
constant. Later, along this line, there have been a lot of papers including
Matano [16] and Casten and Holland [2], in which the same result is valid
when Ω is a bounded, convex domain in Rn. We should note that this
conclusion for scalar versions holds for any nonlinearity of /.

Kishimoto and Weinberger [15] generalized the above result to the system
(l.la) satisfying (d/du^fi > 0 for i ^7, which is called the m-cooperating system.
Namely, when Ω is any bounded convex domain, there are no stable in-
homogeneous equilibrium solutions of (1.1). On the other hand, for the system
(1.1) with m = 2 satisfying (d/dM,-)/; < 0 for iφj, which is called the com-
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petitive system, Matano and Mimura [17] have proved that there exists a
bounded nonconvex domain Ω a R2 for which the system has stable spatially
inhomogeneous equilibrium solutions when suitable additional conditions are
imposed on / (see also Matano [16] for the scalar equations). We note
that when Ω is convex, the system has no stable spatially inhomogeneous
equilibrium solutions (see Kishimoto and Weinberger [15]).

These results indicate that the stability of spatially inhomogeneous equilib-
rium solutions depend on the shape of domain. In fact, Hale and Vegas [10]
discussed this problem by appropriately parametrizing a family of nonconvex
domains. Following them, there are a lot of papers on scalar equations (for
instance, Vegas [21], Keyfitz and Kuiper [14], Dancer [6], Jimbo [12], [13]) to
discuss the changes of solutions by varying the domain.

Recently, Morita [20] has studied (1.1) in the system version, when D is
arbitrarily fixed large and Ω is a nonconvex domain of dumb-bell shape with
very narrow handle. His assertion is that there exists a finite dimensional
Lipschitz continuous invariant manifold together with its attractivity and the
reduced form of ordinary differential equations on the invariant manifold.

On the other hand, Conway, Hoff and Smoller [5] considered the problem
(1.1) for arbitrarily fixed Ω. By assuming the existence of invariant region for
(1.1) they conclude that if all of the diffusion coefficients are very large, any
solution of (1.1) tends to be spatially homogeneous as t-» +00 and that the
asymptotic behavior of the solution of (1.1) is qualitatively determined by the
following ODE:

(1.2) §-/(»).

However, we note that if all of the diffusion coefficients are not large, there exist
stable spatially inhomogeneous steady states of (1.1) with m > 2 for suitable f(u)
even if Ω is convex (see Mimura, Nishiura and Yamaguti [18]).

These two results indicate that the existence and stability of spatially
inhomogeneous equilibrium solutions of (1.1) depend on not only the shape of
domain but also the diffusion coefficients.

In this paper, we study the dependency of these two effects on solutions of
the problem (1.1). To do it, we introduce one parameter ε into the system
(l.la) in a way that Ω is a dumb-bell shape domain Ωε used in [10] and [20]
(see Figure 1) and that D takes D = ε~θD (θ > 0) with D = diag (dl9...9 dm)
(dt > 0, i = 1,2,..., m). If ε is sufficiently small, the situation is as follows: Ωε is
a dumb-bell shape domain such that it closes to Ω0 which is the union of two
disjoint convex domains and all the diffusion coefficients are very large with the
rate θ > 0. Our aim is to construct a finite dimensional Lipschitz continuous
invariant manifold and derive the reduced form of ODE on the invariant
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manifold from (1.1). We note that the case when 0 = 0 was already discussed

by Morita [20].

FIGURE 1

In Section 2 we show some results obtained by Hale and Vegas [10] and

Vegas [21] and Morita [20]. In Section 3 we construct an invariant manifold

of finite dimensions and show its global attractivity. In Section 4 we derive
the ordinary differential equations on the manifold. The discussion on the

asymptotic behavior of solutions of (1.1) with an application to population

dynamics will be reported in a forthcoming paper [19].
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§2. Preliminaries

We consider the following reaction-diffusion equations with two parameters

ε > 0 and θ > 0:

(2.1)

Au+f(u), (f, x) G (0, oo) x flβ ,

du
dn

= 0, (t, x) e (0, oo) x dΩe.
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Here Ωε c R2 are the ε-family of nonconvex domains symmetric with respect to
x{ axis with smooth boundary 8Ωε for εe(0, ε0] (ε0 > 0), which consists of
three disjoint unions Ωε = ΩQ u Ω$ u Rε9 where ΩQ, Ω* are two disjoint convex
domains and Rε is a handle satisfying |#ε|->0 as ε-*0 with respect to the

Lebesgue measure | | in R2. (see Figure 1).
We assume without loss of generality that /(O) = 0. We also assume that

there exists K* > 0 such that

(H) (2.1) admits an invariant region Vκ = {u ε Rm\Q < u{ < K, 1 < ί < m}

for any K > K* .

