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1. Introduction

Let be given a finite set U and non-negative integers /(x) for all x 6 U.
Then, by taking the sum of products of them, we have an integer

(i) spx^HΣ^ΓLeΛ/M
for each subfamily si c= 2U — {0}, especially, for any covering si of L7; and we
can consider the following

PROBLEM. For given 17, / as above and a covering & of 17, find effectively
si in such coverings si' that 38 is a refinement of Λ/' so that the function SPr in
(1) takes the minimum value at si among such coverings si' (see Definition 2.3).

We call si in this problem an MSPD for <17, Λ,/> simply. Of course, an
MSPD exists and any MSPD can be found by calculating SP^-a/') for all

finitely many such si'\ but the number of si' may increase rapidly as |17|
increases. (\X\ denotes the number of elements in a finite set X.)

Thus, the purpose of this paper is to establish an effective method of

finding an MSPD of special type, which is applicable even when |17| may be
large.

Our motivation is in the problem on statistical database designs stated in
§5. (For databases, cf. Codd [3-5] and Smith-Smith [23], and for statistical

databases, cf. Shoshani [22] and several papers in the reference.)
Let jR be a given collection of statistical records, that is, a finite subset of

the product D = Π^ Dt of domains Dt of z-th field. Then, an aggregation
function 5 can be specified by the category fields X(S), the summary fields 7(S)
and the summarizing operators #,• over Dj given for each summary field j in
7(S); and S gives us the summary table S(R) corresponding to X(S), Y(S) and
0/s. Moreover, for any finite set £f of aggregation functions, we have

(2) NRec(50 = Σse*|S(K)|,

the total number of records of {S(R): S e £f}. Thus we have the following

PROBLEM. Let R be a given collection of statistical records. Then, for a

finite set of summary tables {S0CR): S0 e «?o} to be derived from the database,
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find a finite set of base tables (S(R): S e &*} to be organized as the database

such that each required table S0(R) is derivable from some of them and that the
total number NRec (ίf) of records in (2) is minimum among such sets of base
tables (see Definition 5.7).

Now, by using the projection prf of D = U^=1 Dt onto the i-th factor Dh put

/(i) = lpr,(Λ)l (ie {!,..., N}).

Then, for NRec in (2) and SPf in (1), we see the equality

NRec(^) = SPf(s/(&)) (s*(&) = (X(S): S e

under some conditions on &*; and we can prove that a solution £f in the
second problem for <9o with such conditions is obtained by a simple way

from an MSPD j* for <C7 = <#>, Λ = s/(£f0)9 /|C/> in the first problem (see
Theorem 5.4). «j/> = \J {A: A e jtf} for any family si of sets.)

Besides §5 and the final note in §6, we are concerned with the first
problem.

By removing some trivial cases noticed in § 2, we assume from § 3 on that
(3) any set in ̂  does not contain another set in $, and /(x) ̂  2 for x e U.

Then, we can prove that any MSPD for <[/, &, /> is of the form

(4) ^β = { <# > : * e β} for some β e Part (Λ) ,

where Part (β) is the set of all partitions of 0& (see Theorem 3.2). Thus any
MSPD can be found by calculating SPf(sfβ) for jSePart(^). But | Part I
increases still rapidly as \3i\ increases, and so does \{SPf(s/β): β E Part i

which is seen to be equal to the number p(n) of partitions of the integer n = \Λ\
in some cases (see Propositions 3.3 and 3.4). (For p(n\ cf. [9] and [19].)

Therefore, it is desirable to find an MSPD of special type. For this

purpose, we consider an indecomposable family # characterized by the cond-
ition that
(I) any elements α, b in <#> is contained in some C e # (see Proposition 4.2).
Then, we can prove in §§ 3-4 the following main result.

THEOREM. Under the assumption (3), there exists an MSPD for <[/,#,/>
in the first problem which is of the form jtfβ given in (4) for a partition β of &
satisfying the following conditions (5)-(7):

(5) Each <# e β is indecomposable (Theorem 3.6).
(6) For any distinct % and <€' in β, if ^ c # and <X> c <«">, then
<$ - j/> = <^> ana <β - jtf is indecomposable (Theorem 3.8).

(7) SPf({<&>}) < SPfffi holds for each % e β with \V\ ^ 3 (Theorem 4.13).
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Moreover, we introduce in §4 and §6 some notions on subfamilies of $

which give us necessary conditions for ̂  to be indecomposable (see Propositions

4.3 and 6.1); and we give methods of finding all such subfamilies (see Theorem
4.8, Corollaries 4.9-4.12 and Corollary 6.3). Thus we can find all indecom-

posable subfamilies of $ from #'s satisfying these necessary conditions by

investigating the above condition (I). Then we find an MSPD for <Ϊ7, J1, />
by the above theorem. We give an algorithm to find an MSPD in §6 by this

way, which is effective when \U\ ̂  20 and \βt\^ 200 and which is applicable for

statistical database designs; and an application is announced in [15].

2. Definition of MSPD

In this section, the basic consideration on some concepts related to solu-
tions of the minimum sum of products decomposition (MSPD) problem will be

treated. A simple example will be also given.

DEFINITION 2.1. Let be given

1) a finite non-empty set 17, and

2) a function / defined on U with values in non-negative integers.

Then, for any family si of distinct non-empty subsets of £7, i.e., a subset $0 of

f(2U — {0}, we define the sum of products SPf(jtf) to be the non-negative integer

DEFINITION 2.2. For any subsets si and 3d of 2U — {0}, we say that & is

a refinement of si and denote it by si > &, if for any B e 0&, there exists A e si

such that A z> B. Also, put <j/> = \J {A: A e $4}, where <0> = 0.

It is clear that si > */, and si > & and @ > % imply s4 > <#; but si > &

and ^ > si do not imply si = & in general. Also, it is clear that si > 38

implies <X>

DEFINITION 2.3. Let be given U and / as in Definition 2.1 and

3) a subset $ of 2U — {0} satisfying <^> = 17, i.e., a covering J* of 17.

Then, we consider the problem to find si satisfying the following conditions 4)

and 5):
4) si is a subset of 2U - {0} such that s4 > @.

5) SPf(sί) g SP/j/') for any subset j/' of 2U - {0} with s/f > Λ.
We call in the paper such si a solution of minimum sum of products decom-

position problem for U9 f and J*, or simply, an MSPD for <17, ̂ , />.

In the first place, we note trivial cases.
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PROPOSITION 2.1. (i) If f(x) = 0 for some x e 17, then any MSPD s/ for
<C7, #,/> is trivial, that is, SPf(jtf) = 0.

(ii) When f is the constant map with value 1, jtf is an MSPD for <[/, ̂ , />
ι/ and only if jsf = {U}9 that is, SPf(s/) = 1.

PROOF, (i) Put ̂ 0 = {B u {*}: £ e Λ}. Then ^0 > ̂ , and SP/^o) = 0
by the assumption. Hence 0 = SPf(Λ0) ^ SPf(s/) ^ 0 by 5) of Definition 2.3.
Thus we see (i).

(ii) In this case, SPf(sf) is equal to the number \s/\ of sets in ««/ by
definition. Hence we see (ii), because {17} > &.

We give a simple example to understand the problem.

EXAMPLE 2.1. Let U = {ul9u29u39u4}9 Bί = {ui9u29u4}9 B2 = {ul9u3}9

BI = {u2, u3}9 B4 = {ul9 u4}9 B5 = {u29 u39 u4}9 Λ = {Bί9 B29 B39 B49 B5}9 /(iij =
3, f(u2) = f(u3) = 2, and f(u4) = 1, then we can illustrate <[/, @9 /> as follows:
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The following two propositions show that we can derive an MSPD for
<17, a9 /> from that for simpler <l/', Jf', /'>.

PROPOSITION 2.2. Assume that B e & is contained in some other B' e 38.
Then */ is an MSPD for <17, a, /> if and only if so is it for <£/,#- {B}, />.

PROOF. By assumption, we see easily that < J* — {B} > = < Λ> = (7, and
Λ/ > ̂  is equivalent to d > 3& — {B}. Thus the proposition holds by the
definition.

PROPOSITION 2.3. For U and f in Definition 2.1, assume that /-1(0) = 0
and /-1(1) Φ U9 and consider

υf=U-V9 V = f ~ 1 ( l ) and f'=f\U'.

Also, put si - V = {A - V: A 6 ̂ } - {0} for d c 2U - {0}9 and ̂ 'uV =
{A' u V: A e j/'} for s/' c 2υ> - {0}.
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(i) Ifj/ is an MSPD for <17, J>, />, then so is j/ - V for <l/', Λ - V, /'>.
(ii) Conversely, if si' is an MSPD for <t/', J> - 7, /'>, ίΛen so is j*' u 7

PROOF. The proposition is trivial if V = 0. Therefore, we assume that
V = f~l(\) Φ 0, and can take a^ e/~1(l) and a2 φf~l(\) by assumption.

