Periodic zeta functions for rank $\mathbf{1}$ space forms of symmetric spaces

Leticia Barchini ${ }^{1}$ and Floyd L. Williams ${ }^{2}$
(Received September 20, 1990)

1. Introduction

For the modular group $\Gamma=P S L(2, Z)$ and a positive number α, A. Fujii [5], [6] has studied a periodic zeta function

$$
\begin{equation*}
Z_{\alpha}(s)=\sum_{r_{j}>0} \frac{\sin \alpha r_{j}}{r_{j}^{s}} \quad \operatorname{Re} s>1 \tag{1.1}
\end{equation*}
$$

associated with the discrete spectrum $0=\lambda_{0} \leq \lambda_{1} \leq \cdots$ of the Laplace-Beltrami operator acting on $L^{2}\left(\Pi^{+} / \Gamma\right)$ where Π^{+}is the upper half-plane. Here, as usual, r_{j} is given by $\lambda_{j}=\frac{1}{4}+r_{j}^{2}$. Using the Selberg trace formula Fujii proves that Z_{α} has an analytic continuation Z_{α} to the whole plane-ie. Z_{α} is an entire function. Among other results he also proves that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \log N\left(P_{1}\right)}\left(\alpha-\log N\left(P_{1}\right)\right) Z_{\alpha}(0)=\frac{1}{2 \pi} \sum_{\{P\}, N(P)=N\left(P_{1}\right)} \tilde{\Lambda}(P) / \sqrt{N(P)} \tag{1.2}
\end{equation*}
$$

where $\left\{P_{1}\right\}$ is any hyperbolic conjugacy class, N is the norm function and $\tilde{\Lambda}$ is the von Mangoldt function for the Selberg zeta function. Some related work appears in [2], [4], [10], [14].

It seems natural to replace Π^{+}by a general rank one symmetric space G / K where G is a connected non-compact semisimple Lie group with finite center and K is a maximal compact subgroup of G. A suitable version of the trace formula is available in this context for Γ a discrete subgroup of G. In this paper we consider indeed a corresponding zeta function Z_{α}, as in (1.1), and prove that Z_{α} extends to an entire function on the complex plane at least when G is simple and Γ is without torsion and is co-compact. Actually we construct an infinite family $\left\{Z_{\alpha, b}\right\}_{b \geq 0}$ of zeta function with $Z_{\alpha, 0}=Z_{\alpha}$. Each $Z_{\alpha, b}$ is entire; see Theorems 5.17 and 6.10.

For the modular group Γ one has the well known fact that $\lambda_{1}>\frac{1}{4}$; ie. no complementary series representations of $\operatorname{PSL}(2, R)$ occur in the discrete spectrum of $L^{2}(\Gamma \mid P S L(2, R))$. However, in the case at hand complementary

[^0]series indeed can occur in $L^{2}(\Gamma \mid G)[18]$. Extra care therefore must be taken to analytically continue the $Z_{\alpha, b}$. We consider an appropriate version of a von Mangoldt function $\tilde{\Lambda}$ for the space form $X_{\Gamma}=\Gamma \mid G / K$, and we formulate the analogue of (1.2). As in [6] this requires a formula for the special value $Z_{\alpha}(0)$.

2. Normalization of measures

Let $\mathfrak{g}_{0}, \mathfrak{f}_{0}$ denote the Lie algebras of G, K and let (,) denote the Killing form of \mathfrak{g}_{0}. Then for $\mathfrak{p}_{0}=\left\{x \in \mathfrak{g}_{0} \mid\left(x, \mathfrak{f}_{0}\right)=0\right\}, \mathfrak{g}_{0}=\mathfrak{f}_{0}+\mathfrak{p}_{0}$ is a Cartan decomposition of \mathfrak{g}_{0}. Let θ be the corresponding Cartan involution and let \mathfrak{g}, $\mathfrak{f}, \mathfrak{p}$ denote the complexifications of $\mathfrak{g}_{0}, \mathfrak{f}_{0}, \mathfrak{p}_{0}$. Fix an Iwasawa decomposition $G=K A_{\mathfrak{p}} N$ of G where $A_{\mathfrak{p}}=\exp \mathfrak{a}_{\mathfrak{p}}, N=\exp \mathfrak{r}_{0}$ for $\mathfrak{a}_{\mathfrak{p}}$ maximal abelian in \mathfrak{p}_{0} and \mathfrak{n}_{0} is the sum over a positive system Σ^{+}of restricted root spaces. Let \mathfrak{a}^{c} be the complixification of a maximal abelian subspace \mathfrak{a} of \mathfrak{p}_{0} which contains $\mathfrak{a}_{\mathfrak{p}}$. Then \mathfrak{a}^{c} is a θ-stable Cartan subalgebra of \mathfrak{g}. The set of non-zero roots of $\left(\mathfrak{g}, \mathfrak{a}^{c}\right)$ is denoted by Φ. Choose in Φ an $\mathfrak{a}_{\mathfrak{p}}$-compatible system of positive roots Φ^{+}and set

$$
\begin{align*}
P^{+} & =\left\{\alpha \in \Phi^{+} \mid \alpha \neq 0 \text { on } \mathfrak{a}_{\mathfrak{p}}\right\} \tag{2.1}\\
2 \rho & =\left\langle P^{+}\right\rangle
\end{align*}
$$

where $\langle Q\rangle=\sum_{\alpha \in Q} \alpha$ for $Q \subset \Phi$. Then in fact we can take $\Sigma^{+}=\left\{\left.\alpha\right|_{a_{p}} \mid \alpha \in P^{+}\right\}$. We will assume that the R-rank of G is 1 (ie. $\operatorname{dim} \mathfrak{a}_{\mathfrak{p}}=1$) so that Σ^{+}has the form $\Sigma^{+}=\{\beta\}$ or $\Sigma^{+}=\{\beta, 2 \beta\}$. The Iwasawa decomposition of G gives rise to a smooth map $H: G \rightarrow \mathfrak{a}_{\mathfrak{p}}$ for each $x \in G, x=k(x) \exp H(x) \in K A_{\mathfrak{p}} N$. We fix the choice of basis element H_{0} of $\mathfrak{a}_{\mathfrak{p}}$ by

$$
\begin{equation*}
\beta\left(H_{0}\right)=1 \tag{2.2}
\end{equation*}
$$

Haar measures $d a, d n, d x, d v$ on $A_{\mathfrak{p}}, N, G, \mathfrak{a}_{\mathfrak{p}}^{*}$ (dual space of $\mathfrak{a}_{\mathfrak{p}}$) respectively will be normalized by the equations

$$
\begin{align*}
& \int_{A_{\mathrm{p}}} h(a) d a=\int_{R} h\left(\exp t H_{0}\right) d t \\
& \int_{N} e^{-2 \rho(H(\theta n))} d n=1 \\
& \int_{G} f(x) d x=\int_{N} \int_{A_{\mathrm{p}}} \int_{K} f(k a n) e^{2 \rho(\log a)} d k d a d n \tag{2.3}\\
& \int_{a_{p}^{*}} \omega(v) d v=\frac{1}{2 \pi} \int_{R} \omega(t \beta) d t
\end{align*}
$$

for $h \in C_{c}\left(A_{p}\right), f \in C_{c}(G) . \quad \omega \in C_{c}\left(\mathfrak{a}_{p}^{*}\right)$ where $d t$ denotes Lebesgue measure on R. $d k=$ normalized Haar measure on K. For Γ a discrete subgroup of G let m_{Γ} be the unique G-invariant measure on $\Gamma \backslash G$ such that

$$
\begin{equation*}
\int_{G} f(x) d x=\int_{\Gamma \backslash G}\left(\sum_{\gamma \in \Gamma} f(\gamma x)\right) d m_{\Gamma}(\Gamma x) \tag{2.4}
\end{equation*}
$$

Let G be one of the following Lie groups: $S O_{1}(2 n, 1), S O_{1}(2 n+1,1)(n \geq 1)$, $S U(n, 1)(n \geq 2), S p(n, 1)(n \geq 2)$, or $F_{4(-20)}$, up to a local isomorphism. Let c denote Harish-Chandra's c-function for the spherical Plancherel measure of G / K. Given the normalization of measures in (2.3) Miatello's computation [13] of $|c(\cdot)|^{-2}$ takes the form

$$
|c(r)|^{-2}=\left\{\begin{array}{lll}
C_{G} \pi r P(r) \tanh \pi r & \text { for } & G=S O_{1}(2 n, 1) \tag{2.5}\\
C_{G} \pi P(r) & \text { for } & G=S O_{1}(2 n+1,1) \\
C_{G} \pi r P(r) \tanh ^{\varepsilon} \frac{\pi r}{2} & \text { for } & G=S U(n, 1) \\
C_{G} \pi r P(r) \tanh \frac{\pi r}{2} & \text { for } & G=S p(n, 1), F_{4(-20)}
\end{array}\right.
$$

where $C_{G}, P(r), \varepsilon$ are given in the following table. Here $\Gamma(\cdot)$ is the classical gamma function