In fact, the existence of such an invariant region for competition-diffusion

system is studied in [4]. Now we fix sufficiently large K (>K*) and simply
denote Vκ by V, because we only consider solutions of (2.1) in V.

Let Z* = (Hk(ΩE))m be the m-product space of Hk(Ωε) for k > 0 and

εe(0, ε0] with the norm ||w||Zk = (Σf=1 ||WillH*(βε))1/2 In particular, we write
Zε° = (L2(Ωε))m as Zε simply. The inner-product in Zε is denoted by (M, V)ZE =

Σ?Lι ί Ωe

ui(χ)vi(χ) dx. Aε and exp { — Aεt} denote a closed operator — ε~θ DΛ in
Zε with the domain £&(Ae) = {u e Z2\du/dn = 0 on δΩε} and the Co-semigroup
in Zε generated by — Aε9 respectively.

Hereafter we modify / to / by multiplying a suitable C°° -cut-off function
such that

(i) f(u) = f(u) for UGv and f(u) = 0 for u e V = {u e /T|-l < ut <

(ii) there exists p > 0 such that |/(u)|, IΛ(n)| < p for u e /?m, where fu(u)
means the first derivative of /;

(iii) |/(ιι(1))-/(ιι(2))|^pmax{|ιι(1)-ιι(2)|,4X} for u(1\ u(2) 6 Rm and it
holds for fu(u) in place of /(M).

Using the above notation, we may write (2.1) with conditions (i) ~ (iii) as

an abstract form

{ du
— = -Aεu+f(u)9 ί>0,
A

ιι(0) = MO e l/^ ,

where ί/x, = {M e Z,1 n (L°°(ί2ε))m|M e V and ||w||zι < K'}. Here we note that the

existence and uniqueness of solutions of (2.2)ε u(t) e C1([0, oo), Z*)nί&(Aε) is
proved in a standard manner (c.f. D. Henry [11]).

In this paper, we are concerned with (2.2)e and simply write / as / through

the rest of this paper.
We first give some results with respect to the family of the domains Ωε

which is proposed by Hale and Vegas [10]. Let λ(k\ ωε

fc) be the /c-th eigen-
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value of — A in Ωε with Neumann boundary condition and the corresponding
normalized eigenfunction, respectively. It is well known that 0 = λ^ < λ(2) <
3(3) < . ..
Λε Ss

PROPOSITION 2.1 (Hale and Vegas [10], [21]).
(1) λ(2) is continuous in ε and there exists yl > 0 such that λ(2} <y^ε for

small ε > 0.
(2) There exists γ3 > 0 such that λ(

ε

3) > y3 for small ε > 0.
(3) !|ω<2>||L2(Re) = Oίε1/2), ||ω<2> - ω<0

2>||c2(βo) = O(ε^). Here Ω0 = flfr u Ω«
and

in

Now we consider the asymptotic behavior of solutions of (2.2)ε. Let Qε be
the projection from Zε into (span {ωε

υ, ω(2}})m and Pε = Id — Qε

9 where /d is
the identity on Zε. For u = (ul9..., um) e Zε and ω e L2(ί2ε), <w, ω>Ze means
'(("i.ω^j,...,^^)^^) and for Y = (yl9 y2) e R2m, Ψε = (ω<1§>, ωε

2)) 6
(L2(ί2ε))2, y iP6 e Zε does yιωε

υ -f y2o}(2). Using the above notations, we note
that Qε is represented by Qεu = 7 Ψε, where 7 = (y l 9 y2) and y( = <M, ω °̂>z

PROPOSITION 2.2. For t > 0, ί/ie fallowings hold:

(1) ||exp {-M^Φllz. ̂  exp {-^ d^ί j ||φ||z§ /or φ ε Zε;
I ε J

(2)

some α0 > 0;

(3) llexpί-X.ίJP φ l l z i ^ e x p - ^ ί l l P ^ H z i for φ e Z,1,

LEMMA 2.3. Γ/iere exisίs K! = K^K', K)>0 such that if UQ e Όκ>, then
u(t, -)eUKl for all t > 0, where u(t, •) is the solution of (2.2)ε.