(i) Take any MSPD jj for <l/,Λ,/>. Then d - V > Λ - V since

s/> Λ.
Assume that A c V for some A e si. Take Al€s/ with Ai 9 α2, and put

Λ2 = A u Λ!. Then ΠxeA/(x) = 1 and ΠxeXι/(x) = ΠxeA2f(x). Therefore, for
<e = (d - {A, AJ) u {A2}9 we have

SP/(ίf) = SPyW) - 1 and * > j* > <% .

Since s/ is an MSPD for <17, Λ,/>, the latter implies SP/Oίf) ^ SP/ί^/) which
contradicts the former. Thus A — V φ 0 for any A ε jtf, which implies by the
definition that

SPf(j/) = SPr(s/ - V) .

Now take any jaΓ c 2U' - {0} with sf' >Ά—V. Then,

SPyίj/' u F) = SPj,^')

by the definition. Take any Be 38. If B a V, then B c A' u V for any 4' e j/'.
If β - K Φ 0, then B - K c ̂  for some A e ̂ r; hence B^A'vV.

Therefore s/' u 7 > @, and SPy '̂ u 7) ̂  SP^^j/) since j^ is an MSPD
for <17, J1,/). According to the above two equalities, this implies SPf,(jtf') ^
SPf,(j* - V). Thus j^ - V is a MSPD for <l/', Λ - K, /'>.

(ii) Assume that Λ/' is an MSPD for <[/', ̂  - F,/'>. Then j^' c 217' -
{0} and si' >3t —V. In the same manner as in the proof of (i), we can prove
that

u V) = SPr(s/') and j/' u F > ̂  .

Take any Λ/ c 217' - {0} with stf >@. Then j^ - 7 > Λ - 7 and

7) ̂  SPf(j*). Since ̂  is an MSPD for <l/', Λ - 7, /'>, we have

SP^CJ* - 7) ̂  SPy^J/') .

According to the equality and the inequality above, this implies

SPf(j/) ^ SPf(<tf' u 7) .

Thus stf' u 7 is an MSPD for <17, Λ, />.

Proposition 2.3 shows that we can derive an MSPD in Example 2.1 from
an MSPD for (I/', #',/'> illustrated as follows.
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Moreover, Proposition 2.2 implies that an MSPD for <!/',

in Figure 2.3 is also an MSPD for <l/', J",/'>.

B1 1 1

B2 1 1

B3 1 1

/ 3 2 2

Figure 2.3.

3. MSPD of special type

According to Propositions 2.1-2.3, we shall try hereafter to find an MSPD
for <£/, ^,/> under the following assumptions (Al) and (A2):

(Al) Each B e $ does not contain any B' e 2& - {B}.
(A2) f(x) ^ 2 for any element x of U.

In general, to find an MSPD for <(7, ^,/>, it is necessary to calculate
SPf(jtf) for all j/ > &. But the number of j/ may increase rapidly as \U\
increases. Thus, in this section, we study some sufficient conditions for jtf to
be an MSPD for <C7, ̂ ,/>.

DEFINITION 3.1. For any partition α of 0&, i.e., a covering α of ̂  consisting
of disjoint non-empty subsets of J ,̂ we define a covering <£/α of U = (&y by

e α} with s/Λ > @ .

Also, we denote by Part (β) the set of all partitions of ̂ .

LEMMA 3.1. Let be given U and f as in Definition 2.1 with (A.2) satisfied.
Then, for any stf a 2U — {0}, A e $0 and B a A with A Φ B φ 0, we have

{B}) < S
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PROOF. By assumption, we see that SP^Λ}) > SP^JB}) > 0. Hence,

SP/(j//) + SPf({A}) > SPfW) + SPf({B})

SPf(j*' u {B}) > SPf(s/') for s/' = s/

THEOREM 3.2. For <17, #,/> with (A 1-2) αftotrc, any MSPD is an element
of {s/Λ: a e Part I

PROOF. Assume that sf is an MSPD for <17, #,/>. Then, J* < jaf and
we can choose a function 0 of @t to Λ/ such that g(B) ID £ for any 5 e Jf.
Therefore, ?̂ is the union of disjoint subsets g~1(A) for A e sf, and we have the
partition

α = (g'l(A): Ae^}-{0}e Part (β) .

Since 0(5) => B for 5 e SI, we have <^~1(^1)> c A for any Λ e j*
Suppose that g~ί(A) Φ 0 and <^~1(A)> ^ ^4 for some 4 e «s/. Then,

Lemma 3.1 shows that

SP/(Λ//) < SP )̂ for j/' = (Λ/ - μ}) u «flf

Also, for any β e Λ, if g(B) = A, then 5 c ^"^A)); and if βf(B) ^ X, then
β c: g(B) e £# — {A}. Hence & < <$/', and the above inequality contradicts that
j/ is an MSPD for <£/, ̂ , />. In the same way, we have a contradiction if
g-*(A) = 0 by taking d1 = d - {A}.

Thus flΓ1^) ^ 0 and (^(Λ)) = >1 for any Aes/. Therefore, d = s/Λ

for α = (g~l(A): Ae^}e Part (Λ).

By Theorem 3.2, we can find an MSPD for <17, Λ,/> by calculating
SP/(Λ/) only for j* = Λ/β(α e Part (£)). But, we note that

I Part (0)\ and |{SP/«): α e Part (Λ)}|

(|^4 1 denotes the number of elements in a set A) increase rapidly as \SI\
increases, by Propositions 3.3 and 3.4 stated below.

PROPOSITION 3.3. Let \Λ\ = n and q(n, i) = |{α e Part (&): |α| = i}|. Then
we have

|Part(^)|=Σ?=1^(n,i), and

(i" - Σi-ϊ fiiCjqfr JW (n*i*2)'

Here, ί! = Π}=1 and ft = i\/j\(i - j)l
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PROOF. The first equality and q(n, 1) = 1 are clear.

For 1 ̂  j ^ i ̂  n, let φ, i, ) be the number of all cases in which we divide

n elements into ordered i groups such that the number of groups containing at
least one element is equal to j. Then, we see that

ί(n, ϊ, i) = ilq(n, i ) , £}=1 t(n, i, j) = ίn,

and t(n, i, 7) = iCjt(n, j, j ) , by the definition. Thus for n ̂  i ̂  2,

TABLE 3.1. The number of partitions of $

\»\ |Part(0)|

4 15

5 52

6 203

7 877

8 4140

9 21147

10 115975

EXAMPLE 3.1. There occurs ja/α = <$tfβ for distinct partitions α and β.

For example, if B^ = {bl9 b2}, B2 = {b3, ί>4}, B3 = {b2, ί?3}, B4 = {bl9 b4},

PROPOSITION 3.4. Let p(n) be the number of partitions of the positive

integer n = \<%\. Then, the inequality

holds when f(x) = m for any x e U and $ — {{x}: x e ΐ/}; and the equality

holds when m> n in addition.

PROOF. Let α and β be elements of Part (β\ We say that α is equivalent

to β if |α| = \β\ and there exists a one-to-one onto map h of α to β such that

|fc(j2/)| = l fl/l for any j/ 6 α. When α is equivalent to β, we denote by α ~ β.

Then, ~ is an equivalence relation on Part (β\ and the number |Part (β)l~\ of

all equivalence classes is known to be p(n) for n = \&\.

Now, let f(x) = m for any x e U and & = {{x}: x e U}. Then

SP/(Λ/β) = Σ^6α m1^1 for any α e Part (Λ) ,
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by the definition of SPf. Hence SPf(jfΛ) = SPf(*/ft) if α ~ β, which implies the
desired inequality.

Consider the case m>n. Let (α, α l 9 ..., αλ) and (b, &19 ..., bt) be non-
increasing sequences of positive integers such that

a > b and a + ]Γ*=1 αf = b + £[=1 bt = n' ^n .

Then,

™6 + ΣU mbι ^ n/mί> < m*+1 ^ m" + Σ*=ι ™ai '
since ri ^ n < m. Therefore, we see that SP^j/J + SPf(s/β) if α is not equiv-
alent to β, which implies the desired equality.

To determine the number p(n) of partitions of a positive integer n is an old
problem in the field of analytic number theory; and there are many researches
on p(n). It is familiar that

log p(n) ~ 77(2n/3)1/2

by Hardy and Ramanujan [9]; and various properties of p(ri) are investigated in
detail by Rademacher [19] and so on.