Table 1

$\begin{gathered} G \\ \text { (local isomorphism) } \end{gathered}$	C_{G}	$P(r)$	ε	ρ_{0}
$\begin{aligned} & S O_{1}(2 n, 1) \\ & n \geq 1 \end{aligned}$	$\frac{1}{2^{4 n-4} \Gamma(n)^{2}}$	$\prod_{j=2}^{n}\left(r^{2}+\left(n-j+\frac{1}{2}\right)^{2}\right)$		$n-\frac{1}{2}$
$\begin{aligned} & \mathrm{SO}_{1}(2 n+1,1) \\ & n \geq 1 \end{aligned}$	$\frac{1}{2^{4 n-2} \Gamma\left(n+\frac{1}{2}\right)^{2}}$	$\prod_{j=1}^{n}\left(r^{2}+(n-j)^{2}\right)$		n
$\begin{aligned} & S U(n, 1) \\ & n \geq 2 \end{aligned}$	$\frac{1}{2^{2 n-2} \Gamma(n)^{2} 2}$	$\prod_{j=1}^{n-1}\left(\left(\frac{r}{2}\right)^{2}+\frac{(n-2 j)^{2}}{4}\right)$	$(-1)^{n+1}$	n
$\begin{aligned} & S p(n, 1) \\ & n \geq 2 \end{aligned}$	$\frac{1}{2^{4 n} \Gamma(2 n)^{2} 2}$	see (2.6)		$2 n+1$
$F_{4(-20)}$	$\frac{1}{2^{20} \Gamma(8)^{2} 2}$	see (2.7)		11

For $S p(n, 1), F_{4(-20)}, P(r)$ is given respectively by

$$
\begin{gather*}
P(r)=\prod_{j=3}^{n+1}\left(\left(\frac{r}{2}\right)^{2}+\left(n-j+\frac{3}{2}\right)^{2}\right)\left(\left(\frac{r}{2}\right)^{2}+\left(n-j+\frac{5}{2}\right)^{2}\right)\left(\left(\frac{r}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right) \tag{2.6}\\
P(r)=\left(\left(\frac{r}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)^{2}\left(\left(\frac{r}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}\right)^{2}\left(\left(\frac{r}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}\right) \times \tag{2.7}\\
\\
\left(\left(\frac{r}{2}\right)^{2}+\left(\frac{7}{2}\right)^{2}\right)\left(\left(\frac{r}{2}\right)^{2}+\left(\frac{9}{2}\right)^{2}\right)
\end{gather*}
$$

Thus for $G \neq S O_{1}(2 n+1,1), P(r)$ is an even polynomial of degree $d-2$ where $d=\operatorname{dim} G / K$. In these cases we write

$$
\begin{equation*}
P(r)=a_{0}+a_{2} r^{2}+a_{4} r^{4}+\cdots+a_{2(d / 2-1)} r^{2(d / 2-1)} \tag{2.8}
\end{equation*}
$$

For $G=S O_{1}(2 n+1,1), P(r)$ is. also an even polynomial but of degree $d-1=$ $2 n$ which we write as

$$
\begin{equation*}
P(r)=a_{0}+a_{2} r^{2}+a_{4} r^{4}+\cdots+a_{2 n} r^{2 n} \tag{2.9}
\end{equation*}
$$

Note that the normalization of Haar measures in [13] differs from that given in (2.3).

3. The zeta functions $\boldsymbol{Z}_{\alpha}, \boldsymbol{Z}_{\alpha, b}$

From now on Γ will denote a discrete torsion free co-compact subgroup of G. Let \hat{G} be the unitary dual space of G-the set of equivalence classes of irreducible unitary representations (π, H_{π}) of G where H_{π} is the Hilbert space of π. π is called class 1 if $\left.\pi\right|_{K}$ contains the trivial representation of K. That is, there is a $\pi(K)$-fixed unit v in H_{π}. The latter gives rise to the corresponding positive definite spherical function of ϕ_{π} which in fact determines π :
(3.1) $\phi_{\pi}(x)=\left\langle v, \pi(x) v>\right.$ for $x \in G$ where \langle,$\rangle is the inner product on H_{\pi}$.

We let $\left\{\pi_{j}\right\}_{j \geq 0} \subset \hat{G}$ be a representative set of all the class 1 representations of G which occur as subrepresentations of the right regular representation of G on $L^{2}(\Gamma \backslash G)$ (ie. where G acts by right translation). This L^{2}-space is formed with respect to the measure m_{Γ} in (2.4). Let n_{j} be the multiplicity $m_{\pi_{j}}(\Gamma)$ with which π_{j} occurs in $L^{2}(\Gamma \backslash G)$. One knows that each n_{j} is finite [18]. We arrange the labeling so that $\pi_{0}=1$, the trivial representation of G; then $n_{0}=1$. As a spherical function each $\phi_{\pi_{j}}$ has the form $\phi_{\pi_{j}}=\phi_{v_{j}}$ for some v_{j} in the complexification $\mathfrak{a}_{\mathfrak{p}}^{* C}$ of $\mathfrak{a}_{\mathfrak{p}}^{*}$, by a theorem of Harish-Chandra [11], where for any $v \in \mathfrak{a}_{\mathfrak{p}}^{* C}$,

$$
\begin{equation*}
\phi_{v}(x) \stackrel{\text { def }}{=} \int_{K} e^{(i v-\rho)(H(x k))} d k \tag{3.2}
\end{equation*}
$$

for $x \in G$. If M, M^{\prime} are the centralizer, normalizer of A_{p} in K, respectively, so that $W=M^{\prime} / M$ is the Weyl group of $\left(\mathfrak{g}_{0}, \mathfrak{a}_{\mathfrak{p}}\right)$ then the v_{j} are determined up to the action of W. For the sake of specificity we normalize the choice of the v_{j} by

$$
\begin{align*}
v_{j}\left(H_{0}\right) \geq 0 & \text { if } v_{j}\left(H_{0}\right) \in R \tag{3.3}\\
i v_{j}\left(H_{0}\right)<0 & \text { if } v_{j}\left(H_{0}\right) \in i R-\{0\}
\end{align*}
$$

Then $v_{0}=i \rho-i e . \phi_{i \rho}=1$. We set

$$
\begin{equation*}
\lambda_{j}=\rho_{0}^{2}+v_{j}\left(H_{0}\right)^{2} \tag{3.4}
\end{equation*}
$$

Relative to a suitable Riemannian metric on G / K (and thus on X_{Γ}) one may regard the λ_{j} as the spectrum $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ of $-\Delta$ on X_{Γ}, where Δ is the Laplace-Beltrami operator. Then n_{j} is the multiplicity of the eigenvalue λ_{j} on $C^{\infty}\left(X_{\Gamma}\right)$. Note that for $G=P S L(2, R), \rho_{0}^{2}=\frac{1}{4}$ and the $v_{j}\left(H_{0}\right)^{2}$ correspond to the r_{j}^{2} above; compare the remarks accompaning (1.1). Given $\alpha>0$ we therefore define Z_{α} by

$$
\begin{equation*}
Z_{\alpha}(s)=\sum_{j, r_{j}>0} \frac{n_{j} \sin \alpha r_{j}}{r_{j}^{s}} \tag{3.5}
\end{equation*}
$$

for $s \in \boldsymbol{C}$ with $\operatorname{Re} s$ sufficiently large where we set $r_{j} \stackrel{\text { def }}{=} v_{j}\left(H_{0}\right)$. More generally for $b \geq 0$ we set

$$
\begin{equation*}
Z_{\alpha, b}(s)=\sum_{j, r_{j}>0} \frac{r_{j} n_{j} \sin \alpha r_{j}}{\left(b+r_{j}^{2}\right)^{(s+1) / 2}} \tag{3.6}
\end{equation*}
$$

Thus $Z_{\alpha, 0}=Z_{\alpha}$.
Theorem 3.7. Let $b \geq 0, \sigma \in R$. Then $\sum_{j, r_{j}>0} \frac{n_{j} r_{j}}{\left(b+r_{j}^{2}\right)^{(\sigma+1) / 2}}$ converges for $\sigma>d \stackrel{\text { def. }}{=} \operatorname{dim} G / K$. In particular $Z_{\alpha, b}(s)$ in (3.6) converges absolutely for $\operatorname{Re} s>d$.

