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Periodic zeta functions for rank 1 space forms of symmetric spaces
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1. Introduction

For the modular group Γ = PSL(2, Z) and a positive number α, A. Fujii
[5], [6] has studied a periodic zeta function

7 — V sin αr,-

associated with the discrete spectrum 0 = λ0 < λ{ < ••• of the Laplace-Beltrami
operator acting on L2(Π+/Γ) where Π+ is the upper half-plane. Here, as

usual, Γj is given by λj = ^ + rj. Using the Selberg trace formula Fujii proves

that Zα has an analytic continuation Zα to the whole plane—ie. Zα is an
entire function. Among other results he also proves that

(1.2) limα.logWι) (α - log

where {P^ is any hyperbolic conjugacy class, TV is the norm function and
A is the von Mangoldt function for the Selberg zeta function. Some related
work appears in [2], [4], [10], [14].

It seems natural to replace Π+ by a general rank one symmetric space

G/K where G is a connected non-compact semisimple Lie group with finite
center and K is a maximal compact subgroup of G. A suitable version of

the trace formula is available in this context for Γ a discrete subgroup of

G. In this paper we consider indeed a corresponding zeta function Zα, as
in (1.1), and prove that Zα extends to an entire function on the complex

plane at least when G is simple and Γ is without torsion and is co-com-

pact. Actually we construct an infinite family {Zα j b}b>0 of zeta function with
Zα o = Zα. Each Zα j, is entire; see Theorems 5.17 and 6.10.

For the modular group Γ one has the well known fact that λ1 > £; ie.

no complementary series representations of PSL(2, R) occur in the discrete

spectrum of L2(Γ\PSL(2, R)). However, in the case at hand complementary
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series indeed can occur in L2(/ΊG)[18]. Extra care therefore must be taken
to analytically continue the Zαfc. We consider an appropriate version of a
von Mangoldt function A for the space form XΓ= Γ\G/K, and we formulate
the analogue of (1.2). As in [6] this requires a formula for the special value

2. Normalization of measures

Let g0, f 0 denote the Lie algebras of G, K and let (,) denote the Killing
form of g0. Then for p0 = {x e g0|(x, f0) = 0}, g0 = f 0 + p0 is a Cartan de-
composition of g0. Let θ be the corresponding Cartan involution and let g,
f, p denote the complexifications of g0, Ϊ0, p0. Fix an Iwasawa decomposition
G = KAPN of G where Ap = exp αp, N = exp n0 for αp maximal abelian in
Po and n0 is the sum over a positive system Σ+ of restricted root spaces. Let
αc be the complixification of a maximal abelian subspace α of p0 which
contains αp. Then αc is a 0-stable Cartan subalgebra of g. The set of
non-zero roots of (g, αc) is denoted by Φ. Choose in Φ an dp-compatible
system of positive roots Φ+ and set

P+ = ί α 6 Φ + | α ^ O o n α p }
(2.1)

2p = <P+>

where <β> = £ae(2a for Q c Φ. Then in fact we can take Σ+ = {α|αjα e P+}.
We will assume that the R-rank of G is 1 (ie. dim αp = 1) so that Σ + has
the form Σ+ = {β} or Σ+ = {β, 2β}. The Iwasawa decomposition of G gives
rise to a smooth map /f : G -> αp for each x e G, x = k(x) exp H(x) e KAPN.
We fix the choice of basis element H0 of αp by

(2.2) β(H0) = 1

Haar measures da, dn, dx, dv on Ap9 N9 G, α* (dual space of αp) respectively
will be normalized by the equations

h(a)da= h(exptH0)dt
)R

(2.3)

ί h(ά) da = f
JA, JR

fJ/ 2p(H(βn}}dn = ί

f f(x) dx = I I I /(/cαn)e2p(log<1) dkdadn
JG JNJΛVJK

Γ 1 Γω(v) dv = — \
J< 2πJ Λ

ω(tβ) at
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for heCc(Ap), /eCc(G). ωeCc(α*) where at denotes Lebesgue measure on

R. dk = normalized Haar measure on K. For 7" a discrete subgroup of G

let mr be the unique G-in variant measure on Γ\G such that

(2.4) ί /(*) dx = ί
JG J Γ\G

f(γx)) dmΓ(Γx)

Let G be one of the following Lie groups: SO^n, 1), SO1(2n + 1, 1) (n > 1),

SU(n, l)(n > 2), Sp(n, l)(n > 2), or F4r(_20}9 up to a local isomorphism. Let c

denote Harish-Chandra's c-function for the spherical Plancherel measure of

G/K. Given the normalization of measures in (2.3) Miatello's computation

[13] of |c( )Γ2 takes the form

CGπrP(r) tanh πr for G = SO^n, 1)

CGπP(r) for G = SOv(2n + 1, 1)

(2.5) πr
CGπrP(r) tanhε — forG = SU(n,

πr
CGπrP(r) tanh — for G = Sp(n, 1), F4 (_2 0 ),

where CG, P(r), ε are given in the following table. Here Γ( ) is the classical

gamma function

TABLE 1

G

(local isomorphism)

S0i(2n, 1)

n > 1

S0,(2n + 1, 1)

n> 1

SU(n, 1)
n>2

n>2

^(-20)

CG

1
θ4π — 4 ΓV \2y (n)