PROOF. Since V is a positively invariant region of (2.2)ε, we have

(2.4) \yt(t)\ < ||ιι(ί)||z/ ||ω«||L2(0ι) < K^Ω^ (i = 1, 2)
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by Schwartz's inequality, where yt(t) = <w(ί), ω<°>Ze. The solution of (2.2)ε can
be represented by the following integral equation:

(2.5). u(t) = exp {-Aεt}u0 + | exp {-Aε(t - s)}f(u(s)) ds for t > 0
Jo

Operating Pε on both sides of (2.5)ε, we have from (2) and (3) of Proposition

2.2,

exp -

-Aεt}P*u0\\z> + Γ ||exp {-Aε(t - s)}Pf(u(s))\\zi ds
Jo

+ αo£- f ̂  ̂ f^ ~Jo \l ~ s)

£o|)Wε*/2

Jo

Thus it follows from the estimate of (2.4) that

NOIIzί < IIQMOIk + ll^Wllzί

< lyiWIIIω^llHi^ + \y2(t)\ ||ωp

< [6K + α0P«/73)
1/2£o] x (m|βεo|)

1/2 + X' = K x . Q.E.D.

Hereafter, we fix sufficiently large constant K' as well as K and do not
write explicitly the dependency on constants K, K' and K^. For example, we

denote Uκ, simply by U.
The following result can be found in Vegas [21], which is useful in

obtaining some estimates of asymptotic behavior of solutions of (2.2)ε.

LEMMA 2.4 (Vegas [21]). Let gεeZε and g0 e (span {ω(

0

υ, ω(

0

2)})m, where

ω(Q} = |ί20|~
1/2 and ω(

0

2) has been already defined in Proposition 2.1. Then

\\Pε9s\\ze < Λf^llflJz. + 2||Λ - 00llz0 + H

where Z0 = (L2(Ω0))m with the norm \\-\\ Zo and M^ is a positive constant
independent of small ε > 0.

Now we can write (2.2)ε as follows:
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'dy,
dt

= - Dy2 + <J(Y Ψε + ΰ),

= y°2

(2.6b).

where yt(t) = <u(t), ω<[>\, y? = <u0,ω?yZt (i = 1, 2) and F(ί) = (^(0, y2(t)\
ΰ(t) = PεH(t) Note that Y(t) Ψε = Q°u(t).

Next lemma is proved in the similar manner to Morita [20].

LEMMA 2.5. There exist εί > 0, t0 > 0 and c > 0 suc/i ί/iαt /or any
ε ε (0, εj, ||PεM(t)||Zιι < cε(β+1)/2 for any t > t0 and any u0 e U, where u(t) is the
solution of (2.2),, or (2.6)ε.

PROOF. From the variational characterization we have

(2.7) ||« HI, < 1. for « e

where /Iε

1/2ΰ means (Aε\P,z)
1/2ΰ.

From the equation (2.6b)ε and the estimate (2.7), we have

I. + (Aeΰ(t),

so that

\\Pf(Ύ Ψt)\\z, + Γ
Jo

< 2{||Pε/(y

\\pγ(γ ΨE +

F. + τ«)ΰ||z, dτ
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So it follows from Proposition 2.1 and Lemma 2.4 that

ll^/(r W\\z. ̂  Λί^ll/lY ψt)\\Zι + 2\\f(Y Ψ ε ) - f ( Y Ψ0)\\Zΰ

+ \\f(Y fe)W>r

< c'ε112

for some positive constant c' independent of ε, where Ψ0 = (ω(Q\ ω^2)) and

Y Ψ0 = yίa#> + y2ω<o2) for Y = (yίt y2) e R2m. Thus we have

and therefore

Mε

1/2ΰ(ί)lll ^expί-CMJε*- 2pV/y3έίJί}||A1/2ϊϊo||I + cε
(2.8)

for some positive constant c and c' and any t > t0 where ί0 =

—-—-log ε>, because δε = y^djεθ — 2p2εθ/y3d^ > 0 for sufficiently

small ε e(0, εj and

C") Q\ II /11/2ϊ71| 2 -̂
V^ ^J II A; W| |z e ^ ~fl

ε

where d* = max { r f j , . . . , dm}. On the other hand,

(2.10) p . ,
ε ε

So we have from (2.7) and (2.10)