By Propositions 3.3 and 3.4, it is difficult in general to find an MSPD for
<C7, J>, /> by calculating SPf(^Λ) for α e Part (J>). Therefore, in the rest of this
section, we shall try to find an MSPD of special type.

DEFINITION 3.2. Let U be a finite set. We say that a subset $ί of
2U — {0} is indecomposable if there holds

or <X - <T> = <^> for any * c j/

«0> = 0), and that j/ is decomposable if it is not indecomposable.
Moreover, we say that a partition α e Part (̂ ) is indecomposable if so is

each j/ e α; and we consider the subset

IP (̂ ) = {α: α is an indecomposable partition of }̂ c= Part (β) .

The following proposition is clear by the definition and (Al) for J*.

PROPOSITION 3.5. // \sf\ = 1, then stf is indecomposable. If s$ c
= 2, then stf is decomposable. Therefore, if OLE IP (β\ then

|.fl/| = 1 or \sf\ ^ 3 for any stf EOL .

We give another examples:
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EXAMPLE 3.2. If U = {aί9a2,a3}, A1 = {al9a2}9 A2 = {α2,α3}, A3 =

{fl3, a^}, and s/ = {Al9 A2, A3}9 then $f is indecomposable.

EXAMPLE 3.3. If U = [al9 α2, α3, a4}9 A± = [al9a2}9 A2 = {al9a3}9

A3 = {α2, 04}, A4 = {α3, α4}, and ja/ = {Aί9 A2, A3, A4}, then jtf is decompos-

able because <#> φ <X> / <j^ - #> for * = {Al9 A2}.

THEOREM 3.6. Fί?r <L7, ̂ , /> wίί/i ίΛ^ assumptions (Al-2), there exists at

least one MSPD of the form s#Λ in Definition 3.1 for an indecomposable partition

α 6

PROOF. By Theorem 3.2, we have an MSPD j/Λ for <l/,Λ,/> where

α e Part ( J%

Assume that there exists a decomposable family si e α. Then,

/1 > ̂  <j2/> Φ <ja/ - Λ/! > for some ̂

Hence, ̂  and j^/2 — $& — $4\ are non-empty, and

ja/ = Λ/! u ^/2 , Λ/! n j/2 = 0 , < ja/j > ̂  < j2/2 > and

Put

, C2 = <Λ/ 1 >n< Λ / 2 >, C3 = <^2>-<^1> and

for 7 = 1,2,3.

Here C, Φ 0 and My ^ 2 for; = 1, 3, and M2 = 1 when C2 = 0. Then, we see

by the definition of SPy that

SP/ {<.**>}) = M^M2M3 and

MiM, + M2M3 ,

where M^M2M3 - (M1M2 + M2M3) = M2{(Ml - 1)(M3 - 1) - 1} ̂  0. Hence,

) and S P ( s / Λ ) > SP(s/Λ.)

for the partition α' = (α - {ja/}) u { 1̂5 j/2} 6 Part (Λ). Therefore, SPf(j*Λ) =

SPf(jtfΛ>) and ja/α, is also an MSPD for <17, ̂ , />, because so is Λ/Λ.

In this proof, we note that

1^1 + \sf2\ > 1^1 = 1 for i = 1, 2 ,

and \sf\ is finite since so is |l/|. Therefore, by repeating the above process for

any decomposable family finite times, we obtain a partition β e Part ( 0$) such

that s/β is an MSPD for <Ϊ7, ̂ , /> and /? consists of indecomposable families,

according to Proposition 3.5.
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Thus Theorem 3.6 is proved.

LEMMA 3.7. For α e Part (β\ assume that there exist distinct elements jtfl9

°f α and a subset Ή c: #/2 satisfying

and

Then SP/«0 < SP/XJ holds for

α' = (α - {j2/l9 j/2}) u {j/i u % s/2 - %} - {0} e Part

PROOF. (j/iVφy = <**/!> by assumption. Hence SPf(j/Λ ) < SP^XJ
holds by Lemma 3.1.

DEFINITION 3.3. We define Pι(3S) to be the subset of IP (&) consisting of
all α e IP(J') satisfying the following condition (PJ:
(PJ For any distinct j^, «c/2 e α, if ^ c= j/2 and <^> c (j^), then

/2 ~ ̂  is indecomposable.

Then, we have the following.

THEOREM 3.8. For <l/,#,/> wiίΛ (A 1-2), ί/zβrβ βxfsίs αί least one MSPD

ja/α wiίft αeP^).

PROOF. Let X, for α e IP(Λ) be an MSPD for <l/,Λ,/> given by
Theorem 3.6. Then, we note that the condition

holds automatically. In fact, if <X2 - #> ^ <J3/2>, then SP^^) < SP/ίX,)
for some α' e Part (J^) by Lemma 3.7, which contradicts that s/Λ is an MSPD

for<l/,Λ,/>.
Now, assume that

(*) there exist ^ ̂  ja/2 in α and V c ̂  such that <#> c <Λ/J > (hence
<j/2 — ̂ > = <J2/2> by the above note) and j/2 — ̂  is decomposable.

Then, by the same proof as that of Theorem 3.6, we obtain an indecomposable
partition y e IP (ĵ 2 — #) such that

Therefore, we have

jβ = (α - {j2/l9 Λ/2}) u {j?/! u }̂ u y in Part (̂ )

such that SPf(j/β) ^ SP/ίX,), since <^ u ^> = <^ > by (*). Hence,
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and s/β is an MSPD for <17, J*, />, because so is J/Λ. Moreover,

\β\>\Λ\ and βe!P(O).

In fact, these are clear by the definition, except for the indecomposability of
si' = s/i u « Let «" c .s/'. Then, <#( > = <^> for #( = ̂  n «" or ̂  - «"
since j/j is indecomposable; hence

<j/'> = <Xi> = <#{> c <^> cz <<jf > and <«Ί> = <j/'>

for #! = # ' or <£/' — V. This shows that s/^ u # is indecomposable.
Now, repeat the above process for β if (*) holds for β instead of α, and so

on. Since \β\ ̂  | &\ for any β e IP (̂ ), we obtain γ e IP (J^) by finite processes
such that (*) does not hold for y instead of α. Thus y satisfies the condition
(PJ and j/y is an MSPD for <£/, Λ,/> by the above proof.

Thus, Theorem 3.8 is proved.

Now, we try to find an MSPD for <l/', Λ l 9/'> illustrated in Figure
2.3. Theorem 3.8 implies that candidates of MSPD's for (U',@l9f

fy are
Λ! and {<^>} = {£/'}. Since SP/ίl/'}) = 12 and SP^J = 16, {V} is an
MSPD for <ί/', ̂ l9/'>.

4. C-maximal indecomposable families

In this section, we consider some methods to find all indecomposable
subsets of J1, by introducing the notion of C-maximal indecomposable families
of s/ in Λ.

In the first place, we notice the following two propositions on decompos-
ability or indecomposability.

PROPOSITION 4.1. A subset <$/ of 2U — {0} is decomposable if and only if
there exists an element a of <j/> such that

PROOF. Assume that s/ is decomposable. Then,

^> for some

Hence, <^> ^ <j/ - #> and we can take α e <#> - <j/ - *>. if Aes/ con-
tains α, then ^4 e # since α e <^ — ̂  >. Therefore,

: a €

Conversely, assume that there exists a e <<$/> with <#> ^ <^>, where
= {̂  e js/: a e A}. If B e Λ/ - % then α ̂  β by the definition of « Hence

^> ^ α and <J2/ — y>}Φ <^/> Therefore ja/ is decomposable.
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PROPOSITION 4.2. A subset <$# of 2U — {0} is indecomposable if and only if

for any elements a and b of <<£/>, there exists A e stf with A 3 a, b.

PROOF. Assume that j/ is indecomposable, and that α, b e <^>. From

Proposition 4.1 we have <{A e jtf: a e A}y = <«s/>. Then we have ({Aestf:

a 6 A] ) 3 b. This implies that there exists A e stf with A 3 α, b.

Conversely, assume that for any elements a and b of <j/>, there exists

Aes/ with A 9 β, b. Then for any a e <^>, <{>4 e «$/: α e ,4}> contains any

fc e <^/>, and so {^4 e j/: α e A} = <j/>. Therefore, ja/ is indecomposable by

Proposition 4.1.

We try to find a solution of the following example by using the results of

the above discussion.

EXAMPLE 4.1.

M! u2 U3 M4

B, 1 1

B2 1 1

B3 1 1

B4 1 1

/ 2 3 4 3

Figure 4.1.