1
Λ4π-2r /M _ι_ 1\2

I 2^

1

22"-2Γ(n)22

1

24πΓ(2n)22

1

220Γ(8)22

P(r) ε po

π

U(r2 + (n-j + tf) «-i
J=2

n

Π (r2 + (" Λ2) «
1 1

π((r}2

+

("-2»2} ( ιr.j-i Vw 4
see (2.6) 2« + 1

see (2.7) 11

For Sp(n, 1), F4(_20), P(r) is given respectively by
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\2\ / / ^ \ 2 / ς \ 2 \ / /-Λ2

(2,,

Thus for G 7^ 50i(2n + 1, 1), P(r) is an even polynomial of degree d — 2 where
d = dim G/K. In these cases we write

(2.8) P(r) = a0 + a2r
2 + α4r

4 + + α2(d/2-1)r
2(d/2-1)

For G = SO^ζln + 1, 1), P(r) is also an even polynomial but of degree d — 1 =
2n which we write as

(2.9) P(r) = α0 + α2r
2 + a4r

4 + - + «2nr2M

Note that the normalization of Haar measures in [13] differs from that given

in (2.3).

3. The zeta functions Zα, Zα b

From now on Γ will denote a discrete torsion free co-compact subgroup
of G. Let G be the unitary dual space of G — the set of equivalence classes of

irreducible unitary representations (π, Hπ) of G where Hπ is the Hubert space

of π. π is called class 1 if π\κ contains the trivial representation of K. That
is, there is a π(X)-fixed unit v in Hπ. The latter gives rise to the corresponding
positive definite spherical function of φπ which in fact determines π:

(3.1) ψπ(x) = <t?, π(x)v > for x e G where <,> is the inner product on Hπ.
We let {πj}j>Q c G be a representative set of all the class 1 representations

of G which occur as subrepresentations of the right regular representation of

G on L2(Γ\G) (ie. where G acts by right translation). This L2-space is formed

with respect to the measure mr in (2.4). Let nj be the multiplicity mπ.(Γ)

with which π, occurs in L2(Γ\G). One knows that each n, is finite [18]. We

arrange the labeling so that π0 = 1, the trivial representation of G; then

ΠQ = 1. As a spherical function each φπ. has the form φπ. = φv. for some v,-

in the complexification α*c of α*, by a theorem of Harish-Chandra [11],
where for any v e αjc,

(3.2) d=i:f f
JK
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for x e G. If M, M' are the centralizer, normalizer of Ap in K9 respectively,

so that W = M'/M is the Weyl group of (g0, αp) then the v, are determined

up to the action of W. For the sake of specificity we normalize the choice

of the Vj by

Vy(H0) ^ 0 if v,(H0) e Λ

<3'3)

Then v0 = ip — ie. φip = 1. We set

(3.4) λj = P

2 + Vj(H0)
2

Relative to a suitable Riemannian metric on G/K (and thus on XΓ) one may

regard the λj as the spectrum 0 = λ0 < λ1 < λ2 < '" of — Δ on XΓ9 where Δ

is the Laplace-Beltrami operator. Then rc, is the multiplicity of the eigenvalue

λj on C°°tX». Note that for G = PSL(29 R)9 PO = i and the Vj(H0)
2 corre-

spond to the rf above; compare the remarks accompaning (1.1). Given α > 0

we therefore define Zα by

(3.5) Z (s) = Y > nj sm αrj

for s E C with Re s sufficiently large where we set Tjά= Vj(H0). More generally

for b > 0 we set

Thus Zα,0 = Zα.

THEOREM 3.7. Lei b > 0, σ e #. T/ien Xj,Γj.>0 77 - 2\(g+ι>/2 converβes for

σ > r f d = d i m G/K. In particular ZΛtb(s) in (3.6) converges absolutely for

Re s > d.

To prove this we use

THEOREM 3.8 [8]. £,.>0 Γ1 . 2\ 2Ί<τ converges for σ > -.
LI H- Γy + Poj z

r (l + r? 4- p2)σl2

PROOF OF THEOREM 3.7. Take σ>d and r,.>0. Then -̂— — J

«- , , Λ B,Γ, 2n,.
)>some;0 sufficiently large

r/)(ff+1)/2

for 7 > jo, so Theorem 3.8 => Theorem 3.7.
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One knows that only finitely many of the rj satisfy rf < 0; recall
that v0 = ip so that r0 = ip0 =>r\ < 0. We assume that r0, rl9...9rt only

satisfy rf < 0; ΓQ < r\ < - - < rf < rf+l < , r? -> oo in accordance with

0 = /10 < A! < Λ2 < •"
In sections 5, 6 we shall study the analytic continuation of the Zα>fc,

using the Selberg trace formula. To state this formula, in a form con-

venient for our purpose, we first introduce additional notation. Let
A* =exp{ί#0|ί>0}. As Γ is torsion free and co-compact any γeΓ— {1} is
conjugate in G to an element of MA+ (using that y is semisimple and acts

freely on G/K [15], and that as dim αp = 1, G has at most 2 Cartan subgroups,
up to conjugacy). Thus we can choose x e G such that xyx~1=my(x)
e\pty(x)H0, where my(x)eM, ty(x) > 0. By Lemma 6.6 of [16], ty(x) is
independent of the particular choice x in G, and up to conjugation in M so

is mγ(x). We therefore write ty = ty(x), my = my(x). δeΓ — {1} is called

primitive if it cannot be written in the form y{ for some y x in Γ and j some

integer > 1. According to [7] each ye Γ — {1} can be written y = δj(γ} for a
unique primitive element δ in Γ — {1} and a unique positive integer j(y). Let