To prove this we use
Theorem 3.8 [8]. $\quad \sum_{j \geq 0} \frac{n_{j}}{\left[1+r_{j}^{2}+\rho_{0}^{2}\right]^{\sigma}}$ converges for $\sigma>\frac{d}{2}$.
Proof of Theorem 3.7. Take $\sigma>d$ and $r_{j}>0$. Then $\frac{r_{j}\left(1+r_{j}^{2}+\rho_{0}^{2}\right)^{\sigma / 2}}{\left(b+r_{j}^{2}\right)^{(\sigma+1) / 2}} \leq$ $\frac{r_{j}\left(1+r_{j}^{2}+\rho_{0}^{2}\right)^{\sigma / 2}}{\left(r_{j}^{2}\right)^{(\sigma+1) / 2}}=\frac{\left(1+r_{j}^{2}+\rho_{0}^{2}\right)^{\sigma / 2}}{\left(r_{j}^{2}\right)^{\sigma / 2}}=\left(1+\left(1+\rho_{0}^{2}\right) r_{j}^{-2}\right)^{\sigma} \rightarrow 1$ as $j \rightarrow \infty$. Thus for $j>$ some j_{0} sufficiently large $\frac{r_{j}\left(1+r_{j}^{2}+\rho_{0}^{2}\right)^{\sigma / 2}}{\left(b+r_{j}^{2}\right)^{(\sigma+1) / 2}}<2 \Rightarrow \frac{n_{j} r_{j}}{\left(b+r_{j}^{2}\right)^{(\sigma+1) / 2}}<\frac{2 n_{j}}{\left(1+r_{j}^{2}+\rho_{0}^{2}\right)^{\sigma / 2}}$ for $j>j_{0}$, so Theorem $3.8 \Rightarrow$ Theorem 3.7.

One knows that only finitely many of the r_{j} satisfy $r_{j}^{2}<0$; recall that $v_{0}=i \rho$ so that $r_{0}=i \rho_{0} \Rightarrow r_{0}^{2}<0$. We assume that $r_{0}, r_{1}, \ldots, r_{l}$ only satisfy $r_{j}^{2}<0 ; r_{0}^{2}<r_{1}^{2}<\cdots<r_{l}^{2}<r_{l+1}^{2}<\cdots, r_{j}^{2} \rightarrow \infty$ in accordance with $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$

In sections 5,6 we shall study the analytic continuation of the $Z_{\alpha, b}$, using the Selberg trace formula. To state this formula, in a form convenient for our purpose, we first introduce additional notation. Let $A_{\mathrm{p}}^{+}=\exp \left\{t H_{0} \mid t>0\right\}$. As Γ is torsion free and co-compact any $\gamma \in \Gamma-\{1\}$ is conjugate in G to an element of $M A_{p}^{+}$(using that γ is semisimple and acts freely on G / K [15], and that as $\operatorname{dim} \mathfrak{a}_{\mathfrak{p}}=1, G$ has at most 2 Cartan subgroups, up to conjugacy). Thus we can choose $x \in G$ such that $x \gamma x^{-1}=m_{\gamma}(x)$ $\exp t_{\gamma}(x) H_{0}$, where $m_{\gamma}(x) \in M, t_{\gamma}(x)>0$. By Lemma 6.6 of [16], $t_{\gamma}(x)$ is independent of the particular choice x in G, and up to conjugation in M so is $m_{\gamma}(x)$. We therefore write $t_{\gamma}=t_{\gamma}(x), m_{\gamma}=m_{\gamma}(x) . \delta \in \Gamma-\{1\}$ is called primitive if it cannot be written in the form γ_{1}^{j} for some γ_{1} in Γ and j some integer >1. According to [7] each $\gamma \in \Gamma-\{1\}$ can be written $\gamma=\delta^{j(\gamma)}$ for a unique primitive element δ in $\Gamma-\{1\}$ and a unique positive integer $j(\gamma)$. Let C_{Γ} be a complete set of representatives in Γ of its conjugacy classes, and let

$$
\begin{equation*}
C(\gamma)^{-1}=e^{t_{\gamma} \rho_{0}}\left|\operatorname{det}_{n_{0}}\left(\operatorname{Ad}\left(m_{\gamma} \exp t_{\gamma} H_{0}\right)^{-1}-1\right)\right| \tag{3.9}
\end{equation*}
$$

for $\gamma \in \Gamma-\{1\}$. Given the normalization of measures in (2.3) the trace formula can be stated as follows [7], [8], [16], [18]

$$
\begin{equation*}
\sum_{j \geq 0} n_{j} F^{*}\left(v_{j}\left(H_{0}\right)\right)=\frac{\operatorname{vol}(\Gamma \backslash G)}{4 \pi} \int_{R} F^{*}(r)|c(r)|^{-2} d r+\sum_{\gamma \in C_{r}-\{1\}} t_{\gamma} j(\gamma)^{-1} C(\gamma) F\left(t_{\gamma}\right) \tag{3.10}
\end{equation*}
$$

where F^{*} is an even, holomorphic function of suitable growth at infinity and

$$
\begin{equation*}
F(u)=\frac{1}{2 \pi} \int_{R} F^{*}(r) e^{-i r u} d r \tag{3.11}
\end{equation*}
$$

(3.10) holds in particular for all F^{*} which arise as the spherical Fourier transform of a K-biinvariant function in the Harish-Chandra-Schwartz space $\mathscr{C}_{1}(G)$ [18]. Such a function is $F^{*}: r \rightarrow r e^{-\left(\alpha^{2}+r^{2}\right) x} \sin \alpha r$ where $x, a>0$ are fixed with α real.

4. Some integral formulas

In addition to the trace formula the analytic continuation of the $Z_{\alpha, b}$ will be based on some integral formulas. It seems convenient to consider these now as an effort to maintain the flow of ideas of the next section. Let $\alpha, a, b>0$ and let $n=0,1,2,3, \ldots$, be a non-negative integer. Since
$r \rightarrow \frac{r^{n}}{\left(b+r^{2}\right)^{s}} \in L^{1}(R)$ for Re $s>\frac{n+1}{2}$, the functions $I_{n}=I_{n, \alpha, a, b}$ given by

$$
\begin{equation*}
I_{n}(s)=\int_{R} \frac{r^{2 n}(\sin \alpha r) \tanh a r d r}{\left(b+r^{2}\right)^{s}} \tag{4.1}
\end{equation*}
$$

are well-defined for $\operatorname{Re} s>\frac{2 n+1}{2}=n+\frac{1}{2}$.
We study the integral $I_{0}(s)$. Write

$$
\tanh a r=\frac{e^{a r}-e^{-a r}}{e^{a r}+e^{-a r}}=\frac{e^{2 a r}-1}{e^{2 a r}+1}=1-\frac{2}{e^{2 a r}+1}
$$

to obtain $I_{0}(s)=2 \int_{0}^{\infty} \frac{(\sin \alpha r) \tanh a r d r}{\left(b+r^{2}\right)^{s}}=$

$$
\begin{equation*}
2 \int_{0}^{\infty} \frac{\sin \alpha r}{\left(b+r^{2}\right)^{s}} d r-4 \int_{0}^{\infty} \frac{\sin \alpha r d r}{\left(e^{2 a r}+1\right)\left(b+r^{2}\right)^{s}} \tag{4.2}
\end{equation*}
$$

The modified Struve Functions L_{v} and Bessel functions of an imaginary argument I_{v} are defined by

$$
\begin{equation*}
L_{v}(z)=\sum_{m=0}^{\infty} \frac{(z / 2)^{2 m+v+1}}{\Gamma(m+3 / 2) \Gamma(v+m+3 / 2)} \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
I_{v}(z)=e^{-\pi / 2 v i} J_{v}\left(e^{\pi / 2 i} z\right) \quad-\pi<\arg z \leq \frac{\pi}{2} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{v}(z)=\frac{z^{v}}{2^{v}} \sum_{m=0}^{\infty}(-1)^{m} \frac{z^{2 m}}{2^{2 m} m!\Gamma(v+m+1)} \quad|\arg z|<\pi \tag{4.5}
\end{equation*}
$$