1) {<^>} is decomposable because there exists u2e& with

2) Let Λ/ be a subset of 3& with |Λ/| = 3, and Λ/ 9 B3. Then j^ is decompos-

able since <{£ e J2/: w3 e 5}> ^ <X>. {Bl5 52, 54} is indecomposable.

3) From 1) and 2), all elements of Pt(a) are α = {{Bl9B2,B4}, {B3}} and

^ = {{5!}, {B2},{£3},{£4}}.

4) Since SPy^J = 26 and SP )̂ = 29, s/Λ is an MSPD for <I7, Λ, />.

The following definition is given to obtain a necessary condition stated in

Proposition 4.3 for a family to be indecomposable.

DEFINITION 4.1. In addition to $ c 2V — {0} satisfying (Al), let be given

C c U , and j/ c ̂  with <ja/> n C = 0 .

Then, # is called a C-maximal indecomposable family (or simply, C-MIF) of s/

in ,̂ if it satisfies the following conditions 1) and 2):

1) s4 c <e c Λ, <^> n C = 0 and * is indecomposable.
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2) For any «" with s/ a V a J> and <«"> n C = 0, «" = <? holds if «" ID #
and #' is indecomposable.

In general, a C-MIF of stf in J* is not unique. Example 4.2 shows that
0-MIF's of {BI} in ̂  are {Bl9 B2, B3} and {Bl9 B4, B5}.

EXAMPLE 4.2.

βχ 1 1

B2 1 1

B3 1 1

£4 1 1

B5 1 1

Figure 4.2.

The condition 2) of Definition 4.1 means the following

PROPOSITION 4.3. A subfamily *$' of 0& is decomposable if it contains pro-
perly some C-MIF of d in @ and < '̂> n C = 0.

Therefore, to find an indecomposable family from the set of all subfamilies
of J ,̂ we can count out any one satisfying the assumptions of Proposition 4.3.

Thus, we study some conditions for ^ to be a C-MIF by preparing the
following lemmas.

LEMMA 4.4. For any V c 2U - {0}, u e 17 and B cz 17, put

(gu = {Ae(£:A3u} and

) = {Aε%:A^ #b> for any b e B} .

77u?n, A e D(#; 5) ϊ/ and only if A satisfies the following 1) and 2):
1) A e «
2) For any a 6 ^4 and ft 6 β, ίftere exists A' e # containing a and b.

PROOF. By the definition, ,4 e D(#; B) if and only if A e % and

fl e <^> = {X' e «: >!' 3 b} for any a e A and any b e B\

and the latter is equivalent to 2).

LEMMA 4.5. In the above lemma, if an indecomposable family <&' satisfies
«" c # and <«"> =5 B, ίnen «"
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PROOF. Let A e <β' and take a e A and b e B. Then

{a, b} c A u B c= <#> and so {α, b} c A' for some X' e «" c tf ,

by the assumption and by Proposition 4.2. Hence A e D(^; B) by the above
lemma; and we have #' c

DEFINITION 4.2. For J*, C and j/ in Definition 4.1, we define a sequence

D°(J/, C) =) D1^ Q =>•••=> Z)V, C) =D •••

of subfamilies of ̂  inductively as follows:

D<V, C) = D°(C) = μ e <%: A n C = 0} (z> j/) ,

D/+1(^, C) = D(Dl(j*9 C); <X» for ί ̂  0 ,

where D( ;̂ β) is the one given in Lemma 4.4. Moreover, we put

D*(̂ , C) = D\^ C) when Dl(si, C) = Dί+1(^, O .

LEMMA 4.6. /n ί/z/s definition, we have the last equality

Dl(^ C) = Di+ί(^ C) for some i ̂  \D°(C)\

and then Dj(^9 C) = Dl(^ C) for any j > 1. Thus the family D*(J/, C) is well-

defined by taking the minimum integer of such i ̂  0.

PROOF. There exists such i, since the sequence in Definition 4.2 is non-

increasing and |D°(C)| ^ \Λ\ is finite.
Put Dl = Dl(^9 C). If Dl = Di+\ then by the definition, we have

D< = Di+1 = D(DL

9 <j*» = D(Dί+l; <j/» = Di+2 ,

and so on; hence Dj = Dl for any j > i.

LEMMA 4.7. ^ c D*(j3/, C) holds for any %> satisfying the condition 1) in
Definition 4.1, and in particular, for any C-MIF ^ of j/ in &.

PROOF. Assume that # satisfies the condition 1) in Definition 4.1. Then

Z)°(j/, C) = D°(C) = {Ae@:AnC = 0}c:<£,

since <^> n C = 0. If * c Df(^, C) for some z, then

'ίX C); <j3/» = Z)i+1(^ C)

by Lemma 4.5, because ^ is indecomposable and <#> z> <j/> by assumption.

Thus we see * c D ĵa^, C) for any ί ̂  0 by induction; hence # cz D*(j/, C).
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Now we can prove the following

THEOREM 4.8. In Definitions 4.1 and 4.2, there exists a C-MIF <& of <$# in
& if and only if the collection

{«": s/ c «" ci Z)*(̂ , C) and «" is indecomposable}

is non-empty, and then Ή is a maximal family in this collection with respect to the
order given by the inclusion relation.

PROOF. D*(j*9 C) c Z)°(C) c <^ and <Z>°(C)> n C = 0 by Definition 4.2.
Hence the above collection is contained in the collection

{*': j* c «" c Λ, <«" > n C = 0 and «" is indecomposable}

= {#: if satisfies the condition 1) in Definition 4.1} .

Conversely, this is contained in the above one by Lemma 4.7. Therefore, these
two collections coincide.

Now, a C-MIF <# of si in ^ is a maximal family in the last collection
by Definition 4.2, which exists if and only if the collection is non-empty.
Therefore, we see the theorem.

We have several corollaries to Theorem 4.8, the first two of which are the
special cases of it.

COROLLARY 4.9. There exists no C-MIF of $4 in ^ when st is not
contained in D*(<stf, C), or when D*(jtf, C) = <$# and $4 is decomposable.

COROLLARY 4.10. // D*(J/, C) z> s/ and D*(s#, C) is indecomposable, then
D*(J/, C) is a unique C-MIF of si in Λ.

COROLLARY 4.11. Assume that /)*(**/, C) ^> si ana D*(<$#9 C) is decompos-
able.

(1) // <€ is a C-MIF of si v {B} in & for some B e 31 - <tf with B n C =
0, then <£ is a C-MIF of stf in @ with <g Φ si.

(2) // there exists no <& satisfying the assumption of (1), then a C-MIF of
stf in 38 is jtf or does not exist according as si is indecomposable or not.

PROOF. Definition 4.1 implies immediately (1) and also the converse of (1).
Therefore, the assumption of (2) implies that there exists no C-MIF of si

with # Φ si 9 hence the collection in Theorem 4.8 is {j/} or empty according as
si is indecomposable or not. Thus, we see (2) by Theorem 4.8.
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COROLLARY 4.12. We can find all C-MIF's of $4 in & by using Corollaries
4.9-4.11.

PROOF. We note that D*(J/, C) c D°(C) = {B e J>: B n C = 0} ^ j*
If |D°(Q - j/l = 0, then j* = D°(C) ID D'V, C). Hence, a C-MIF of j/

does not exist or is Λ/ by Corollaries 4.9 and 4.10, and the corollary holds in
this case.

We prove the corollary by induction on \D°(Q - J3/|(^|£>°(C)|). Assume
that the corollary holds when \D°(Q - s/\ ^ k for some k ̂  0, and consider
the case |D°(C) - d\ = k + 1. Then, Corollaries 4.9 and 4.10 show that a
C-MIF of Λ/ does not exist or is D*(J/, C), except for the case of Corollary 4.11;
and the cases (1) and (2) in Corollary 4.11 are seen by the inductive assumption,
because |Z)°(C) - (si u [B})\ = k for B e D°(C) - d.

Here, we shall find all indecomposable subfamilies of ^ in the following
example, by using the above discussions.

EXAMPLE 4.3.

MI U2 U3 U4 U5

B! 1 1 1

B2 1 1

B4 1 1

B5 1 1

Figure 4.3.

In case of &/ = {B} for B e @ and C = 0, we see DJ({B}9 0) as follows:

BJ, 0} = D°(0) = ̂  (1 ^ i ^ 6).

BJ, 0)M

M! {B1,B2»B4} C/
M2 {jBi, B3, B6} 17

M3 {5l554} {MJ, M2, M3, M4}

w4 {52, U3, 54} {M I ? «2, M3, M4}
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WW, 0)«> = {«!, "2, II3, M4} (« = "j, 1 ̂  ί, 7

= {u1,u5} (u = u 1,ί = 5),

= {W 2 ,U 5 } (U = «!,/ = 6),

= {u l 5 u2, M5} (M = u2, i = 5, 6) ,

= 0 (otherwise) .