(2.11) \\ΰ(t)\\zi <c^ΘI2\\Al'2ΰ(f)\\Zε

for some c^ > 0. The proof of this Lemma is complete with help of (2.8) and

(2.11). Q.E.D.

§3. Existence and attractivity of an invariant manifold

In this section, by using the standard centre manifold theory (for instance,

see J. Carr [1]) we construct a global invariant manifold. The main argument

owes to Morita [20].

We define a function set Vε:

0 < /S0ε
<29+1)/2,

(3.1)
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where

\\h(Y)\\z} ,

J - h(Y2)\\zί

and β0, /?! are positive constants determined later. It is easy to see that Vε is

complete.
We define an operator &ε on Vε:

(3.2)
/*o'.).{

J -oo

exp

for h 6 V* and Y0 e R2m, where Y = Y(t; Y09 h) = (yι(t; 70, h\ y2(t; Y0, h)) is the
solution of the following equation:

(3.3)

If Λ* is a fixed point of ^ε, it is obvious that Y*(t) Ψε + h*(Y*(t)) is a
solution of (2.5)ε, where y*(ί) = Y(t; Y0, h*) for any y0 e R2m. That is,

Jt(h*) = {u = Y Ψε + hΐ(Y)\YeR2m] gives a global invariant manifold of

(2 6)β.
The following two propositions can be easily proved by Proposition 2.1

and GronwalΓs inequality.

PROPOSITION 3.1. There exists c0 > 0 such that

\\Y . ψ V. ψ II <- x, p l / 2 ι y ι
II * ^ ~~ J - ^ l I — C ε I 1 !

PROPOSITION 3.2. (1) Lei y(ί) - y(ί; y0, Λ) and F(ί) - Y(ί; F0, h) /or

y0, y0 e /?2m. TΛen

λ(2)

- y(t)i - y0i

for t < 0.
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(2) Let y(ί)(t) = Y(t; Y0, /j(i)) for any Y0 e R2m and Jι(i> e Vε (i = 1, 2). Then

U exp - p +

for t < 0.

LEMMA 3.3. TTiere exisi j?0, β1 > 0, and ε2 > 0 (ε2 < ει) such that for any

ε e (0, ε2)» ̂ ε ϊ5 a contraction on Vε with respect to ||| | l l e ,oo

PROOF. We first show that $ε maps Vε into itself for appropriate β0, β±.

For any h e Vε it follows from Lemma 2.4 that

zi < Γ αoε^C-
J-c»

exp φs \\P*f(Y
J

and

\\P*f(Y- Ψε + h(Y))\\Ze = \\P*f(Y- Ψε) + Γ P%(Y Ψε + τh(Y))
Jo

' ψε)\\Ze + 2||/(r !P.) -

for some positive constant cί > 0. So we have

-̂
/ π /2

— nr ^ -4- Λ/? PβW 1— αolcι •+• PPoε l — ~r~ \
(2β+l)/2 ^ o p(2β+l)/2o p(Poε

where ε2 and j80 are constants satisfying

(3.4)

l/2

β0>

Similarly, defining 7(ί) = 7(ί; Y09 h) and 7(ί) = 7(ί; 70,/i) for different initial

values Y0 and 70, we obtain by Proposition 3.1 and Lemma 2.4
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ί < Γ
J — a

x ||Pε/(Y Ψt + h(Y)) - Pε/(Y Ψe

0

x ||P£{/(Γ *i + h(Y))-f(Y Ψt + h(Y))\\}z,

+ p\\h(Y)-h(Ϋ)\\zίlds

and

I|P£{/(Y ψe + h(Y))-f(γ ψc + fc(y))}Hz.