CΓ be a complete set of representatives in Γ of its conjugacy classes, and let

(3.9) C(y)-1 = ̂ o|detno(Ad(mv expire)'1 - 1)1

for yeΓ— {!}. Given the normalization of measures in (2.3) the trace for-

mula can be stated as follows [7], [8], [16], [18]

Π 1m V M F*Λ; i f f \\ _—v- \ ~ / l zr*/yU^»Λ|-2Λr -I- V
(p.lUJ 2-tJ>Onj^ (yj\**θ)) — ~j 1 ^ (r)\C(r)\ ar ^ ZjyeCr~{l}

where F* is an even, holomorphic function of suitable growth at infinity and

(3.11) F(u) = — F*(r)e~iru dr
2πJ Λ

(3.10) holds in particular for all F* which arise as the spherical Fourier
transform of a K-biinvariant function in the Harish-Chandra-Schwartz space

^ι(G) [18]. Such a function is F*: r-+re~(<*2+r2)x sin αr where x, a > 0 are
fixed with α real.

4. Some integral formulas

In addition to the trace formula the analytic continuation of the Zα fc

will be based on some integral formulas. It seems convenient to consider
these now as an effort to maintain the flow of ideas of the next section. Let
α, a, b>0 and let n = 0, 1, 2, 3, ..., be a non-negative integer. Since
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r" n + 1
2eLi(R) for Re 5 > — > the functions /„ = /π,α,α,fc given by

(b + r2)5

(4.D /n(s) = £r2"(sinαr|tanhα^r

are well-defined for Re s > —-— = n + -.

We study the integral /0(s). Write

αr — αr Λ2αr i

tanh αr =
e~ar e2ar

, , ^ Γ00 (sin αr) tan

to obtain /0(s) = 2 i - -̂ —
Jo 1D "I" r

f0 0 sinαr
(42) 2 Jo (FT

tanh αr dr

αr , , °° sn αr

The modified Struve Functions Lv and Bessel functions of an imaginary argu-

ment /v are defined by

Λ2m+v+l

(4.3) v v , ^m-υ Γ(m + 3/2)Γ(v + m + 3/2)

(4.4) /v(z) = e-π/2vίJv(^π/2ίz) -π < arg z < -

where

zv

(4.5) Jv(z) = — X*=o (- 1Γ^2^
z2m

That is, the Jv are Bessel functions of the first kind. From page 426 of [9]

(4.6) ί °° (β2 + r2Γ ̂  sin αr dr = ^Y /ϊv + i [7_,(α/?> - L¥(α/ί)]

for α > 0, Re 0 > 0, Re v < \, v Φ -\, -f, -f , ... . Therefore by (4.2)

sin αr dr
(4.7) /,

Γ00

Ό(s) = -4
Jo + 1)(6 + r2)5

for s^ 1, 2, 3, 4, ..., Re s > i
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If Hv are the Struve functions, ie.

(4.8) Hv(z) =

Π m + l j r i v .

ίz\~v z ( 3 3 z2\l ( 3\
then from page 38 of [3] - #v(z) = ̂ ι^2 1;- + v, - - -} Γ v + -

\ίj ^/π \ z z ^ / / \ z/
is an entire function of z and of v (where 1F2 is a generalized

hypergeometric series). Replace z by iz to obtain in particular that

v->^= 1F2[ 1;- + v, - — )//Ί v + -) is an entire function Ψz of v.
π

,
2 2 4 / 2

But ιAz(v) = ΐ ( - ) ί-v(*) as Lv(z) = - ίe-ivπ/2Hv(zeiπ/2). Thus we see that in

particular v -> Lv(a^/b) is an entire function; i.e., in (4.11) s-^Lίl2.s(oί^/b) is

an entire function. Similarly s ^/_ ( 1 / 2_ s )(αΛ/fc) is an entire function since in

fact v -> Jv(z) is entire. Now s->Γ(l — s) is meromorphic with simple poles

at 5 = 1, 2, 3,..., and the residue at 1 + k is -(- l)k/k\ for k = 0, 1, 2,... from

the identity L_(k+1/2)(z) = /fc+1/2(z), k = 0, 1, 2,..., page 39 of [3], we see that

-0 = 0

and we therefore conclude that each of the points s = 1, 2, 3, ... is a removable

singularity of s-»Γ(l - s)[I_((1/2)_s)(a^Ί>) - L(1/2)-s(αv/ft)] is entire; ie.

PROPOSITION 4.9. In (4.7) the function s-+Γ(l — 5)[

^ i , i , . , , , Γ°° sin αr Jr
On the other hand it is easy to check that — ̂  — — — - ̂ - converges

J i (̂  + I)(D H- r )
uniformly on compact subsets of the plane and thus is an entire function of

Γ 1 sin αr dr .
s. -̂  — τγτ7 - 2^ is also an entire function of s. Given Proposition

Jo (e -\- l)(b + r )
4.9 we therefore have

THEOREM 4.10. The right hand side of equation (4.7) defines an analytic

continuation of /0 as an entire function.

We should observe in general that the /„ are holomorphic functions on Re s >

1 , , ^ Γ 1 r2n(sin αr) tanh ar dr ^ Γ00 r2n(sin αr) tanh ar dr

" + 2 N<"°* ' (S)-2J0 (tl^r — + 2J, otr-r — '
where the 1st integral is an entire function of s and 2nd one converges uniformly
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on compact subsets of Re s > n + -.