That is, the J_{v} are Bessel functions of the first kind. From page 426 of [9]

$$
\begin{equation*}
\int_{0}^{\infty}\left(\beta^{2}+r^{2}\right)^{v-(1 / 2)} \sin \alpha r d r=\frac{\sqrt{\pi}}{2}\left(\frac{2 \beta}{\alpha}\right)^{v} \Gamma\left(v+\frac{1}{2}\right)\left[I_{-v}(\alpha \beta)-L_{v}(\alpha \beta)\right] \tag{4.6}
\end{equation*}
$$

for $\alpha>0$, $\operatorname{Re} \beta>0$, $\operatorname{Re} v<\frac{1}{2}, v \neq-\frac{1}{2},-\frac{3}{2},-\frac{5}{2}, \ldots$ Therefore by (4.2)

$$
\begin{align*}
I_{0}(s)= & -4 \int_{0}^{\infty} \frac{\sin \alpha r d r}{\left(e^{2 a r}+1\right)\left(b+r^{2}\right)^{s}} \tag{4.7}\\
& +\sqrt{\pi}\left(\frac{2 \sqrt{b}}{\alpha}\right)^{(1 / 2)-s} \Gamma(1-s)\left[I_{-((1 / 2)-s)}(\alpha \sqrt{b})-L_{(1 / 2)-s}(\alpha \sqrt{b})\right]
\end{align*}
$$

for $s \neq 1,2,3,4, \ldots, \operatorname{Re} s>\frac{1}{2}$.

If H_{v} are the Struve functions, ie.

$$
\begin{equation*}
H_{v}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{z}{2}\right)^{2 m+v+1}}{\Gamma\left(m+\frac{3}{2}\right) \Gamma\left(v+m+\frac{3}{2}\right)} \tag{4.8}
\end{equation*}
$$

then from page 38 of [3] $\left(\frac{z}{2}\right)^{-v} H_{v}(z)=\frac{z}{\sqrt{\pi}}{ }^{1} F_{2}\left(1 ; \frac{3}{2}+v, \frac{3}{2} ;-\frac{z^{2}}{4}\right) / \Gamma\left(v+\frac{3}{2}\right)$ is an entire function of z and of v (where ${ }_{1} F_{2}$ is a generalized hypergeometric series). Replace z by $i z$ to obtain in particular that $v \rightarrow \frac{i z}{\sqrt{\pi}}{ }_{1} F_{2}\left(1 ; \frac{3}{2}+v, \frac{3}{2} ; \frac{z^{2}}{4}\right) / \Gamma\left(v+\frac{3}{2}\right)$ is an entire function Ψ_{z} of v. But $\psi_{z}(v)=i\left(\frac{z}{2}\right)^{-v} L_{v}(z)$ as $L_{v}(z)=-i e^{-i v \pi / 2} H_{v}\left(z e^{i \pi / 2}\right)$. Thus we see that in particular $v \rightarrow L_{v}(\alpha \sqrt{b})$ is an entire function; i.e., in (4.11) s $\rightarrow L_{1 / 2-s}(\alpha \sqrt{b})$ is an entire function. Similarly $s \rightarrow I_{-(1 / 2-s)}(\alpha \sqrt{b})$ is an entire function since in fact $v \rightarrow J_{v}(z)$ is entire. Now $s \rightarrow \Gamma(1-s)$ is meromorphic with simple poles at $s=1,2,3, \ldots$, and the residue at $1+k$ is $-(-1)^{k} / k$! for $k=0,1,2, \ldots$ from the identity $L_{-(k+1 / 2)}(z)=I_{k+1 / 2}(z), k=0,1,2, \ldots$, page 39 of [3], we see that $\lim _{s \rightarrow 1+k}[s-(1+k)] \Gamma(1-s)\left[I_{-((1 / 2)-s)}(\alpha \sqrt{b})-L_{(1 / 2)-s}(\alpha \sqrt{b})\right]=\frac{(-1)^{k}}{k!} 0=0$ and we therefore conclude that each of the points $s=1,2,3, \ldots$ is a removable singularity of $s \rightarrow \Gamma(1-s)\left[I_{-((1 / 2)-s)}(\alpha \sqrt{b})-L_{(1 / 2)-s}(\alpha \sqrt{b})\right]$ is entire; ie.

Proposition 4.9. In (4.7) the function $s \rightarrow \Gamma(1-s)\left[I_{-((1 / 2)-s)}(\alpha \sqrt{b})-\right.$ $\left.L_{(1 / 2)-s}(\alpha \sqrt{b})\right]$ is entire.
On the other hand it is easy to check that $\int_{1}^{\infty} \frac{\sin \alpha r d r}{\left(e^{2 a r}+1\right)\left(b+r^{2}\right)^{s}}$ converges uniformly on compact subsets of the plane and thus is an entire function of s. $\int_{0}^{1} \frac{\sin \alpha r d r}{\left(e^{2 a r}+1\right)\left(b+r^{2}\right)^{s}}$ is also an entire function of s. Given Proposition 4.9 we therefore have

Theorem 4.10. The right hand side of equation (4.7) defines an analytic continuation of I_{0} as an entire function.
We should observe in general that the I_{n} are holomorphic functions on $\operatorname{Re} s>$ $n+\frac{1}{2}$. Namely $I_{n}(s)=2 \int_{0}^{1} \frac{r^{2 n}(\sin \alpha r) \tanh a r d r}{\left(b+r^{2}\right)^{s}}+2 \int_{1}^{\infty} \frac{r^{2 n}(\sin \alpha r) \tanh a r d r}{\left(b+r^{2}\right)^{s}}$, where the $1^{\text {st }}$ integral is an entire function of s and $2^{\text {nd }}$ one converges uniformly
on compact subsets of $\operatorname{Re} s>n+\frac{1}{2}$.
Let $\Delta_{n}(s)=\int_{0}^{\infty} \frac{r^{2 n}(\sin \alpha r) d r}{\left(b+r^{2}\right)^{s}}$ for $\operatorname{Re} s>n+\frac{1}{2}$. Then as in (4.2) $I_{n}(s)=$ $2 \Delta_{n}(s)-4 \int_{0}^{\infty} \frac{r^{2 n}(\sin \alpha r) d r}{\left(e^{2 a r}+1\right)\left(b+r^{2}\right)^{s}}$ where the latter integral is entire in s. Now $\frac{r^{2 n}(\sin \alpha r)}{\left(b+r^{2}\right)^{s}}=r^{2(n-1)} \frac{\left(r^{2}+b\right) \sin \alpha r}{\left(r^{2}+b\right)^{s}}-b \frac{r^{2(n-1)} \sin \alpha r}{\left(b+r^{2}\right)^{s}}=\frac{r^{2(n-1)} \sin \alpha r}{\left(b+r^{2}\right)^{s-1}}-b \frac{r^{2(n-1)} \sin \alpha r}{\left(b+r^{2}\right)^{s}} \Rightarrow$ $\Delta_{n}(s) \stackrel{\#}{\stackrel{\#}{*}} \Delta_{n-1}(s-1)-b \Delta_{n-1}(s)$. We have observed that Δ_{0} extends to an entire function, by (4.2), (4.7) and Proposition 4.9. By \#, inductively, each Δ_{n} extends to an entire function and thus each I_{n} extends to an entire function; ie.

Theorem 4.11. The functions $I_{n}=I_{n, a, a, b}$ defined in (4.1) are holomorphic on $\operatorname{Re} s>n+\frac{1}{2}$ and extend to entire functions.

Similar to the definition of I_{n} in (4.1) we define $K_{n}=K_{n, \alpha, a, b}$ for α, a, $b>0, n=0,1,2,3, \ldots$, by

$$
\begin{equation*}
K_{n}(s)=\int_{R} \frac{r^{2 n}(\sin \alpha r) \operatorname{coth} a r d r}{\left(b+r^{2}\right)^{s}} \tag{4.12}
\end{equation*}
$$

For $\operatorname{Re} s>n+\frac{1}{2}$. Using that $\operatorname{coth} x-\tanh x=(\tanh x) \operatorname{csch}^{2} x$ we get

$$
\begin{equation*}
K_{n}(s)-I_{n}(s)=\int_{R} \frac{r^{2 n}(\sin \alpha r)(\tanh a r) \operatorname{csch}^{2} a r}{\left(b+r^{2}\right)^{s}} d r \tag{4.13}
\end{equation*}
$$

for $\operatorname{Re} s>n+\frac{1}{2}$ where the integral in (4.13) is an entire function of s, as $r \rightarrow r^{2 n} \operatorname{csch}^{2}$ ar has exponential decay at ∞. Because of Theorem 4.11 we may conclude

Theorem 4.14. For $n \geq 1$ the function $s \rightarrow K_{n}(s)$, which is holomorphic on $\operatorname{Re} s>n+\frac{1}{2}$, extends to an entire function.