02({B,}, 0) = {B19 B2, B3, B4} (1 g i g 4) ,

= {BJ (i = 5, 6) .

By noticing that {B{} is indecomposable, we have

;}, 0) = {B1; B2, B3, B4} (1 g i g 4) ,

= {BJ (i = 5, 6) .

Thus {BI} is a unique 0-MIF of {Bj for i = 5, 6, by Corollary 4.10; hence, if

# 9 B5 or B6 and |#| ^ 2, then ̂  is decomposable by Proposition 4.3.

Now, 3f = {Bl9 B2, B3, B4} is indecomposable and 0&' — {Bt} is decom-

posable for 1 ̂  i ̂  4, by Proposition 4.2. These and Proposition 3.5 show

that indecomposable subfamilies of {βf: 1 g i ̂  6} are {βl9 B2, B3, B4} and {βj

for 1 ̂  i ̂  6.

Now, let \Λ\ = n and <g be a 0-MIF of {B} in ^ where Be@. Then,

among 2""1 subfamilies of $ containing B, there are 2"~m — 1 families contain-

ing properly V where m = \<g\9 which are decomposable by Proposition 4.3.

Thus we may investigate the indecomposability for the other 2""1 — 2n~m + 1

ones only, and the number is small if so is m, e.g., is 1 if m = 1. When m is

large, e.g., when m = n which holds when ̂  is indecomposable, we try to find a

C-MIF of {B} in a for C Φ 0 with 5 6 D°(C) = {A e @: A n C = 0} ^ #,

which is a 0-MIF of {B} in D°(C), and so on.

After finding all indecomposable subfamilies of ̂  by the above discussions,

we can find an MSPD for <[/, #,/> by calculating SPf(*/Λ) for all α in P^)

according to Theorem 3.8. But |Pι(^)| may be still large, and Pι(0S) is inde-

pendent of the function /.

Therefore, we prepare the following definition and theorem to decrease the

number of candidates of solutions.

DEFINITION 4.3. We define P2(#,/) to be the subset of PI(^) consisting of

all α 6 P^(Λ) satisfying the following condition (P2):

(P2) |α| = 1, or |α| ^ 3 and SP/({<j^>}) < SPf(s/) for any j* e α.
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THEOREM 4.13. For <17, ̂ ,/> wiί/i (Al-2), there exists at least one MSPD

PROOF. We can find an MSPD X, for <17, #,/> with αeP^J*), by
Theorem 3.8.

Suppose that

SPXIC*/)}) ̂  SP^j/) for some j/ e α ,

and put β = (α - {Λ/}) u {{A}: ̂  E ja/} e Part (̂ ). If we replace α by β, then
the term SPf ({(*/)}) in SP/ja/J is replaced by

ΣAC ^ SP/fΛ}) ( = SPf(j/) by the definition)

in SPjGs/^) and the other terms are unchanged. Thus the inequality of the
assumption implies that

SP/«) ̂  SPf(s/β) hence SPf(s/Λ) = SPf(j*β)

and s/β is an MSPD for <I7, J*, />, since so is siΛ.
Now, we show that βeP^όi). β is in IP(J% because so is α and each
e β (A e jtf) is indecomposable by Proposition 3.5.
To prove the condition (Pi ) for β, we take any

s/t^s/2 in land V c stf2 with

and show that <j^2 — #> = <^2)
 an(l that ja/2 ~ ̂  ί§ indecomposable. Here,

the equality holds as noted in the beginning of the proof of Theorem 3.6,
because s/β is an MSPD for <C7, ̂ ,/>. If ̂  and ja/2 are in α — {j/} =
j8 — {{^4}: A 6 j/} then j42 — <6 is indecomposable, because α e Pi(^) satisfies

(Pi).
If Λ/2 = {̂ 1} for >4 e J2/, then * = stf2 or 0, and <$ φ stf2 since <j/2 - * > =

<j/2>; hence * = 0. If ̂  = {A} for A e j* and j^2 6 α - {̂ }, then « c j3/2

and <^> c <^ > hold only when <tf = 0. In fact, if A E % then A a <#> c
< ja/j > = ^4 and ^4' ^ ^4 since A' 6 j/2 e α — {j2/}, A € J2/ and α is a partition of
J*; and A' c A ^ A' contradicts the assumption (Al). In these cases jtf2 — ^ =

3/2 is indecomposable, since β e IP (β\
Therefore, we see that βeP^(di). By repeating the above process for any

j3/eα with SPf({(jtfy}) ^ SPf(s/)9 we obtain yeP2(#,/) such that ja/y is an
MSPD for <17, #,/>.

Thus, Theorem 4.13 is proved.

Here, we note that there happens SPf({(*/y}) ^ SPf(s/) for an inde-
composable subfamily j/ of ̂ , by the following proposition.
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PROPOSITION 4.14. For some integers n ̂  fe ̂  2, assume that

\U\ = n, @ = {B^U: \B\ = k}9 f(u) ^2 foranyuεU,

and nCk g 2n~k. Then @ is indecomposable, <^> = 17 am/ SP/ft/}) ̂

PROOF. ^ = {B c (7: |£| = k}(k ^ 2) is indecomposable by Proposition
4.2. Now, by the definition and the assumption, we see that

for any B e #, since |l/| = n ̂  fe = \B\ and /(u) ̂  2. Therefore, by taking
ff€& such that SPf({&}) = Max {SP^β}): £ e J'} and by noticing |#| = nCk,
we see that

SPff({U}) έ IΛISPXίB'}) ̂  ΣB.Λ SP^ίB}) = SP/(Λ) .

In this proposition, the inequality ΠQ ̂  2n~k holds when n ̂  6, 10, 14 or
19 if fc = 2, 3, 4 or 5, respectively.

5. Application to statistical database designs

In this section, we apply an MSPD to design a statistical database with the
minimum number of records. In the first place, we give some definitions and
their examples related to a statistical database (cf. [3], [4], [20]).

DEFINITION 5.1. Let be given a positive integer N and sets Dt for all
integers i with 1 ̂  i g N. Then, we call a finite subset R of the product
Πf=1 Dt a relation of (Dl9 . . . , DN).

Hereafter, we assume that a relation R of (Di9 . . . , DN) is given, and use the
following notations:

Dx = Πi€XDi for any non-empty subset X of {1, ...,N}; in particular,

£> = £>{!,...,*} = ΠfLi A and D{i} = A.
prt is the projection of Dx to the i-coordinate Dt for i e X, and so is prx of

Ar to Ar f°Γ X ^ X' such that the composition function prt o pτx of Dx, to D,
coincides with prf for any i e X.

EXAMPLE 5.1. Let D, = {ABC, ACC, NSS, QQQ, WSE, BTT}, D2 =
{KYOTO, TOKYO}, and D3, D4, D5, D6 be the set of non-negative integers.
Then the following table is a relation.
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TABLE 5.1. Example of a relation

ABC
ACC
NSS
PCC

QQQ
WSE
BTT
AXT

KYOTO
KYOTO
KYOTO
KYOTO
TOKYO
TOKYO
TOKYO
TOKYO

1
1
2
2
2
2
1
1

1
2
1

2
2
1
2
1

200
310
140
100
580
120
230
130

27
31
56
20
21
74
35
18

DEFINITION 5.2. For any set A, we denote by A* the set of all finite
sequences in A. Moreover, we call g a summarizing operator over A, if g is a
function of A* to A satisfying

0(a') = #(a) for any permutation a' of a 6 A* .

EXAMPLE 5.2. SUM, MAX and MEDIAN, which take the sum, the maxi-
mum and the median, respectively, of any finite sequence of real numbers, are
summarizing operators over the set of all real numbers.

DEFINITION 5.3. Let R be a given relation of (Dl9..., DN) in Definition 5.1.
Then, for any non-empty proper subset

Xc{l,...,N} and j e {1,..., N} - X ,

we can define a function Ejx = Ejx R of Dx to Df by

Ej,x(d) = (pr/r): r e R with pr/r) = d) e Df

for d e Dx, where the notations in Definition 5.1 are used.

EXAMPLE 5.3. If X = {2} and i = 5 in Example 5.1, then

£i,x,κ(KYOTO) = (200, 310, 140, 100),

£f^jΛ(TOKYO) = (580, 120, 230, 130), and

Ei,x,R(D2) = {(200, 310,140, 100), (580, 120, 230, 130)}.