Γ1 - -" fu(Y Ψe + h(Y) + τ((Y- Y) Ψε)o((y- y) ψe)dτ
Jo

(3.5) i + 2c0)pε1/2 \Y-Y\+2 Γ (f.(Y Ψ.
Jo

τ((Y-Y) Ψe)

o ((7 - Y) Ψe) - fu(Y Ψ0 + τ((Y - Y) Ψ0) o ((Y - y) Ψ0)} dτ

<(c2 + 2pβ0ε
β)εll2\Y-Ϋ\

for some positive constant c2 > 0. Then it follows that

||(Λ Λ)(y0) -

£ P α
J —oo

exp {(γ3/εβ) d,s} (c2 + 2pβ0ε
β + Y-Ϋ\ds

α0(c2 + 2pβ0ε
θ

2)(π/γ)ίl2

x (π/[y3d, - (ρεβ

Let β0> βt and ε2 be the constants satisfying

(3.6)

Then we have

Since y2(t; Y0, h)==Q for y0 = (y°, 0) holds from the uniqueness of solution of
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(3.3), we have (&εh)(Y0) = 0 for Y0 = (y°l9 0), which implies that 0tε maps Vε into
itself.

In the rest we show that $ε is a contraction mapping on Vε. Defining
y«(ί) = Y(ί; y0, Λ«) for any Λ(ί) e Vε (ί = 1, 2), we have

ll(Λ Λ(2))(y0) - (ΛβΛ(1))(r0)llzί

ε^-sf1/2 exp {(y3/ε*) d+s] l\\Pε{f(Y(1\s) Ψε
J —

t .'] ds

and similarly to (3.5),

Ψ

So,

1/2 / \ l/2 η

p(20+l)/2 , Λ f _ _ _ _ | 00 |||1|(2)o ~r VΛQ p i —-— i o J I M ' '

Taking /?0, j?! and sufficiently small ε2 such that

i1/2 / TΓ X1/2

(3.7) = 29+1)/2

we have

for any ε e (0, ε2]> as required. Q.E.D.

From this Lemma, we know that $ε has an unique fixed point on Vε and
we express it by hf .

THEOREM 3.4. There exists ε2 > 0 such that for any εe(0, ε2), there
exists a 2m-dίmensional Lipschitz continuous manifold represented by Mz =
{Y'Ψε + hf(Y)\YeR2m}nU, which is invariant under the semiflow S(t)u0 =
u(t; MO), where u(t; u0) is the solution of (2.2)ε with UQ e U. h* satisfies
l l l ^ l l k o o = 0(ε<2β+1)/2), |||/ι*|||6,L = 0(ε(2θ+1)/2) and h*(yl9Q) = 0. Also, there
exist ε3 > 0 (ε3 < ε2) and N > 0 such that for any ε e (0, ε3), there is a
v = v(ε) >Q so that for any solution u(t) e U of (2.2)ε, there exists Ϋ0 e R2m

satisfying
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\\u(t) - (f (ί) ΨE + hf(Ϋ(t)))\\zί ^ Ne~vt fort>0,

where Ϋ(t) = Y(t; Y0, Λ*).

PROOF. By Lemma 3.3, the proof of the former half is obvious. We
now prove the attractivity of the manifold. Writing u(t) = Y(t) - Ψε + ΰ(t) =
y1(ί)ωί1) + y2(t)ω(2) + ΰ(t\ we see

(3.8)

dt

λ(2}

<f(Y

(t) = exp {-Att}ΰ0 + Γ exp{-Λε(ί - s)}Pf(Y- Ψe + ΰ)ds.
Jo

Here, we note that the solution of (2.2)£ on the manifold Jίe is represented by
f (ί) Ψε + h*(Ϋ(t)), where f(ί) = Y(t; Ϋ0, h*) for y0 e R2m. Denning f(ί) - Y(t)

and Λ*(C + y) - ΰ(ί) by C = (Ci, C2) = ^(0 - !"(«) and H*(t; C), respectively, we
have

no-

_A^>

y0 - J o ,

:) = exp{-.

y) - f(γ(3.9)

and

(3.10)

We consider the existence of ζ(t) instead of Ϋ(t). By Lemma 2.5, we can
assume ||M0||Zeι < cε(β+1)/2. We shall show that there exists a solution ζ(ί) of
(3.9) such that \ζ(t)\ < Nίe~vt for some positive constants N1 and v.