For $n=0,1,2,3, \ldots, \alpha, b>0$ define $S_{n}=S_{n, \alpha, b}$ by

$$
\begin{equation*}
S_{n}(s)=\int_{R} \frac{r^{2 n+1}(\sin \alpha r) d r}{\left(b+r^{2}\right)^{s}} \tag{4.15}
\end{equation*}
$$

for $\operatorname{Re} s>n+1$. Similar to the argument which led to equation \# preceding Theorem 4.11 we have $\frac{r^{2 n+1}(\sin \alpha r)}{\left(b+r^{2}\right)^{s}}=\frac{r^{2(n-1)+1} \sin \alpha r}{\left(r^{2}+b\right)^{s-1}}-\frac{b r^{2(n-1)+1} \sin \alpha r}{\left(b+r^{2}\right)^{s}} \Rightarrow$ $S_{n}(s)=S_{n-1}(s-1)-b S_{n-1}(s)$. By induction (again) each $S_{n}, n \geq 1$, will extend to an entire if only S_{0} does. By page 427 of [9], $S_{0}(s) / 2=$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{r(\sin \alpha r) d r}{\left(b+r^{2}\right)^{s}}=\sqrt{\frac{b}{\pi}}\left(\frac{2 \sqrt{b}}{\alpha}\right)^{-s+(1 / 2)}\left[\cos \pi\left(\frac{1}{2}-s\right)\right] \Gamma(1-s) K_{-s+3 / 2}(\alpha \sqrt{b}) \tag{4.16}
\end{equation*}
$$

for $\operatorname{Re} s>1, s \neq 1,2,3, \ldots$, where K_{v} is the K-Bessel function: For $v, z \in C$

$$
\begin{equation*}
K_{v}(z)=\frac{1}{2} \int_{0}^{\infty} e^{-z / 2(t+1 / t)} t^{-v-1} d t \tag{4.17}
\end{equation*}
$$

$s \rightarrow K_{s}(\alpha \sqrt{b})$ is entire in s and $s \rightarrow \cos \pi\left(\frac{1}{2}-s\right)$ vanishes at the poles $s=1$, $2,3, \ldots$, of $s \rightarrow \Gamma(1-s)$. That is, $s \rightarrow\left[\cos \pi\left(\frac{1}{2}-s\right)\right] \Gamma(1-s)$ is entire $(s=1$, $2,3, \ldots$ are removable singularities) and thus by (4.16) S_{0} extends to an entire function. That is

Proposition 4.18. The holomorphic function $S_{n, \alpha, b}$ defined in (4.15) extends to an entire function.

For application of the trace formula, (3.10) we shall need the Fourier transform of the function $r \rightarrow e^{-r^{2} x} r \sin \alpha r$. Namely

Proposition 4.19. For $u \in R, x, \alpha>0$,

$$
\int_{R} e^{-i r u} e^{-r^{2} x} r \sin \alpha r d r=\frac{\sqrt{\pi}(\alpha-u) e^{-(u-\alpha)^{2} / 4 x}}{4 x^{3 / 2}}+\frac{\sqrt{\pi}(\alpha+u) e^{-(u+\alpha)^{2} / 4 x}}{4 x^{3 / 2}}
$$

Proof. We assume the known formula (4.20) $\int_{R} e^{-i r c} e^{-r^{2} x} d r=$ $\sqrt{\frac{\pi}{x}} e^{-c^{2} / 4 x}$ for the Fourier transform of $r \rightarrow e^{-r^{2} x}, x>0 ; c \in R$. Let $I(u)=$ $\int_{R} e^{-i r u} e^{-r^{2} x} r \sin \alpha r d r, H(u)=\int_{R} e^{-i r u} e^{-r^{2} x} \cos \alpha r d r, J(u)=\int_{R} e^{-i r u} e^{-r^{2} x} \sin \alpha r d r$ for $u \in R$. Write the integrand of $I(u)$ as $f(r) g^{\prime}(r)$ where $f(r)=e^{-i r u} \sin \alpha r$, $g^{\prime}(r)=e^{-r^{2} x} r$. Integrating by parts one therefore obtains $I(u) \frac{(i)}{=} \frac{\alpha}{2 x} H(u)-\frac{i u}{2 x} J(u)$. On the other hand one can write $2 \cos \alpha r=e^{\alpha r i}+e^{-\alpha r i}, 2 i \sin \alpha r=e^{\alpha r i}-e^{-\alpha r i}$ and use (4.20) to obtain

$$
\begin{align*}
& H(u)=\frac{1}{2} \sqrt{\frac{\pi}{x}} e^{-(u-\alpha)^{2} / 4 x}+\frac{1}{2} \sqrt{\frac{\pi}{x}} e^{-(u+\alpha)^{2} / 4 x} \\
& J(u)=\frac{1}{2 i} \sqrt{\frac{\pi}{x}} e^{-(u-\alpha)^{2} / 4 x}-\frac{1}{2 i} \sqrt{\frac{\pi}{x}} e^{-(u+\alpha)^{2} / 4 x} \tag{4.21}
\end{align*}
$$

Then Proposition 4.19 follows from (i).
For $t \in R, \alpha, x>0, k=0,1,2,3, \ldots$, define

$$
\begin{gather*}
F_{k}(t)=\int_{0}^{\infty} e^{-r^{2}} r^{2 k} \sin t r d r \\
I_{k}(x ; \alpha)=\int_{0}^{\infty} e^{r^{2} x} r^{2 k}(\sin \alpha r) d r \tag{4.22}\\
J_{k}(x ; \alpha)=\int_{0}^{\infty} e^{-r^{2} x} r^{2 k+1}(\cos \alpha r) d r .
\end{gather*}
$$

The integrand of the second integral is $f(r) g^{\prime}(r)$ for $f(r)=r^{2 k-1}(\sin \alpha r), g^{\prime}(r)=$ $r e^{-r^{2} x}$ so that integration by parts gives

$$
\begin{equation*}
I_{k}(x ; \alpha)=\frac{2 k-1}{2 x} I_{k-1}(x ; \alpha)+\frac{\alpha}{2 x} J_{k-1}(x ; \alpha) \quad \text { for } \quad k \geq 1 . \tag{4.23}
\end{equation*}
$$

The change of variables $r \rightarrow r \sqrt{x}$ also provides the relations $I_{k}(x ; \alpha)=$ $x^{-k-1 / 2} F_{k}\left(\frac{\alpha}{\sqrt{x}}\right)$,

$$
\begin{equation*}
J_{k}(x ; \alpha)=x^{-k-1} \int_{0}^{\infty} e^{-r^{2}} r^{2 k+1}\left(\cos \frac{\alpha r}{\sqrt{x}}\right) d r . \tag{4.24}
\end{equation*}
$$

We define $\phi_{k}(s ; \alpha)$ by

$$
\begin{equation*}
\phi_{k}(s ; \alpha)=\int_{0}^{1} x^{s-1} I_{k}(x ; \alpha) d x \quad \text { for } \quad s \in C, \tag{4.25}
\end{equation*}
$$

Re s sufficiently large. Namely, using

$$
\begin{equation*}
\phi_{k}(s ; \alpha)=\int_{1}^{\infty} x^{-s-1} I_{k}\left(\frac{1}{x} ; \alpha\right) d x=\int_{1}^{\infty} \frac{F_{k}(\alpha \sqrt{x})}{x^{s-k+1 / 2}} d x . \quad \text { Since } F_{k} \text { is clearly } \tag{4.24}
\end{equation*}
$$ bounded we see therefore that $\phi_{k}(s ; \alpha)$ is defined if and only $\operatorname{Re} s>k+\frac{1}{2}$ and moreover we see that $\phi_{k}(; \alpha)$ is holomorphic on $\operatorname{Re} s>k+\frac{1}{2}$, by uniform convergence of the integral on compact subsets of the latter domain.