DEFINITION 5.4. In addition to Definition 5.3, let

G = {gj: j E Y(G)} , for 0^7= Y(G) c {1,..., N} - X ,

be a set such that each g^j e Y) is a summarizing operator over D7 in Definition
5.2. Then, we can define a function SGtX = SG x R of Dx to DXuY by

SG,X(Λ) = (d, (gj(Ej,x(d): j ε Y}) e Dx x Dγ = Dx^γ

for d e Djf, by using Ejx = E} x R in Definition 5.3; and the composition

SG,x°prχ of Dx. to Dx^γ, for AT c X' <= { I , . . . , N} ,
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by the projection prx of Dx, to Dx, is also denoted by the same letter SG x.
Such a function SG x = SG x o prx is called an aggregation function on a

given relation R of (Dl9 ...,DN), given by summarizing operators gj over Dj for
j e Y. Moreover, the image

S(G9 X', R) = SGtX(R) = SGtXtR(R) c DXuY

is called the summary data, or the summary table, of R by SG x; and X and 7 are
called a set of category fields and a set of summary fields, respectively (cf. [15],
[20], [22]).

LEMMA 5.1. In the above definition, we have

\S(G,X;R)\ = \prx(R)\,

where \A\ denotes the cardinal number of a finite set A. In particular,

\S(G, X; R)\ = fie* |pr,(Λ)| if pτx(R) ^ ΓU* PΓι(*) -

PROOF. By the definition, SGfX(d) = SGίX(pτx(d)) and prx(SGtX(d)) = pτx(ά)
for any d e D. Thus, for any d, a' e D, we see that

SG.xW = SG.x(άf) if and only if prx(d) = prx(d') .

This equivalence shows the first equality.
If pTχ(R) contains HieXpτι(R)9 then these coincide clearly. Hence the first

half implies the second one immediately.

EXAMPLE 5.4. Let X = {2}, Y = {5, 6}, g5 and g6 be SUM, and R be the
table in Example 5.1. Then

SG.x(R) = {(KYOTO, 750, 134), (TOKYO, 1060, 148)} .

DEFINITION 5.5. A summarizing operator g over a set A in Definition 5.2
is called associative if

g(g(*\ #(a')) = g(& u a') for any a, a' e A* ,

where a u ar e A* is the sequence in A obtained by drawing up a and a' in a
line.

Then, Sato [20] proved the following

THEOREM 5.2. Let R be a given relation of (Dl9...,DN)9 and X, X' and Y
be non-empty subsets of {1, ...,N} with X a X' and X'nY=0. Moreover,
assume that each summarizing operator QJ over Dj in a set G = {#/:./£ Y} is
associative. Then, we have

S(G, X; S(G, X'; R)) = S(G, X; R)
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for the summary table S given in Definition 5.4, where the left hand side S(G, X;
R) is the one of R' = S(G, X'\ R) considered as a relation of (Df. i e X' u Y).

PROOF. By Definition 5.4, the equality follows immediately from the one

SGtχ,R'(SGtX'tR(τ)) = SG,X,R(*) for any r e R ,

or gj(EJ9χtR,(A)) = gj(Ejtχ,R(A)) for any; e Y and d e Dx.
Now, r' e R' = 5(G, X1; R) = SGtX.tR(R) means that

pivOO = d' and pΓj(r') = gj(EJtX,tR(A')) (j e Y)

for some d' e pr^R), and r' is determined uniquely by d' (see the proof of
Lemma 5.1). Therefore, by Definition 5.3, we see that

Ej.χ.R (A) = (gj(EJtX..R(A')): A' e pτx.(R) and pr,(d') = d) ,

where the sequences EjtX,tR(A') form a partition of the one Ej x R(d). Thus
0j(Ej,χ,R'(A)) = gj(Ej x R(A)), since g} is associative; and the theorem is proved.

DEFINITION 5.6. Let R be a given relation of (Dl9 . . . , DN), and consider the
collection FSAF of all finite sets of aggregation functions on R in Definition 5.4.

Then, for ̂  and &" in FSAF, we say that ̂  is derivable from ¥', denoted
by

if these satisfy the following condition (D):
(D) For any SGtX, in &, there exists a subset &"' of ¥' such that

and that for each SG,,X, e tf\

X'^X and S(G', X\ S(G'9 X'; R)) = S(G'9 X; R)

hold under the meaning stated in the above theorem.

EXAMPLE 5.5. Let X, = {2, 3}, X2 = {2, 4}, G, = {g5}9 G2 = {g6}, &" =

{SGl.Xl9 SG2,x2}, X = {2}, G = {^5, ̂ 6}, and <S = {SG,X} in Example 5.1. Then
SGj.XjWί SG2tχ2(R)9 and SGtX(R) are given as follows:

sGί,Xί(R) sG2,x2(R) s0tX(R)

KYOTO 1 510 KYOTO 1 83 KYOTO 750 134

KYOTO 2 240 KYOTO 2 51 TOKYO 1060 148

TOKYO 1 360 TOKYO 1 92

TOKYO 2 700 TOKYO 2 56

We can easily show that 'if is derivable from £P.
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DEFINITION 5.7. In the above definition, we consider the number of re-
cords

NRec(^) = £ |S(G, X\ R)\ = Σ |SGt *(K)| for any ff> e FSAF ,

where the sum is taken over all SGtX e £f.
Also, we consider the set

= {X: SG,X e^} (X c {1, . . . , N}) for Sf e FSAF ,

and the positive integer

k(X) = k(X\ &) = I {G: SGtX e &>} \ for X e

Moreover, we say that a given relation R is full over &*, if

(F) pτv(R) = Π pr,(*) for 17 = <X(^)> c { 1, . . . , N}
ieU

and consider the positive integer f(i) defined by

f(i) = \pτi(R)\ for each ie {!,..., AT} .

PROPOSITION 5.3. /n Definition 5.7, we feαt e

NRec(^) = X^6 ̂  k(X)\prx(R)\ for any <7 e FSAF .

// a given relation R is full over &9 then

and if k(X) = 1 for any X e jtf(y) in addition, then

NRec(^) = ΣX

where SPf is the function given in Definition 2.1.

PROOF. By the definition, Lemma 5.1 implies the proposition.

DEFINITION 5.8. When ̂  e FSAF is given, we call Sf e FSAF a minimum
record set for <9o, if

(MRS) ¥ -> ^o and NRec(^) = Min{NRec(^'): ̂  e FSAF and &'^&0}9

under the notations in Definitions 5.6 and 5.7; and then we say also that £f is a
solution of statistical database design problem, or simply, a solution of SDD(<9^),
under a given relation R.

Now, this problem is solved under some assumptions by finding an MSPD
stated in Definition 2.3. In fact, we can prove the following theorem, which is
a motivation of this paper (cf. [15]).
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THEOREM 5.4. Let R be a given relation of (Dl9 ..., DN). For a given finite

set £f0 e FSAF of aggregation functions on R, put

= {X: SGίX e ^0} and U =

and assume that

(F) R is full over y^ i e., prv(R) = Y[^u PΓ|(Λ), and

(USAO) ^o has a unique set of associative operators, i.e., there exists G0 such

that G = G0 for any SG x e <9o, and each g 3 e G0 is associative.

Then, we have the following (i) and (ii):

(i) // ¥ is a solution of SDD( 0̂), then

s/(&) n U = {X n U\ SG,X e &} - {0}

is an MSPD for <17, J>, /> in Definition 2.3, where f ( i ) = |pη(R)| for i e U.

(ii) Conversely, if jtf is an MSPD for <L7, Λ, />, then

= {SGo,x: Xe^} (G0 is the one in (USAO))

is a solution of SDD( 0̂).

PROOF. Assume that se -* ̂ 0. Then, */(&) > Λ and &(&} nU >@ by

Definition 5.5. Moreover, Proposition 5.3 and the assumption (F) imply that

NRec(^) = Σ k(X)\prx(R)\ ^ Σ \pτx(R)\

= Σ \YlieXnU Wl ^ SP/J/^ Π 17)

(the sum Σ is taken over all X e

On the other hand, assume that jf > @ for s/ c 217 - {0}. Then,

by Theorem 5.2 and the assumption (USAO), and

d and

by Proposition 5.3 and (F).

(i) Let y be a solution of SDD( 0̂) Then & -> ̂ 0? ^(5^)'π (7 > Λ and

^ NRec(^) ̂  SP/(^(^7) n L7)

for any jtf a2u — {0} with ja/ > &, by the above results and by Definition

5.7. Thus st(&) n 17 is an MSPD for <17, Λ, /> by the definition.

(ii) Let si be an MSPD for <l/,Λ,/>. Then, in the same way, we

have
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NRec(^) ̂  SPf(s/(£f) n U) ̂  SP^W) = NRec(ί%s*))

for any ̂  e FSAF with ̂  -> ̂ 0; hence 5%fl/) is a solution of SDD( 0̂).