We define a set Φ\ by

ΓJo
; f0 - y0) + exp {-X.(t - s)}

Φ*q = {ζ = ( ζ l 9 C2) e C([0, co); R2m)\ \ (\ζ(t)\e«)

where v and q are constants to be determined later. We also define an
operator <pε on Φε

q such that φε(ζ)(t) = ((φiζ)(t)9(φX)(t))e C([0, oo); R2m) for
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C(0 = (Cι(0, ί2(0)6<P{, where

(3.11)

«)« --/;</<
-Π-Jί I

Λ<2)

~fl-j

εβ

Y)) - f ( Y - Ψε + M), ds .

It is obvious that the fixed point of φε is a solution of (3.9). So that it
sufficies to show that φε is a contraction on Φ^ for appropriate q > 0.

Similarly to the procedure of (3.5), we have

(3.12) r exp - d . ( t - s)

+ p\\H*(s;ζ)\\zίlds

for some positive constant c3 > 0. Choosing v and ε3 satisfying

(3.13)

for 0 < ε < ε3, we have

v <

c)ε(β+1>/2

+ αoPεβ/2 f ' (t - sΓ1/2 exp j-f^ί - v)(t - s)j
Jo ( V ε / J

x eM||ίf*(s; C||z, ds .

Let χ = sup,>0 { ||H*(t; 0||z.e
v'}. If ε3 satisfies

(3.14) 1 - αopίπ/Cyjd. - vε'])1'2 > 0 ,

we have

where

π/[y3^ - vε"])1/2ε0n\l/2 r e
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which implies

l|H*(ί; Ollzί < *ι(«)β('+1)/V for ί > 0 .

Let ε3 be sufficiently small such that there exist constants v = v(ε), q = q(ε)

satisfying (3.13) and

(3.15) v>^* + p, q>
v - (d*λ(

ε

2)/εθ + p)

for any ε e (0, ε3]. In fact, we can take such constants v(ε) and q(ε) because

λ(2) <yιS and the coefficient of q in the right side of the second inequality of

(3.15) is less than 1 if ε3 is sufficiently small. Thus, it follows that

Γ°° (Y λ(2)

<(d*^
Jί (Λ ε

ί°
+ pqε^'2 + px

vt ^ ,

for ζeΦfj. So we find that φε maps Φε into itself.

We shall show that φε is contractive on Φε

q. Letting ζ(1), ζ(2) E Φε and
calculating (3.11) similarly to (3.5), we have

|(φεC(2))(ί) - (<pεC(1))(OI < Γ (^Vd* + c.
Jί \ ε

Λoo /^(2)

for some positive constant c4, which implies

- C ( 1 )lkoo

Therefore if ε3 satisfies

(3.16) c4ε3

(0+1)/2<p,

φε is a contraction and the proof of Theorem 3.4 is complete. Q.E.D.

REMARK 3.1. By this Theorem, we know that | Ϋ(t)\ < Kί for ί > ί0, where

ί0 is determined by Lemma 2.5.
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REMARK 3.2. We note that hf is continuous in sufficiently small ε > 0,
weakly in Z/ and strongly in Zε in the sense of [10], by combining Lemma 3.5
and Corollary 3.9 in Hale and Vegas [10] and the smooth dependency of the
fixed point of contraction mapping on parameters.

§4. ODEs on the invariant manifold

In this section we rewrite the ordinary differential equation (3.3) on the
manifold in another form and consider the dependency of θ on the asymptotic
behavior of solutions of (2.2)ε.