Proposition 4.26. For $k \geq 1$, $\operatorname{Re} s>k+\frac{1}{2}, \phi_{k}(s ; \alpha)=-F_{k-1}(\alpha)+$ $(s-1) \int_{0}^{1} x^{s-2} I_{k-1}(x ; \alpha) d x$.

Proof. By (4.23), $\phi_{k}(s ; \alpha)=\left(k-\frac{1}{2}\right) \int_{0}^{1} x^{s-2} I_{k-1}(x ; \alpha) d x+\frac{\alpha}{2} \int_{0}^{1} x^{s-2} J_{k-1}(x ; \alpha) d x$, for $k \geq 1$. Let $\Psi(s ; \alpha)=\frac{\alpha}{2} \int_{0}^{1} x^{s-2} J_{k-1}(x ; \alpha) d x$ be the $2^{\text {nd }}$ integral. By (4.24) and the preceding argument $\Psi(s ; \alpha)$ is well defined for $\operatorname{Re} s>k+1$, which we
assume. Note that $\Psi(s ; \alpha)=\int_{0}^{1} f_{1}(x) g_{1}^{\prime}(x) d x$ for $f_{1}(x)=-x^{s-k-1 / 2}, g_{1}(x)=$ $F_{k-1}\left(\frac{\alpha}{\sqrt{x}}\right)$. Since F_{k-1} is bounded and $\operatorname{Re} s>k+\frac{1}{2}$ one has $\left.f_{1}(x) g_{1}(x)\right|_{0} ^{1}=$ $-F_{k-1}(\alpha)$. Thus integration by parts yields $\Psi(s ; \alpha)=-F_{k-1}(\alpha)+\left(s-k-\frac{1}{2}\right) \times$ $\int_{0}^{1} x^{s-k-3 / 2} F_{k-1}\left(\frac{\alpha}{\sqrt{x}}\right) d x=-F_{k-1}(\alpha)+\left(s-k-\frac{1}{2}\right) \int_{0}^{1} x^{s-2} I_{k-1}(x ; \alpha) d x$, by again. Therefore $\phi_{k}(s ; \alpha) \stackrel{\#}{=}-F_{k-1}(\alpha)+(s-1) \int_{0}^{1} x^{s-2} I_{k-1}(x ; \alpha) d x$ for $\operatorname{Re} s>$ $k+1$, where the r.h.s. is $-F_{k-1}(\alpha)+(s-1) \phi_{k-1}(s-1, \alpha)$ by (4.25). On the other hand we have seen that both sides of equation \# are holomorphic on $\operatorname{Re} s>k+\frac{1}{2}$. Therefore \# holds for $\operatorname{Re} s>k+\frac{1}{2}$, as desired.

On page 172 of [5], Fujii defines the sum of two integrals I_{16}, I_{17} by $6\left(I_{16}+I_{17}\right)=\int_{0}^{1} x^{s-1}\left(\int_{0}^{1}+\int_{1}^{\infty}\right) e^{-r^{2} x} r^{2}(\sin \alpha r) d r d x$. By our notation $6\left(I_{16}+I_{17}\right) \equiv \phi_{1}(s ; \alpha) . \quad I_{16} / \Gamma(\cdot)$ extends to an entire function and Fujii shows that $I_{17} / \Gamma(\cdot)$ extends to an entire function. That is $\phi_{1}(; \alpha) / \Gamma(\cdot)$ extends to an entire function. Inductively we have

Proposition 4.27. For $k \geq 1, \phi_{k}(; \alpha) / \Gamma(\cdot)$ extends to an entire function.
Proof. We have observed the result to true for $k=1$. By Proposition 4.26.

$$
\frac{\phi_{k}(s ; \alpha)}{\Gamma(s)}=-\frac{F_{k-1}(\alpha)}{\Gamma(s)}+\frac{s-1}{\Gamma(s)} \phi_{k-1}(s-1 ; \alpha)
$$

for $\operatorname{Re} s>k+\frac{1}{2}$. The induction is completed by this equation as $\Gamma(s)=$ $(s-1) \Gamma(s-1)$.

5. Analytic continuation of $\boldsymbol{Z}_{\alpha, b} \boldsymbol{b} \neq \mathbf{0}$.

For $x, \alpha>0$ define F^{*} by $F^{*}(r)=r e^{-\left(\rho_{0}^{2}+r^{2}\right) x} \sin \alpha r, r \in C$. We have observed that F^{*} plugs into the trace formula. Moreover $F(u) \stackrel{\text { def }}{=} \frac{1}{2 \pi} \int_{R} F^{*}(r) e^{-i r u} d r=$ $\frac{\sqrt{\pi} e^{-\rho_{0}^{2} x}}{2 \pi 4 x^{3 / 2}}(\alpha-u) e^{-(u-\alpha)^{2} / 4 x}+\frac{\sqrt{\pi} e^{-\rho_{0}^{2} x}}{2 \pi 4 x^{3 / 2}}(\alpha+u) e^{-(u+\alpha)^{2} / 4 x}$ for $u \in R$ by Proposition 4.19. The trace formula (3.10) therefore provides

$$
\begin{align*}
& \sum_{j \geq 0} n_{j} r_{j} e^{-\left(\rho_{0}^{2}+r_{j}^{2}\right) x} \sin \alpha r_{j} \tag{5.1}\\
& \quad=\frac{v o l(\Gamma \backslash G)}{4 \pi} \int_{R} r e^{-\left(\rho_{0}^{2}+r^{2}\right) x}(\sin \alpha r)|c(r)|^{-2} d r
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{\gamma \in C_{\Gamma}-\{1\}} \frac{e^{-\rho_{0}^{2} x}}{8 \sqrt{\pi x^{3 / 2}}} t_{\gamma} j(\gamma)^{-1} C(\gamma)\left[\left(\alpha-t_{\gamma}\right) e^{-\left(t_{\gamma}-\alpha\right)^{2} / 4 x}\right. \\
& \left.+\left(\alpha+t_{\gamma}\right) e^{-\left(t_{\gamma}+\alpha\right)^{2} / 4 x}\right]
\end{aligned}
$$

Multiply both sides of (5.1) by $e^{\rho_{0}^{2} x} e^{-b x}$ for $b \geq 0$ to obtain

$$
\begin{align*}
& \sum_{j \geq 0} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j} \tag{5.2}\\
&= \frac{v o l(\Gamma \backslash G)}{4 \pi} \int_{R} r e^{-\left(b+r^{2}\right) x}(\sin \alpha r)|c(r)|^{-2} d r \\
&+\frac{e^{-b x}}{8 \sqrt{\pi} x^{3 / 2}} \sum_{\gamma \in C_{r^{-}-\{1\}}} t_{\gamma} j(\gamma)^{-1} C(\gamma)\left[\left(\alpha-t_{\gamma}\right) e^{-\left(t_{\gamma}-\alpha\right)^{2} / 4 x}\right. \\
&\left.+\left(\alpha+t_{\gamma}\right) e^{-\left(t_{\gamma}+\alpha\right)^{2} / 4 x}\right]
\end{align*}
$$

Consider the sum on the 1.h.s. of (5.2). As $r_{0}=i \rho_{0}$ and $n_{0}=1$ the summand corresponding to $j=0$ is $i \rho_{0} e^{-\left(b-\rho_{0}^{0}\right) x} \sin \alpha i \rho_{0}=e^{-\left(b-\rho_{0}^{2}\right) x}\left(\rho_{0} / 2\right)\left[e^{-\alpha \rho_{0}}-e^{\alpha \rho_{0}}\right]$. Similarly, by earlier notation, we may have $r_{1}, r_{2}, \ldots, r_{l} \in i R-\{0\}$, say $r_{j}=i t_{j}$ with $t_{j}>0$ by (3.3). Then $\left[n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j}=n_{j} e^{-\left(b-t_{j}^{2}\right) x} \frac{t_{j}}{2}\left[e^{-\alpha t_{j}}-e^{\alpha t_{j}}\right]\right.$, $1 \leq j \leq l$. If $r_{j} \in R$ then $r_{j} \geq 0$ by (3.3). Thus we can write (5.2) as
(5.3) $2 \sum_{j, r_{j}>0} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j}$

$$
\begin{aligned}
= & \sum_{j=0}^{l} n_{j} e^{-\left(b-t_{j}^{2}\right) x} t_{j}\left[e^{\alpha t_{j}}-e^{-\alpha t_{j}}\right]+\frac{v o l(\Gamma \backslash G)}{2 \pi} \int_{R} r e^{-\left(b+r^{2}\right) x}(\sin \alpha r)|c(r)|^{-2} d r \\
& +\frac{e^{-b x}}{4 \sqrt{\pi} x^{3 / 2}} \sum_{\gamma \in C_{r}-\{1\}} t_{\gamma} j(\gamma)^{-1} C(\gamma)\left[\left(\alpha-t_{\gamma}\right) e^{-\left(t_{\gamma}-\alpha\right)^{2} / 4 x}\right. \\
& \left.+\left(\alpha+t_{\gamma}\right) e^{-\left(t_{\gamma}+\alpha\right)^{2} / 4 x}\right]
\end{aligned}
$$

where we write $t_{0}=\rho_{0} ; n_{0}=1$. We note also that

$$
j>0 \Rightarrow \lambda_{j} \stackrel{\text { def }}{=} r_{j}^{2}+\rho_{0}^{2}>0 \Rightarrow t_{j}<\rho_{0} .
$$