EXAMPLE 5.6. In Example 5.1, put Y = (5, 6}, U = {2, 3, 4}, /5 = /6 =

SUM, G = {05, 06}, /(i) = |pΓi(Λ)| = 2 for f (2 ̂  i ̂  4), £ = {{2, 3}, (2, 4}, {3, 4}},

and «9o = {SG,5: £ e ̂ }. Then we see easily that pr^-R) = Π ί e L /pr ,-(#). Hence
in order to find a solution of SDD(5^), we may find an MSPD for <17, #,/>
illustrated as follows.

Bί 1 1
B2 1 1
B3 1 1

/ 2 2 2

Since {U} is an MSPD for <17, #,/>, {SGfI,} is a solution of SDD( 0̂).

6. An algorithm to find an MSPD

In addition to a necessary condition of the indecomposability given in

Proposition 4.3, we consider another one given by the following

DEFINITION 6.1. Let s/ c= .̂ Then we say that tf is maximum in s/ (with

respect to <tf » if
1) tfc.fi/, and tf' c tf holds for any tf' c Λ/ with <<T> =

and we also say that tf is max-indecomposable if
2) tf is indecomposable in addition to 1).

PROPOSITION 6.1. // tf c s4 and tf is indecomposable, then

is max-indecomposable, and satisfies <&* => ̂  and <^*>
/n particular, if \<β\ = 1, ίΛew ^* = «

PROOF. By the definition of <β*9 we see that *
and so <^*> = <^>. These and Proposition 4.2 show that ^* is indecomposable
if so is « If <«"> = <^*> for «" c X then «" c ̂ * holds because X e «"
implies that A c <«"> = <^*> = <^>, i.e., 1̂ e **. Therefore #* is maximum

in «β/. The last assertion follows from the assumption (Al). Thus we see the
proposition.

PROPOSITION 6.2. Let jtf c= ,̂ A E j/ and C c <^> — >4, and consider the

following conditions 1), 2) and 3) for <β a $4\

1) ^ is max-indecomposable in £#,<$ 3 A, <^> n C = 0 and <& φ jtf.
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2) There exist w e <<$/>- ,4 and a (Cu{w})-MIF «" of [A] in d with

>v.
3) <? is a C'-MIF of {A} in rf for some C c <χ> - A wϊffc C ^. C.

Then, 1) implies 2), and 3) implies 1).

PROOF. Assume 1). Then <#> Φ <^>. In fact, if <#> = <X>, then

# d ja/ and * = j/, since ̂  is maximum in j/. Therefore, there exists M 6

- <^> <z <χ> - A Then <#> n (C u {w}) = 0, tf z> {Λ} and * is indecom-

posable; hence there exists #' in 2) by Definition 4.1. Thus 2) holds.

Assume 3). Then <#> c <χ> - C £ <X> - C c <χ>; hence if ^ j/ and

<^> n C = 0. ^ 9 A and ̂  is indecomposable by the definition. Therefore,

by the above proposition, ^* is max-indecomposable in s/, <$* =>^ and <^*> =

<^>. Thus <#*> n C = 0 and ^* = «; since « is a C-MIF of {̂ 1} in j/.

Thus 1) holds.

COROLLARY 6.3. We can find all <# satisfying 1) in the above proposition, by

finding C-MIF's of {A} in stf and by using the above proposition.

PROOF. In this proof, 1), 2) and 3) are the conditions in the above

proposition.

If K«s/> — A\ = 0, then 2) does not hold, and there exists no ^ with 1),

because 1) implies 2).

Assume inductively that the corollary holds when |<.s/> — A\ ^ k for some

k ^ 0; and consider the case |<W> - A\ = k + 1.

If there exists no (Cu {w})-MIF of {A} in ̂  for any u e <j/> — A, then

there exists no ̂  satisfying 1).

Assume that there exists a (Cu {w})-MIF # of {4} in &f for some u e <W>

-A. Then !<«'>- X | g t holds, because A c <^>^<^>u{w} c <j3/>. Thus,

we can find all max-indecomposable subfamilies #' in ̂  satisfying

<«">nC = 0 and «"^«',

by the inductive assumption. Moreover, ^ satisfies 3) and so does 1) by the

above proposition. Thus we can obtain all #*s in 1) in this case.

Thus the desired result is proved by induction on |<«s/> — A\.

Now, we give an algorithm to find an MSPD for <L7, Λ,/>, which is done

by the following steps:
(I) We prepare all 0-MIFs of {Λ} in st (c SI) for some A erf 'by

Theorem 4.8.
(II) We determine all max-indecomposable subfamilies of rf ( c &) by

Corollary 6.3.
(III) Any indecomposable subfamilies of ̂  are found from the ones with

the necessary conditions in Propositions 4.1 and 4.2.
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(IV) We determine the set IP(^) of all indecomposable partitions of 3& by
(III), and also the subsets P )̂ and P2(^,/) by the definition.

(V) We can find an MSPD for <17, ̂ , /> by calculating SPf(*/Λ) for all α
in the set P2(^, /) in (IV) and by investigating their minimum value, according
to Theorem 4.13. Here, the larger set P )̂ or IP(J^) in (IV) may be useful
when |Pι(^)| or |IP(#)| is not so large, or may be desirable to find more
MSPD's.

Our algorithm is given as follows:

<Algorithm MAIN)
Purpose: To find an MSPD rf0 for <17, Λ, />.
(51) Set^as^.
(52) If \s/\£ 2, then
(53) store {{B}: B e so} into 9 and
(54) go to step S15
(55) Compute / by Algorithm INDEC with parameter stf.
(56) If si is decomposable (/ = 1), then do steps S7 and S8.
(57) Find A e stf such that there exist u and u' in <«£/> satisfying the

following conditions i), ii) and iii):
i) \{Be^:B3u}\ ^ \{B e d\ B 3 u%

ii) ABU and
iii) there exists no element B of si with M, u' e B.

(58) Obtain 9 by Algorithm ALL with parameters ««/, A and 0.
(59) If si is indecomposable (/ = 0), then do steps (S10-S12).
(510) If there exists no si1 e 9 with d a $0' and <j/> = <<*/'>, then store

d into 9.
(511) Find an element A of j/ such that

\A\ = Max{|B|:J?εj*}.

(SI 2) Obtain 9 by Algorithm IND with parameters si and A.
(SI 3) Remove A from si.
(S14) Go to step S2.
(SI 5) Obtain 9± by Algorithm PI with parameter 9.
(SI 6) Obtain ^> bY Algorithm P2 with parameter 9^.
(SI 7) Find β e 0>2 satisfying SPf(j*β) £ SPf(j*Λ) for any αe^2, by calculating

SPf(s/a) for all elements α in ^2

(518) Set siQ as s/β.
(519) End MAIN.

(Algorithm IND(̂ , A,
Purpose: To store into 9 all max-indecomposable subfamilies # of Λ/ satisfying
d^^^ {A}.
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Input parameters: si and A(si 9 A).
Output parameters: .̂
(520) Obtain @> by Algorithm ALL with parameters si, [A] and {u} for all

elements u of
(521) End IND.

(Algorithm ALL (st9 A, C,
Purpose: To store into & all max-indecomposable subfamilies ̂  of j/ satisfying

Λ/ ^ « z> {A} and <#> n C = 0 .

Input parameters: si, A and C (Λ/ 3 X, <X> => C, ̂  n C = 0).
Output parameters: .̂
(522) Obtain Jί by Algorithm MAX with parameters si, {A} and C.
(523) If ΛT = 0, then exit.
(524) If Jί ± 0, then do steps S25 and S26 for all elements <£ of Jί.
(525) Store * into .̂
(526) If <#> 7* A, then obtain ^ by Algorithm ALL with parameters si,

A and (C u {u}) for all elements u of
(527) End ALL.

(Algorithm MAX(X Φ, C,
Purpose: To obtain the set Jί of all C-MIF's of 2 in j*
Input parameters: si, 2 and C (2 φ 0, Λ/ ^ 0, <^> n C = 0).
Output parameters: M.
(528) Obtain D*(φ, C).
(529) If D*(99 C) i? 0, then set ΛT as 0.
(530) If D*(®,Qz)® and D*(®9 C) is indecomposable, then set Jt as

(531) If D*(^, C) =3 2 and D*(^, C) is decomposable, then do steps S32-S35.
(532) Set Jί as 0.
(533) If D*( ,̂ C) = 9, then exit.
(534) Set <ti as D°(C)
(535) Repeat step S36 to S39 until * = 0.
(536) Take β from <ff - ®.
(537) Obtain ̂  by Algorithm MAX with parameters j*, (*

and C.
(538) Store all elements of Jί' into ΛT.
(539) Remove B from «
(540) End MAX.