We have known that Ϋ(t) = Y(ί; 70, ft*) for f0 e R2m is the solution of (2.2)ε

on the invariant manifold. Let

(4.1) v = YJ~

where

= \Ω I1/2

1 ε l V ^ (α(l-α))1

Then we find that υ = (υl9 v2) (vt e Rm) satisfies the following equation:

dv λ(2) I - ώ(l}

1 β «n/*, .. \ i / f(.* Ml) i .. A(2) i Z|*C|i\>| ^ε

(4.2)
dυ2

where

l - v2)

and Λ*(ι?) = Λε*(|βε|
1/2((l - α)^! + αι;2), |ί2ε|

1/2(α(l - α))1/^-!;! + ι>2)). Here we

note that

infl f

and Λ*(ι;) = 0 when v± = v2. Therefore we obtain

} 42)

'° α|Ωol
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Let

G{(V) = \f(VίΦεl) + V2Φε2) + Λ?(l?)), 7T~
\ I*

and

+ *?(ι>)λ

Here we define the following norms:

\G\K,x = sup{\G(v)\;\v\<K},

m and |̂ | < X ( = 1, 2)

for G:R2m^Rm. Then we have the following estimates by Proposition 2.1
and Lemma 2.4:

where K2 is the bound of υ ((4.1)) induced by the bound K^ of Ϋ. So (4.1) can
be written as follows:

dv1

(4.6).

First, we state the convergence of λ(2}/ε as ε 10, which is the key theorem

in analysing (4.6)ε. To do it, Rε is assumed to be Rε = {(x1? x 2 ) l l χ ι l ^ 1»
|x2 | < εβ(x1)}9 where the function β(x^) is positive and even from [ —1, 1] into
R with β(-1) = 0(1) > 0(0) > 0, and β e C°°(-1, 1) increasing in [0, 1] and
dkβ(x1)/dxk

ί -» oo as xi 11 for k > 1.

THEOREM 4.1.

τ = .

7" " α(l - α) '

f i 1 I-1

-Ϊ53*1'}

The proof will be based on the following inequality which is given by Hale
and Vegas [10] under some hypothesis on Ω0.
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LEMMA 4.2. There exists a constant c > 0 independent of ε such that

• \\U\\HHAJ

for any u e C2(Ωε) satisfying du/dn = 0 on dΩε. Here, Aε = Λε u Λ* and
Λ^ c ΩQ (Λf c= ΩQ ) is the symmetric region of Rε with respect to xί = — 1
(*! = 1). (See Figure 1.)

PROOF OF THEOREM 4.1. We will show that

λ*2} Γ
ε J_!

where φ(x±) is the solution of the boundary value problem:

(4.8)

From the variational characterization, we know that

= inf

Defining $(*ι,

ί.
I W 2 dX!

L JΩ£

dx?

w e H^β^w^O, wdx 1

Jβe

ι,x2)= -< U>Ό
[ωj

1 f ~
and φ(xι, x2) = <A(xι, ^2) — TTTT Ψ(xι,x2)dx1 dx2, then we know that

\Ωε\ JΩe

φ e H
1
(Ω

ε
) and φ dx

ί
 dx

2
 = 0. So we have

Jβ
e

Γ Γ 1

M2) i \rφ\2dXldx2 2 β(φ')2dx,
AB ^ L J Ωε _ J -1

ε ε
Γ 2 ( Γ 1 2 1 2 i f 1 ΓV

Jβe

 Xl X2 \ j-i Xl i f i . ι ε IJ-i X l j /
which implies that

(2) f i
(4.9) lim supε^0 — < 2 j?(^)2 dx! .

ε J-i
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It remains to show

(2) Λ i

(4.10) lim infε^0 -L- > 2 β(φ')2 dx, .
ε J-i

To this end, let V t ( x l 9 z ) = a)™(xl9ez)9 where (xl9 z) e R, = {(xl9 z)\\x,\ < 1,
\z\ < β(xι)}. Then by Lemma 4.2 we have

f Γy.ί + (|£Y+l
JitΛ \dxJ ε

(4.11) <a<2) i V^dx.dz
JR,

+ - f [(ω^
6 JΛ.

In view of this together with Proposition 2.1 (3) we know that {Vε} is uniformly
bounded in H1(R1). So we can find a subsequence {επ} with επ|0, and
a function V0eHί(R1) such that VBn-+VQ weakly in H1(Rί) and strongly in
H3/4(Rl) ^+ L2(Ri) by Sobolev imbedding theorem, and

Γ fdV\2 Γ fdV V
lim infε_0 \—^}dxίdz = lim^^ —^ rfXi dz .

jRt \Vχl/ JR1 \tf*l/

The estimate (4.11) implies that VQ is independent of z. Let

* = {w e Hl(- 1, 1)| w(- 1) = ωj, w(l) = ω£} .