Γ°° r2/I(sin αr) dr 1
Let 4(5)= ' 2 s for R e s > n + -. Then as in (4.2) /„(*) =

Jo \D "I" r ^
f°° r2π(sin αr) dr

2An(s) — 4 -̂ ——— -̂ where the latter integral is entire in s. Now
Jo (e + 1)(^ + r )

r2π(sin αr)_ 2(π-i)(
(h+r2)* =r -

An(s) = An^(s — 1) - bAn_i(s). We have observed that AQ extends to an entire
function, by (4.2), (4.7) and Proposition 4.9. By #, inductively, each An

extends to an entire function and thus each /„ extends to an entire function; ie.

THEOREM 4.11. The functions In = In^a,b defined in (4.1) are holomorphic

on Re s > n + \ and extend to entire functions.

Similar to the definition of /„ in (4.1) we define Kn = Kn,α,α,b for α, α,

& > 0 , n = 0, 1, 2, 3, ..., by

_ _ , . x ) coth αr <

For Re s > n + \. Using that coth x — tanh x = (tanh x) csch2x we get

"(sin αr) (tanh αr) csch2αrΓ r2π(sir
(4.13) Km(s)-In(s)= ~^~

J R (b + r2)
-dr

for Re s > n + \ where the integral in (4.13) is an entire function of s, as
r->r2ncsch2 αr has exponential decay at oo. Because of Theorem 4.11 we

may conclude

THEOREM 4.14. For n > 1 the function s-»Kπ(s), which is holomorphic on

Re s > n + \, extends to an entire function.

For n = 0, 1, 2, 3, ..., α, b > 0 define Sn = Sn^b by

I* 2n + 1 / \ jr " (sin αr) dr

(4-15) S"(S) = JR (fc + Λ

for Re s > n + 1. Similar to the argument which led to equation # preceding

r2π+1(sin αr) r

2(n~1)+1 sin αr br2(n~i)+1 sin αr
Theorem 4.11 we have — ~-— = ^ —-. ^ =>

(b + r2)3 (r2 + b)*-1 (b + r2)5

Sn(s) = S^^s — 1) — £?£„_! (s). By induction (again) each Sn, n > 1, will extend
to an entire if only 50 does. By page 427 of [9], 50(s)/2 =
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for Re 5 > 1, s + 1, 2, 3, . . . , where Kv is the X-Bessel function: For v, z e C

(4.17) Kv(z) =
2 o

s -> Ks(oL^/b) is entire in s and s -> cos π(i - s) vanishes at the poles s = 1,

2, 3, . . . , of s -> Γ(l - s). That is, s -> [cos π(£ - s)]Γ(l - s) is entire (s = 1,

2, 3, ... are removable singularities) and thus by (4.16) S0 extends to an entire

function. That is

PROPOSITION 4.18. The holomorphic function SnjΛ^b defined in (4.15) extends

to an entire function.

For application of the trace formula, (3.10) we shall need the Fourier

transform of the function r -+e~r2χr sin αr. Namely

PROPOSITION 4.19. For ueR, x, α > 0,

I-in, -
ιr"

, -Λe - ,e ' xr sin αr αr = — - == -- 1-
4χ3/2 - 4χ3/2

LPROOF. We assume the known formula (4.20) e ιrce r x dr =

Γ 2

/- e~c2l4x for the Fourier transform of r -> e~r2χ, x > 0; c e R. Let I(u) =v*
e~irue~r2χr sin αr dr, H(u) = e~irue~r2χ cos αr dr, J(u)= e~irue~r2χ sin αr dr

JR JR JR
for ueR. Write the integrand of I(u) as f(r)g'(r) where /(r) = e~ίru sin αr,

0'(r) = e~r2*r. Integrating by parts one therefore obtains I(u) = --H(u)——J(u).

On the other hand one can write 2 cos αr = e*ri + e~Λr\ 2i sin αr = e*ri - e~*ri

and use (4.20) to obtain

(4.21)

J(ιι) =
^ ) 2i^ x

Then Proposition 4.19 follows from (i).

For ί e R, α, x > 0, k = 0, 1, 2, 3, . . . , define
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Γ°°
Fk(t)= e-'2r2ksmtrdr

Jo

Γ°°
r

k(x;α) = e*
Jo

'(*•«)= TV*kx,a J^ e

(4.22) /*(*;«) = er V*(sin αr) dr

The integrand of the second integral is f(r)g'(r) for /(r) = r2fc~1(sin αr), 0'(r) =
re"1"2* so that integration by parts gives

(4.23) 4(x; α) = -^-/^(x; α) + ̂ Λ-ι(x; α) for fc > 1.

The change of variables r -»r^/x also provides the relations Ik(x; α) =

Γ°° / nrr \
(4.24) Jk(x; α) = x^1 ^'"2r2k+1 cos^, dr.

Jo \ ^/x/

We define ^fc(s; α) by

(4.25) φk(s; α) = Xs'1 Ik(x; α) rfx for s e C,
Jo

Re s sufficiently large. Namely, using

Γ°° /I \ f ° °F(α /Ϋ^
(4.24) ^(s;α)= x"5"1/^ - α dx = ,-̂ 2 dx- since ^ is clearly

J i \x / Ji x

bounded we see therefore that φk(s; α) is defined if and only Re s > k + \ and
moreover we see that ^ fc(;α) is holomorphic on R e s > k 4- i, by uniform
convergence of the integral on compact subsets of the latter domain.