(Algorithm INDEC(j/, I)>
Purpose: To investigate that si is indecomposable or not.
Input parameters: j/.
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Output parameters: /(/ = 0 or 1 according as si is indecomposable or not).
(541) Set / as 1.
(542) If ({A e stf\ A 9 α}> ^ <^> for some element a e <Λ/>, then exit.
(543) Set / as 0.
(544) EndlNDEC.

< Algorithm
Purpose: To obtain the set P^Λ) in Theorem 3.8.

Input parameters: 9.

Output parameters: 9± .
(545) For all subset &' of 9,

if there exists indecomposable subset ̂  of si with
for each si in ̂ ' and α = {̂ : Λ/ e 91} satisfies the condition (PJ

in Definition 3.3, then store α into 9±.

(546) End PL

< Algorithm
Purpose: To obtain the set P2(^, /) in Theorem 4.13.

Input parameters: 9± .
Output parameters: ^2.
(547) For each element α e 9^

if SP/Cίφ SP/( {<*>}) for all «"s in α with |«Ί ^ 3, then store α into
(548) End P2.

THEOREM 6.4. For α gwen <£/, ̂ ,/> vvίί/i (A1-A2), ί/ze αboue algorithms
can find an MSPD by finite processes.

PROOF. Corollaries 4.12, 6.3 with C = 0, 6.3, and Proposition 4.2 imply
that the algorithms MAX, IND, ALL and INDEC, respectively, are correct.

Assume that si is a max-indecomposable subfamily of 38. If an element A of
si is selected in steps S7 or Sll of the algorithm MAIN, then si is stored into
9 in steps S8 or SI 2, respectively. If an element A of si is not selected in

steps S7 or Sll, then si is a max-indecomposable subfamily of 0& — {A}.
Since $ is a finite set, the algorithm MAIN can go to step SI 5 after finite

repeats and some element A of si is selected in step S7 or Sll; or stf is stored
into 9 in step S3 or S10. Thus all max-indecomposable subfamilies in J* are
stored in 9 before step SI 5. Theorem 3.8 and Theorem 4.13 imply that there
exists β e ̂ 2 with s4β is an MSPD for <[/, ̂ , />. This completes the proof.

We demonstrate how to construct an MSPD by the algorithm MAIN and

its effectiveness in the following example.
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EXAMPLE 6.1.

@

Bi

B2

B3

B4

Bs

B6

B ,

Bs

B9

BIO

/
SP,

U

M j M2 M3 M4 M5 M6 M7

1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

1 1 1 1

1 1 1

1 1 1

3 2 2 2 2 2 2

Part(^)

^
12

24

12

12

12

8

4

16

8

12

120

^o

24

12

4

16

8

12

24

100

{U}

192

192

Let be given U, & and / in the above table. The table shows the

comparison of SPf of ̂  itself, {U} and an MSPD ^0

 for <IΛ #»/> that is

constructed by the algorithm MAIN as follows.

1) Set jtf as & in SI. Then stf is decomposable by S5 and Bs is found in S7.

2) By Algorithm ALL with parameters s/9 £8, 0 and ̂  in S8, {{53, B5, B8,

^10}} is obtained as ̂  in S22; and {B3, B5, B8, B10} is stored into ^ in
S25.

3) By Algorithm ALL with parameters Λ/, B8, {w t} and ̂  in S26, {{B8}} is
obtained as ^JT in S22; and {Bs} is stored into ̂  in S25.

4) j/ becomes {JJl9 52, 53, B4, 55, 56, 57, B9, B10} in S13.
5) <£/ is decomposable by S5 and B10 is found in S7.

6) By Algorithm ALL with parameters s/, B10, 0 and & in S8, {{^10}} is
obtained as M in S22; and {Blo} is stored into ̂  in S25.

7) j/ becomes {Bl9 52, B3, B4, 55, 56, 57, 59} in S13.

8) j?/ is decomposable by S5 and 52 is found in S7.
9) By Algorithm ALL with parameters X B2, 0 and ̂  in S8, {{Bί9 B2, B3,

B9}} is obtained as ̂  in S22; and {Bl9 B2, B3, B9} is stored into ̂  in S25.
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10) By Algorithm ALL with parameters s/9 B2, {u3} and ̂  in S26, {{B2}} is

obtained as Jί in S22; and {B2} is stored into & in S25.

11) si becomes {Bl9 B3, B4, B5, B6, Bl9 B9, B10} in S13.

12) si is decomposable by S5 and B3 is found in S7.

13) By Algorithm ALL with parameters si, B3, 0 and & in S8, {{B3}} is

obtained as Jί in S22; and {B3} is stored into ̂  in S25.

14) si becomes {Bl9 B4, B5, B6, BΊ, B9} in S13.

15) si is decomposable by S5 and B9 is found in S7.

16) By Algorithm ALL with parameters s/9 B9, 0 and ̂  in S8, {{B9}} is

obtained as Jί in S22; and {B9} is stored into & in S25.

17) si becomes {Bl9 £4, B5, B6, BΊ} in S13.

18) si is decomposable by S5 and BΊ is found in S7.

19) By Algorithm ALL with parameters s/9 BΊ, 0 and 0> in S8, {{B7}} is

obtained as Jί in S22; and {BΊ} is stored into ̂  in S25.

20) si becomes {Bl9 £4, B5, B6} in S13.

21) si is indecomposable by S5 and si is stored into ̂  in S10.

22) In Algorithm IND with parameters s/9 B^ and ,̂ {{B^} } is obtained as Jί

by S22 of Algorithm ALL with parameters si> Bl9 {u6} and ̂  and {B^ is

stored into 0> in S25.

23) d becomes [B4, B5, B6} in SI3.

24) si is indecomposable by S5 but si is not stored into ^ in S10, because

there exists {Bl9 B4, B5, B6} satisfying ({Bl9 B4, B5, B6}y = <{54, B5, £6}>.

25) In Algorithm IND with parameters s/9 B4 and ̂  {{^4}} is obtained as Jί

by S22 of Algorithm ALL with parameters si> B4, {u3} and ̂  and {B4} is

stored into & in S25.

26) si becomes {B5, B6} in SI3.

27) {B5} and {B6} are stored into ̂  in S3.

28) We have ^ = (j/f: 1 ̂  i ̂  13}, j/£ = {JBj (1 ̂  i ^ 10), j/n = {Bl9 B4, B5,

B6}> ^ί2 = {BI, B2, B3, B9} and s/13 = {B3, B5, Bs, B10} in S15.
29) In Algorithm PI with parameters ^ and ^15 Theorem 3.8 implies that

{j2/12, .δ/ii — {^i}, J/7, ^/8, J2/10} is not an element of PI(^), because

<Xιι — {^ι}> ̂  ̂ i and Λ/i2 — {̂ 1} is decomposable. {j?/13, Λ/12 — {^3},
j/4, j/6, j2/7} is not an element of P )̂, because <J2/12 — {^3}) => #3 and

«β/13 — {-B3} is decomposable. {eS/13, .c/n — {J55}, s#2, stfΊ,s#9} is not an

element of P )̂, because (j/n — {B5}y ^> B5 and Λ/13 — {.85} is decom-

posable. Therefore we have ̂  = {αf: 1 ̂  i ̂  4}, where u1 = {j/f: 1 ̂  i ̂

10}, α2 = {̂ : i = 2, 3, 7, 8, 9, 10, 11}, α3 = { f̂: i = 4, 5, 6, 7, 8, 10, 12} and
α4 = {̂ : i = 1, 2, 4, 6, 7, 9, 13}, in S45.

30) By Algorithm P2 with parameters ̂  and 0*2 in SI6, since

SPfCfl/n) (=44) > SP^ί^n)}) (=24),
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SPjWiί) (=56) > SPf({<s/l2>}) (=48) and

SP/^) (=52) > S P f ( { < s f 1 3 > } ) (=48),

we have ^2 = {α/: 1 = * = 4}
31) α2 is found in S17, because SPf(s/Λί) = 120, SP,̂ ) = 100, SPf(s/Λ3) =

112 and SP/j/J = 116.
32) j/o as ,<2 in SI8.

The above algorithm is not necessary enough to solve a general MSPD
problem, but Example 6.1 shows that the algorithm is effective for statistical
database designs, because \U\ ̂  20 and \Ά\ = 200 in most statistical databases.
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