Consider

$$
I(s)=\int_{0}^{\infty} x^{s-1} \sum_{j, r_{j}>0} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j} d x
$$

For $\sigma=\operatorname{Re} s, r_{j}>0$

$$
\left|x^{s-1} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j}\right| \leq x^{\sigma-1} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x}
$$

where

$$
\begin{aligned}
\sum_{j, r_{j}>0} \int_{0}^{\infty} x^{\sigma-1} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} d x & =\sum_{j, r_{j}>0} \frac{\Gamma(\sigma) n_{j} r_{j}}{\left(b+r_{j}^{2}\right)^{\sigma}} \\
& =\Gamma(\sigma) \sum_{j, r_{j}>0} \frac{n_{j} r_{j}}{\left(b+r_{j}^{2}\right)^{(2 \sigma-1)+1 / 2}}<\infty
\end{aligned}
$$

for $2 \sigma-1>d$ by Theorem 3.7. Hence by Fubini's theorem

$$
\begin{equation*}
I(s)=\Gamma(s) \sum_{j, r_{j}>0} \frac{n_{j} r_{j}}{\left(b+r_{j}^{2}\right)^{(2 s-1)+1) / 2}}=\Gamma(s) Z_{\alpha, b}(2 s-1) \tag{5.4}
\end{equation*}
$$

for $\operatorname{Re} s>\frac{d+1}{2}$. Let

$$
\begin{align*}
& \theta_{0}(x)=\sum_{j=0}^{l} n_{j} e^{-\left(b-t_{j}^{2}\right) x} t_{j}\left[e^{\alpha t_{j}}-e^{-\alpha t_{j}}\right] \tag{5.5}\\
& \theta_{1}(x)=\frac{v o l(\Gamma \backslash G)}{2 \pi} \int_{R} r e^{-\left(b+r^{2}\right) x}(\sin \alpha r)|c(r)|^{-2} d r \\
& \theta_{2}(x)=\frac{e^{-b x}}{4 \sqrt{\pi} x^{3 / 2}} \sum_{\gamma \in C_{r}-\{1\}} t_{\gamma} j(\gamma)^{-1} C(\gamma)\left[\left(\alpha-t_{\gamma}\right) e^{-\left(t_{\gamma}-\alpha\right)^{2} / 4 x}+\left(\alpha+t_{\gamma}\right) e^{-\left(t_{\gamma}+\alpha\right)^{2} / 4 x}\right]
\end{align*}
$$

Lemma 5.6. Let j_{0} be the smallest j for which $r_{j}>0$; thus $j_{0} \geq l+1$. There is a constant $B>0$ such that $\sum n_{j} r_{j} e^{-r_{j}^{2} x} \leq B e^{-r_{j 0}^{2} x}$ for $x \geq 1$.

Proof. We adapt the proof of Lemma 4.23 of [17] to the present situation. Let $M(x)=e^{r_{j 0}^{2} x} \sum_{j \geq j_{0}+1} n_{j} r_{j} e^{-r_{j}^{2} x}$ for $x>0$. For $j \geq j_{0}+1, r_{j}^{2}>r_{j_{0}}^{2} \Rightarrow$ $e^{-\left(r_{j}^{2}-r_{j_{0}}^{2}\right) x} \leq e^{-\left(r_{j}^{2}-r_{j_{0}}^{2}\right)}$ for $x \geq 1$; ie. $\quad M(x)=\sum_{j \geq j_{0}+1} n_{j} r_{j} e^{-\left(r_{j}^{2}-r_{j_{0}}^{2}\right) x} \leq \sum_{j \geq j_{0}+1}$ $n_{j} r_{j} e^{-\left(r_{j}^{2}-r_{j_{0}}^{2}\right)}=M(1)$ for $x \geq 1$. We set $B=n_{j_{0}} r_{j_{o}}+M(1)$ and obtain $\sum_{j, r_{j}>0}^{-r_{j} r_{j}} j^{-r_{j}^{2} x}=n_{j_{0}} r_{j_{0}} e^{-r_{j_{0}}^{2} x}+\sum_{j \geq j_{0}+1} n_{j} r_{j} e^{-r_{j}^{2} x}=e^{-r_{j 0}^{2} x}\left(n_{j_{0}} r_{j_{0}}+M(x)\right) \leq$ $e^{-r_{j 0}^{2} x} B$ for $x \geq 1$.

Corollary 5.7. $\int_{1}^{\infty} x^{s-1}\left[\sum_{j, r_{j}>0} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j}\right] d x$ converges uniformly on compact subsets of the plane and thus defines an entire function $I_{(1)}$ of s, for $b \geq 0$.

We have $I(s)=I_{(0)}(s)+I_{(1)}(s)$ where

$$
I_{(0)}(s) \stackrel{\text { def }}{=} \int_{0}^{1} x^{s-1}\left[\sum_{j, r_{j}>0} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j}\right] d x .
$$

Given Corollary 5.7. we focus our study on $I_{(0)}$. By (5.3) and (5.5)

$$
\begin{equation*}
2 \sum_{j, r_{j}>0} n_{j} r_{j} e^{-\left(b+r_{j}^{2}\right) x} \sin \alpha r_{j}=\left(\theta_{0}+\theta_{1}+\theta_{2}\right)(x) \tag{5.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
2 I_{(0)}(s)=\int_{0}^{1} x^{s-1}\left(\theta_{0}+\theta_{1}+\theta_{2}\right)(x) d x \tag{5.9}
\end{equation*}
$$

To study $\int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ we first consider $\int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x$. Assume that $b>0$. Then

$$
\begin{aligned}
\left.\int_{R} \int_{0}^{\infty}\left|x^{s-1} r e^{-\left(b+r^{2}\right) x}(\sin \alpha r)\right| c(r)\right|^{-2} \mid d x d r & \leq \int_{R}|r||c(r)|^{-2} \int_{0}^{\infty} x^{\mathrm{Re} s-1} e^{-\left(b+r^{2}\right) x} d x d r \\
& =\int_{R}|r \| c(r)|^{-2} \frac{\Gamma(\operatorname{Re} s)}{\left(b+r^{2}\right)^{\operatorname{Res}} d r} \\
& =\Gamma(\operatorname{Re} s) C_{G} \pi \int_{R} \frac{|r| r P(r) \tanh ^{\varepsilon} a r d r}{\left(b+r^{2}\right)^{\operatorname{Re} s}}
\end{aligned}
$$

for $G \neq S O_{1}(2 n+1,1)$ by (2.5) where $\varepsilon= \pm 1, a=\pi$ or $\frac{\pi}{2}$, and $P(r)$ is a polynomial of degree $d-2, d=\operatorname{dim} G / K$; cf. (2.8). Assume for now $G \neq$ $S O_{1}(2 n+1,1)$. We see that the latter integral is finite if $\operatorname{Re} s>\frac{d+1}{2}$. Therefore by Fubini's Theorem

$$
\begin{aligned}
\int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x & =\frac{\operatorname{vol}(\Gamma \backslash G)}{2 \pi} \int_{R} \int_{0}^{\infty} x^{s-1} r e^{-\left(b+r^{2}\right) x}(\sin \alpha r)|c(r)|^{-2} d x d r \\
& =\frac{\operatorname{vol}(\Gamma \backslash G)}{2 \pi} \int_{R} r(\sin \alpha r)|c(r)|^{-2} \int_{0}^{\infty} x^{s-1} e^{-\left(b+r^{2}\right) x} d x d r \\
& =\frac{\operatorname{vol}(\Gamma \backslash G)}{2 \pi} \Gamma(s) \int_{R} \frac{r(\sin \alpha r)|c(r)|^{-2} d r}{\left(b+r^{2}\right)^{s}} \\
& =\frac{\operatorname{vol}(\Gamma \backslash G)}{2 \pi} \Gamma(s) C_{G} \pi \int_{R} \frac{r^{2} P(r) \sin \alpha r \tanh ^{\varepsilon} a r d r}{\left(b+r^{2}\right)^{s}} \\
& =\sum_{k=0}^{d / 2-1} a_{2 k} \frac{\operatorname{vol}(\Gamma \backslash G)}{2} \Gamma(s) C_{G} \int_{R} \frac{r^{2(k+1)}(\sin \alpha r) \tanh ^{\varepsilon} a r d r}{\left(b+r^{2}\right)^{s}}
\end{aligned}
$$