PROPOSITION 4.26. For k > 1, Re s > k + -, φk(s\ α) = -F^ία) +

(s-1) \ x'-2Ik-ι(x;*)dx.
Jo

/ 1\ Γ1 α f 1

PROOF. By (4.23), ^(s;α)= fe-^ xs-2/fc-!(x;α)dx + ̂  xs ^(x oOdx,
\ 2 /Jo z Jo

for k > 1. Let !P(s; α) = J P x '̂ .̂ x; α) dx be the 2nd integral. By (4.24)
2 Jo

and the preceding argument ¥%s; α) is well defined for Re s>/c + l, which we
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assume. Note that ^(s;α)= fι(x)g((x) dx for MX) = -xs~*~1/2, g^x) =
Jo

Since F^ is bounded and Re s > k + ̂  one has /ι(x)#ι(x)lέ =

— Ffc_i(α). Thus integration by parts yields Ψ(s\ α) = — F^.^α) -f I s — k — - 1 x

9 by (4.24)
o

— — 5"2again. Therefore φk(sι α) = — Fk-l(a) + (s — 1) xs 2/fc_!(x; α) dx for Re s >
Jo

fc+1, where the r.h.s. is -F^^α) -f (s - l)^fc_ι(s - 1, α) by (4.25). On the
other hand we have seen that both sides of equation # are holomorphic on
Re s > k + \. Therefore # holds for Re s > k + \, as desired.

On page 172 of [5], Fujii defines the sum of two integrals /16, /17
pi / p i poo\

by 6(/16 + / 1 7)= xs~M + \e~r2χr2(smoίr)drdx. By our notation
Jo VJo Ji /

6(/16 + /17) = φ±(s\ α). I16/Γ( ) extends to an entire function and Fujii shows
that I1Ί/Γ(-) extends to an entire function. That is φ^cή/Γ^) extends to
an entire function. Inductively we have Π

PROPOSITION 4.27. For k > 1, ^k(;α)/Γ( ) extends to an entire function.

PROOF. We have observed the result to true for k = 1. By Proposition
4.26.

——-— = —— 1 Ob ι (s — 1: α)
Γ(<ti Γίti Γίtiv / \ / \ /

for Re s > k + \. The induction is completed by this equation as Γ(s) =
(s - l)Γ(s - I). Π

5. Analytic continuation of Zab b φ 0.

For x, α>0 define F* by F*(r) = re~(p°+r2)x sin αr, r e C. We have observed

that F* plugs into the trace formula. Moreover F(w)=f-- F*(r)e~iru dr =
2πJ R

/πe~p°x /πe~pox

\ A 3/2 (α - M)e-(M-α)2/4* + X , 3/2 (α + w)e-(M+α)2/4jc for u e R by Proposition
2π4x3/2 2π4x3/2

4.19. The trace formula (3.10) therefore provides

1vol(Γ\G) , . ,
re (p° } (sin αr

}R
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+Σv.cr-{1}

+ (α + ίv)e-(''+α)2/4x]

Multiply both sides of (5.1) by e"°xe~bx for f> > 0 to obtain

(5.2) Σ^on/ e- ̂ sinαr,.

f
JR

+ (α + ty)ίΓ(t'+a)2/4x]

Consider the sum on the l.h.s. of (5.2). As r0 = ip0 and n0 = 1 the summand
corresponding to = 0 is ip0e~(b'p°}x sin αip0 = e"<fc~''°)3C(/90/2)[e~α'>« - e""0].
Similarly, by earlier notation, we may have r l s r2, ..., rteiR — {0}, say r} = iίj

with ίj. >0 by (3.3). Then [n/je~(*+r5)x sin αr^ = n^-^-'^^Ce'^ - e°*J],

!<;</. If Γj eR then r, > 0 by (3.3). Thus we can write (5.2) as

(5.3) 2 ΣΛo>o nJrJe-<b+Φ' sin or,

ί
JR

+ (α + ge-(ί'+α)2/4*]

where we write ί0 = p0; n0 = 1. We note also that

j>0=>λjd=rf + Po >0=>ί7 <p0 .

Consider

/Yςϊ — Vs"1 V M »• 0-(b+r2ii(S) — x 2^j,ri>Qnjrie J

Jo J

For σ = Res, ry > 0

jl < xn^e'^

where
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n. r.
J J <- ππ

I I Γ •> 0 /I '>s/1-._1\-l-1/')^ ^~J'rj > + r/.

for 2σ — 1 > d by Theorem 3.7. Hence by Fubini's theorem

n.r.
(5.4)

d + 1
for Re s > —-—. Let

(5.5)

Θ0(χ) = X nje-v-Φtfe"' - e-"}
j=o

2π
f re-(b+^x(siτ

JR

πx

LEMMA 5.6. Lβί 70 be the smallest j for which r,- > 0; ί/iws j0 > I -f 1.

is α constant B > 0 SMC/I ί/iαί Σ11/^"1"^ - ^~ °̂* for x>l.

PROOF. We adapt the proof of Lemma 4.23 of [17] to the present
situation. Let M(x) = er*x Σ, > ;0+ι n/^'^ for x > 0. For > ;0 + 1, r] > r?o=>

e-<Ί-te<Ze-<*-'fJ for x > 1; ie. M(x) = Σ^+1 nfte-^-'ti* < Σ^0+ι
nfte-^-'ti = M(l) for x > 1. We set B = njorjo + M(l) and obtain

Σj.'jXtnjrje-Ί* = ^orjo^~^x + Σ^JO+I «/^"φ = *~rJo*Kr/o + MW) ^
β-Γϊo*B for x > 1.