Now we show that V0€X. In fact, since V0eHl(Rl)9 we know immediately
that VQ e H1(— 1, 1). To find the boundary value of K0, we recall Proposition
2.1 (3) which implies that

uniformly on ^.R! ndΩ0. However from the continuity of the boundary trace
mapping H^R,) -» H^dRJ, it follows that

Thus, K0(— 1) = ^o and F0(l) = ω$, and this proves that V0 e X. Observe that

λί 2 ) =ί IPω^pdx^x^ i IPω^l2^!^
Jβe J^e

Γ Γ /^.V i^Vlj ^ Γ f s v λ 2 . Λ= \ \ε\^ +- ̂  Uxι^> ε —^ ) dx,dz
JRίl \SxJ ε\dzj J JR l V^i/
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and that φ is the minimizer of the functional J: X -> R defined by

= | β(xι)(*'(xι))2 dxi for we X.
J-i

It follows that

λ(2)

lim inζ^o -1- > lim infε

f (dV\2

I — - 1 dx^
J*! V>*1/

dz

2 f 1 ^(Fo')2^!^! Γ β(φ')2dXί.
J-i J-i

This gives (4.10), which along with (4.9) implies (4.7) and completes the proof of
Theorem 4.1. Q.E.D.

Keeping Theorem 4.1 in mind, we define the reduced equations of (4.6)ε in
the limit ε J, 0:

(i) (θ > 1)
•

dϋ

~dt

vi = v2 = v;

(ii) (0 = 1)

(4.12)2

(iii) (0 < θ < 1)

(4.12)3

dVi

~dt

We now discuss the relation between (4.6)ε with sufficiently small ε and its
reduced equations (εj,0), (4.12).

By using Theorem 4.1, the following result can be easily verified.
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LEMMA 4.3. Let θ > 1. For any σ > 0 there exist ε* > 0 and δ > 0 such
that for any ε e (0, ε*), there exists v(t) which satisfies

and dv/dt = f ( v ) + g(t) with \g(t)\ < ct exp {-σ^} for t > 0 and some cl9 σ1 > 0,
where (v^t), v2(t)) is a bounded solution of (4.6)ε.

We thus find that the reduced equation (4.12)! plays a role of the limiting
equation of (4.6)ε when θ > 1.

Combining Theorem 3.4, (4.1) and Lemma 4.3, we get the following theorem
corresponding to the result of Con way, Hoff and Smoller [5].

THEOREM 4.4. Let θ > 1. There exist ε4 > 0 (ε4 < ε3) and M >0 so that
for any εe(0, ε4) there exists K = τc(ε) = O(ε1~θ) > 0 such that if u(t) is any
solution of (2.2)ε, then

\\u(t)-v(t)\\z0<Me-κt

holds for t > 0 and some v(t) which satisfies dv/dt = f ( v ) + g(t) with

10(01 ^ M! exp { — κ^t} for t > 0 and some M1 and κ t > 0.

The above theorem indicates that when θ > 1 and ε is sufficiently small,
there are no stable spatially inhomogeneous solution of (2.2)ε.

We next consider the cases when 0 < θ < 1 and θ = 1. Since (4.6)ε is
represented as

= f(v2)

(4.13)e

for 0 < θ < 1 and

(4.14)ε

for θ = 1 as εj,0, general theories of ODEs state that the orbits of (4.12)3 and
(4.12)2 which approaches the asymptotically stable attractor is close to that
of (4.13)ε and (4.14)ε uniformly in ί, respectively. So, generically we can say
that (4.12)3 and (4.12)2 is the limiting equations of (4.13)ε and (4.14)ε as ε|0,
respectively. Thus, we have arrived at the reduced equations of (4.6)ε in the

limit ε 10.
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The next problem is the study of the transient as well as asymptotic
behaviors of solutions of (2.2)ε by solving (4.12). The particularly interesting
case is for 0=1, because it includes three parameters τ, α and D. So, the
dynamics of solutions of (4.6)ε or (2.2)f generally depend on these parameters.
From the global bifurcation view point, this will be discussed in a forthcoming
paper [19].
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