Γ°°
COROLLARY 5.7. χ5~1[ΣΛrJ>o π/r/β~(*+rϊ)* sin arj]dx converges uni-

formly on compact subsets of the plane and thus defines an entire function
/(1) of s, for b > 0.

We have /(s)=/(0)(s) + /(1)(s) where

o

Given Corollary 5.7. we focus our study on /(0). By (5.3) and (5.5)
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(5.8) 2 ΣJ.ΓJ>O njηe-^^ sin αr, = (00 + 0t + 02)(χ)

so that

(5.9) 2/(0)(s) = I x -1^ + 0ι + 02)(x) dx
Jo

Γ 1 Γ°°
To study x'^θ^dx we first consider xs~101(x)dx. Assume that b>0.

Jo Jo
Then

Γ Γ°° Γ Γ°°
\x*-ιre-(*+'2)χ(sinoίr)\c(r)\-2\dxdr<\ \r\\c(r)\~2 \ x^^e'^^

JRJθ JR JO

for G Φ SOi(2n + 1, 1) by (2.5) where ε = ±1, a = π or -, and P(r) is a

polynomial of degree d — 2, d = dim G/X; cf. (2.8). Assume for now G +

d+ 1
SOi(2n + 1, 1). We see that the latter integral is finite if Re s>—-—. There-

fore by Fubini's Theorem

Γ00 _ vol(Γ\G) Γ Γ00 _ _ 2xs 1θ1(x)dx = — xs *re (b+r )x(sin αr)|c(r)| 2 dx dr
Jo 2π J R J 0

_ Vθl(Γ\G) Γ / j ., / )Γ2 Γ00 .-1 -(ft+r^d

2π J Λ

r S m α r Jo

_ vol(Γ\G) Γ r(sin αr)|c(r)Γ2 dr

~ 2π JR (b + r2)3

υol(Γ\G) rί ,̂  _ f r2P(r) sin αr tanhε αr dr

r2(fc+1)(sin αr) tanhε αr dr

(b +

(by (2.8)). In case ε = 1 we use (4.1) to write

f* ,-ι

Jo
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for

d \ 1 d+l
2 / 2 2

in which case Re s > each (&+!) + -, 0 < fc < I - - 1 1.

1 Γ°°
By Theorem 4.11 we see that, in case ε = 1, -=^- xs 1θ1(x)dx extends to

ΛS) Jo
an entire function. On the other hand for x > 1, e~(b+f2)x < e~bxe~r2 Vr e #=>

10^)1<^cπ ĵ;^ by (55)? where 4= f rέ?-r2 |c(r)|_2ίir τhis means
2π J*

Γ^
that x5 101(x) dx converges uniformly on compact subsets of the plane; ie.

Γ^
LEMMA 5.10. xs 1θl(x)dx is an entire function of s.

Γl Λoo foo

As xs~191(x)dx= x^θ^dx- xs~lθι(x)dx we have therefore es-
Jo Jo J i

1 f i
tablished that —— xs ^θ^dx as a function of s extends meromorphically

Γ(s) Jo
to C (at least when ε = 1) with possibly simple poles at s = 1, 2,..., d. In

case ε = -1 we argue pretty much the same.

Namely

r2(k+1)(sin αr) tanh-1ar dr

}R (b1
Γ00 s-1

Jo ^ θΐ(

for Re 5 > —ΐ—

In place of Theorem 4.11 we now appeal to Theorem 4.14 to conclude that

xs~191(x)dx still extends to an entire function.

Γ 1

The final case to consider in studying xs 101(x)dx is the case G =
Jo

(2n + 1, 1) (or G locally isomorphic to SO^rc + 1, 1)). Then by (2.5), (2.9)
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with

Γ°°

vol(Γ\G) „,_„ „ Γ r2;+1(sinαr)<ίr
CG^^Γ(5)Σ«=0α2, ί ̂

2 J Λ (*> + r2)*

by (4.15), for Re s > —ΐ— = n + 1. Thus by Proposition 4.18, | x'^fl^x)

extends to an entire function.

We turn attention now to the study of the term I xs~1θ2(x) dx in (5.9)

4.18, Γ x*-1^
Jo

Γχ -lθ2(
Jo

which we write as T(s) = | 021 - j t s 1 at using the transformation x = -.

We shall argue as in [12], [17] and rely on the following result of DeGeorge.

For x > 0 let E(x) = \{γ E CΓ- {l}|ίy < x}|, E(x) = \{γ ε CΓ- {l}|x < ty <
x + l } | , where |s| denotes the cardinality of a set S. Then by [1], for
some β > 0 it is true that lim^^ βxe~βxE(x) = 1. From this it follows that
there is an integer j0 sufficiently large and a positive number δ such
that

(5.12) E(x)<-eβx for x > 70 .
x

Now by definition of E(x) one has

= (x + l)(α + x + l)e-*2"Vx+1)0"/2£(x)

'^5^-^(α + x + l)e-Λ'V*+1)β/V* for x>; 0.

Taking ;0 a bit larger, if necessary, we assume j0 > 2α + 1. Then if
d/»(ί)= -( Ό + « - l)2t/4+(;0 + n)αί/2 for ί e R, we clearly have

Λdfnl(. , ._ (Jo + n - I)2 + (Jo + n)2α
4 ί ; ° }~
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= [(Jo + n)2 ~ 2( jo + n) + 1] + ( jo + n)2α

Oo + n)

= -Jo - n + 2 - - - + 2α < -j0 - 1 + 2(α + 1) < 0
Jo + n

ie. /„'(*) < 0 Vί =>/„ is decreasing:

(5.13) -Oo + n - l)2ί/4 + Oo + *)αf/2

< -θΌ + w - l ) 2 / 4 H - ( j 0 + Λ)α/2 Vn, for ί > l .

LEMMA 5.14. Let

S(t) = Σtγ>J0ty(oc + tγ)e-^4et^2 for tεR.

Then S(t) converges for every t > 0, and is bounded for t > 1.

PROOF.

= Δ^tγ>j0 ^

Jo

Jo + 1

4. g fa + (

7o + 2

+ •••• (by #) =

= (5 V °°_ vJθ "*" n) /α + _j_ n

"-1 7o + n - 1

which converges for every ί > 0 by the ratio test. In particular for t > 1 we
have

S(t) < δ Σ?=1 . 7o + n (α +7o + π)β-ϋo+«-i)2/4gϋo+")«/2β/iϋo+--i)
7o Ί n "~ 1

Going back to (5.5) we have

/A β-fc/ί
(5.15) Θ2 - =

Jo
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/2 ΣyeCr-{1}π

for ί > 0 .

We denote the 3 terms in (5.15) by T ί̂), Γ2(ί), T3(ί) respectively. There-

fore τ(s) d= \ θ2(-]rs-1dt = °° Tiφr1-1 at + I °° τ2(ί)rs~1 dt +
Jl V/ Jl Jl

Γ T3(ί)ί~s-1 Λ. We claim 1st that T2(t)t s 1 dt is an entire function of

s. As in [12] there is a bound M0 for the numbers C(y). If M = °

we have for t > 1, |Γ2(ί)| < <Γα2'/4Mί3/2 £iy>;o ίy(α + ty)e~

e-*2t/*Mt3/2S(t) < έ?-α2ί/4f3/2MC, for some constant C, by Lemma 5.14. It fol-

lows that T2(t)t s 1 dί converges uniformly on compact subsets of the

plane and thus defines an entire function of s. 7i(ί) is a finite sum with
-b/^3/2

each term - ̂ -ίy;(y)C(y)(α-ίy)^-(ί^α)2ί/4, ίy</0, bounded by ί3/2Mίy(α + ίy).
4vΛ

π

Γ°°
β-(ίy-α)2t/4. je T^ίjί'5"1 dt similarly is entire in s, being a finite sum of

J i
functions entire in s. We have |Γ3(ί)| < e~α2ί/4Mί3/2S(ί), where

-'*ί4

r-{ι} ίr(« + ί>-'ί/4 = SiW + 2(t)

where

^W < C for t > 1 ,

again by Lemma 5.14. Recalling the definition of £(x) one has S ί̂) <

Σt,zjJo(<*+Jo)=Jo(<*+Jo)E(Jo) for ί>0 τhus we see that, similarly,

1, T3(t)t s dt converges uniformly on compact subsets of the plane and
i

therefore also is an entire function of s. In conclusion, we have that T(s) =

Γ 1 - Γ00 Λ\
xs 1θ2(x) dx = \ Θ2[ ~ \t s 1 dt is an entire function of 5; here we allow

Jo Ji W
b>0.

Γ 1

The one remaining term x5 1θ0(x)dx in (5.9) is the easiest to ana-
Jo

Γ 1 _ - df
lyze. From (5.5), xs iθ0(x)dx = Σj=onjtj[e<*tj — e aij']^(s), where -̂(5) =

Jo
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ί1
Jo

i
e-(b-ή)XχS-ι ^χ Let ^ be ^e incomplete gamma function:

(5.16) y2(s, t) = e-χxs~l dx;,ί) = Γ
Jo

where Re 5 > 0, t e R. For b - ή* 0 ̂  = (b " ̂ "̂  * " **\ which is

known to be entire in s. If b = if, ^-(s) = - and clearlyJ J s Γ(s) sΓ(s)
1 f i

(defined to be 1 for s = 0) is entire. Thus — — xs 1θ0(x) dx is entire in s
AS) Jo

for b > 0.
In conclusion we deduce from (5.4), Corollary 5.7, (5.9), and the definition

/ = /(0) H- /(i) of /(0), /(1) the following key theorem.

THEOREM 5.17. Zα b as defined in (3.6) indeed extends to an entire function,
for every b > 0.

REMARK. We shall see in the next section that for b = 0, Zα>0 also
extends to an entire function.

6. Analytic continuation of Zα

Γ 1

Because of the term xs 1θί(x)dx in (5.9) we had to assume b > 0 to
Jo

analytically continue Zα b as we did in section 5. There we saw that /(1)

f i
was entire for b > 0 (Corollary 5.7), xs 1θ2(x) dx was entire for b > 0 and

Jo
1 f 1 _ t

x5 Θ0(x) dx was entire for b > 0. Thus to handle the analytic contin-

uation of Zα = Zα>0 we need only to analytically continue xs 1θ1(x)dx
Jo

(by some different means) in case b = 0. We address this matter in this
section. For b = 0 ,

(6.
Jo

vol(Γ\G)

1) ί l x -iθ^x) dx = vol(Γ\G) Γ Γ χ*-ιre-r2χ (sin αr)|c(r)Γ2 dr dx
Jo π Jo Jo

ί$-la2J Γ Γ xs-le-r2χ(smar)r2(j+Vtanh*ardr
Jo Jo

say for G Φ SO^In + 1, 1), where ε = ±1, a = π or π/2. Consider the case
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double integral in (6.1) which

we denote by Φj(s) is

(6.2) Φj(s)= xs-le-r2χ(sm*r)r2(j+l}drdx
Jo Jo

r2(j+1) dr </xΓ 1 f °° x'-V^sin αr)r2(j

Jo Jo ^̂

The 1st integral in (6.2) is by (4.22), (4.25) exactly ^ +1(s;α), which we

know is well-defined and holomorphic in s for Re s >j + 1 + - this inequality

is satisfied for Re s > — - — (see (5.4)), as j < - — 1. Moreover by Proposition

4.27, ^/+i(; α)/Γ( ) extends to an entire function. Thus we concentrate on

the 2nd integral in (6.2), which we denote by Ψj(s). For Re s > 0, Fubini's

Theorem applies:

where xs'le'r2χ dx = r~2s e~uus~l du = r~2sy2(s, r2), by (5.16). Define
Jo Jo

7* by yf (s, t) = t~sy2(s, t)/Γ(s), say for s e C, t e R. Then yj(s, ί) is an entire

function of s, a fact already used, following (5.16). We therefore have

By page 135 of [3]

(6.4) y*(s>ί) = r - [ l + 0 ( | ί | Γ 1 ] as | ί | ->oo.

There are positive constants C, M therefore such that for r > M

-r2 /^ -r2

(6'5) |7*(5? T )l ~ " 2 R C S + r*\Γ®\ + rV(5J| ;

that is

Γ *~r2

(6.6)
\Γ(s)\

for r > M, where C1 = 1 + C. Accordingly we have
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Ψj(s)/Γ(s)=
o T M T

where the 1st term is entire in s. The 2nd term is also entire in s as the
integral converges uniformly on compact subsets K of the plane, by (6.6):

(sin αr)

+ 1
f(s, r2)

flΓ + C1C2r
2(' +1)e-2",

1 I f 1 .
where Re s>η, <C2 for seK. We now have that s^>—— xs lΘΛx)dx

\Γ(s)\ Γ ( s ) J o

extends to an entire function in case ε = 1. To handle the case ε = -1
we use the idea preceding Theorem 4.4. Namely, write coth αr = tanh αr +
(tanh αr) csch2 αr, so that the double integral in (6.1) is now Φ7(s) +

x5~1e"r2χ(sin αr)r2°'+1)(tanh αr) csch2 αr dr dx, where s -> —— Φj(s) ex-ΓΓJo Joo jo
tends to an entire function, as we have just shown, and where again Fubini's
Theorem applies to the 2nd term—call it 7}(s):

(6.7) -A^= (sinαr)r20'+1)(tanhαr)(csch2αr)y?(s,r2)ί/r,

exactly as in equation # . Using (6.6) again we therefore see that s -> Tj(s)/Γ(s)

extends to an entire function — noting that r -> r2 csch2 αr (defined to be -̂

at r = 0) is continuous on R, and that for some C > 0, r2 csch2 αr< Ce~ar Vr >
1 f i

0. This gives the analytic continuation of s -> — — x5 ^θ^x) dx to an entire
ΛS) Jo

function in the case ε = — 1.
In case G is locally isomorphis to S0±(2n + 1, 1) (the final case to

consider).

(6.8) xs-1θ1(x)dx = CGvol(Γ\G)^0a2j \ °° x'-
Jo Jo Jo

by (2.5), (2.9), and the 1st double integral in (6.1). By page 496 of [9]

,6.9,

dr dx

where Hn is the nth Hermite polynomial. Therefore
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Γ 1 s-1

Jo X l X

n f _ 1 V Γ °°
— Γ vnl(Γ\G} /7rY π j τc~s~1^j+1H— G v \ / \/ Z_^ιi=Q Λ ._, Λ I Λ Λ XΛ -

J 1

which is entire in s. This concludes the proof of

def ,
THEOREM 6.10. The zeta function ZΛ = Za>0 defined in (3.6) /or Re s > dim

G/K admits an extension to the whole plane, which in all cases of G is an

entire function.

Compare Theorem 5.17

7. A limit formula

As in [6] we can compute the special value Zα(0) (given Theorem 6.10).

The result, which is rather long and technical, will not be stated here. Using

this result we can prove the following theorem. Recall the notation of section

3; see (3.9), (3.10) in particular.

THEOREM 7.1. For any yl eΓ- {1}

limα_ίn (α - tyι)Z.(0) = ^Σy*Cr-{i}J(yΓltγC(y).

The proof of Theorem 7.1 will appear elsewhere. We note in closing that

Theorem 7.1 coincides with statement (1.2). Namely we define first of all the

von Mangoldt function A by

(7.2) Λ(y) = e^2j(yΓltyC(y) for γ e Γ - {1} .

Define the norm N(y) of y e Γ - {1} by N(γ) = e\ For G = 5L(2, R), N(y) =

maximum of (|c|2 |c = an eigenvalue of y} is the usual definition of the norm.

Also in this case C(y) = -. so that Λ(y) = = for

with δ a primitive element as section 3. That is A in (7.2) reduces

to the usual von Mangoldt function for the Selberg zeta function.

Theorem 7.1 can now be written as

lim^iog^) (« - log ΛΓ(yι))Zβ(0) = - Σyec r-ίi}
2 N(γ)=N(yί)

which is (1.2) for our normalization of Haar measures.
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