(by (2.8)). In case $\varepsilon=1$ we use (4.1) to write

$$
\int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x=\sum_{k=0}^{d / 2-1} a_{2 k} \frac{\operatorname{vol}(\Gamma \backslash G)}{2} \Gamma(s) C_{G} I_{k+1, \alpha, a, b}(s),
$$

for

$$
\operatorname{Re} s>\left(\frac{d}{2}-1\right)+1+\frac{1}{2}=\frac{d+1}{2}
$$

in which case Re $s>$ each $(k+1)+\frac{1}{2}, 0 \leq k \leq\left(\frac{d}{2}-1\right)$.
By Theorem 4.11 we see that, in case $\varepsilon=1, \frac{1}{\Gamma(s)} \int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x$ extends to an entire function. On the other hand for $x \geq 1, e^{-\left(b+r^{2}\right) x} \leq e^{-b x} e^{-r^{2}} \forall r \in R \Rightarrow$ $\left|\theta_{1}(x)\right| \leq \frac{\operatorname{vol}(\Gamma \backslash G) e^{-b r}}{2 \pi} A$, by (5.5), where $A=\int_{R} r e^{-r^{2}}|c(r)|^{-2} d r$. This means that $\int_{1}^{\infty} x^{s-1} \theta_{1}(x) d x$ converges uniformly on compact subsets of the plane; ie.

Lemma 5.10. $\int_{1}^{\infty} x^{s-1} \theta_{1}(x) d x$ is an entire function of s.
As $\int_{0}^{1} x^{s-1} \theta_{1}(x) d x=\int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x-\int_{1}^{\infty} x^{s-1} \theta_{1}(x) d x$ we have therefore established that $\frac{1}{\Gamma(s)} \int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ as a function of s extends meromorphically to C (at least when $\varepsilon=1$) with possibly simple poles at $s=1,2, \ldots, d$. In case $\varepsilon=-1$ we argue pretty much the same.

Namely

$$
\begin{aligned}
& \int_{R} \frac{r^{2(k+1)}(\sin \alpha r) \tanh ^{-1} a r d r}{\left(b+r^{2}\right)^{s}} \\
& \quad=K_{k+1, \alpha, a, b}(s) \Rightarrow \int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x \\
& \quad=\sum_{k=0}^{d / 2-1} a_{2 k} \frac{\operatorname{vol}(\Gamma \backslash G)}{2} \Gamma(s) C_{G} K_{k+1, \alpha, a, b}(s) \quad \text { for } \quad \text { Re } s>\frac{d+1}{2} .
\end{aligned}
$$

In place of Theorem 4.11 we now appeal to Theorem 4.14 to conclude that $\frac{1}{\Gamma(s)} \int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ still extends to an entire function.

The final case to consider in studying $\int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ is the case $G=$ $S O_{1}(2 n+1,1)$ (or G locally isomorphic to $S O_{1}(2 n+1,1)$). Then by $(2.5),(2.9)$

$$
|c(r)|^{-2}=C_{G} \pi \sum_{j=0}^{n} a_{2 j} r^{2 j},
$$

with

$$
\begin{align*}
d-1=2 n & \Rightarrow \int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x \frac{\operatorname{again}}{=} \frac{\operatorname{vol}(\Gamma \backslash G)}{2 \pi} \Gamma(s) \int_{R} \frac{r(\sin \alpha r)|c(r)|^{-2} d r}{\left(b+r^{2}\right)^{s}} \tag{5.11}\\
& =C_{G} \frac{\operatorname{vol}(\Gamma \backslash G)}{2} \Gamma(s) \sum_{j=0}^{n} a_{2 j} \int_{R} \frac{r^{2 j+1}(\sin \alpha r) d r}{\left(b+r^{2}\right)^{s}} \\
& =C_{G} \frac{\operatorname{vol}(\Gamma \backslash G)}{2} \Gamma(s) \sum_{j=0}^{n} a_{2 j} S_{j}(s)
\end{align*}
$$

by (4.15), for $\operatorname{Re} s>\frac{d+1}{2}=n+1$. Thus by Proposition 4.18, $\int_{0}^{\infty} x^{s-1} \theta_{1}(x) d x$ extends to an entire function.

We turn attention now to the study of the term $\int_{0}^{1} x^{s-1} \theta_{2}(x) d x$ in (5.9) which we write as $T(s)=\int_{0}^{\infty} \theta_{2}\left(\frac{1}{t}\right) t^{-s-1} d t$ using the transformation $x=\frac{1}{t}$. We shall argue as in [12], [17] and rely on the following result of DeGeorge. For $x \geq 0$ let $E(x)=\left|\left\{\gamma \in C_{\Gamma}-\{1\} \mid t_{\gamma} \leq x\right\}\right|, \tilde{E}(x)=\mid\left\{\gamma \in C_{\Gamma}-\{1\} \mid x \leq t_{\gamma}<\right.$ $x+1\} \mid$, where $|s|$ denotes the cardinality of a set S. Then by [1], for some $\beta>0$ it is true that $\lim _{x \rightarrow \infty} \beta x e^{-\beta x} E(x)=1$. From this it follows that there is an integer j_{0} sufficiently large and a positive number δ such that

$$
\begin{equation*}
\tilde{E}(x) \leq \frac{\delta}{x} e^{\beta x} \quad \text { for } \quad x \geq j_{0} \tag{5.12}
\end{equation*}
$$

Now by definition of $\tilde{E}(x)$ one has

$$
\begin{aligned}
& \sum_{x \leq t_{y}<x+1} t_{y}\left(\alpha+t_{\gamma}\right) e^{-t_{y}^{2} t / 4} e^{t_{\gamma} \alpha t / 2} \\
& \leq \sum_{x \leq t_{\gamma}<x+1}(x+1)(\alpha+x+1) e^{-x^{2} t / 4} e^{(x+1) a t / 2} \\
&=(x+1)(\alpha+x+1) e^{-x^{2} t / 4} e^{(x+1) a t / 2} \tilde{E}(x) \\
& \leq \delta \frac{x+1}{x}(\alpha+x+1) e^{-x^{2} t / 4} e^{(x+1) a t / 2} e^{\beta x} \quad \text { for } \quad x \geq j_{0} .
\end{aligned}
$$

Taking j_{0} a bit larger, if necessary, we assume $j_{0}>2 \alpha+1$. Then if $f_{n}(t) \xlongequal{\text { def }}-\left(j_{0}+n-1\right)^{2} t / 4+\left(j_{0}+n\right) \alpha t / 2$ for $t \in R$, we clearly have

$$
4 \frac{d f_{n}}{d t} /\left(j_{0}+n\right)=-\frac{\left(j_{0}+n-1\right)^{2}+\left(j_{0}+n\right) 2 \alpha}{\left(j_{0}+n\right)}
$$

$$
\begin{aligned}
& =-\frac{\left[\left(j_{0}+n\right)^{2}-2\left(j_{0}+n\right)+1\right]+\left(j_{0}+n\right) 2 \alpha}{\left(j_{0}+n\right)} \\
& =-j_{0}-n+2-\frac{1}{j_{0}+n}+2 \alpha<-j_{0}-1+2(\alpha+1)<0
\end{aligned}
$$

ie. $f_{n}^{\prime}(t)<0 \forall t \Rightarrow f_{n}$ is decreasing:

$$
\begin{align*}
& -\left(j_{0}+n-1\right)^{2} t / 4+\left(j_{0}+n\right) \alpha t / 2 \tag{5.13}\\
& \quad \leq-\left(j_{0}+n-1\right)^{2} / 4+\left(j_{0}+n\right) \alpha / 2 \quad \forall n, \quad \text { for } \quad t \geq 1 .
\end{align*}
$$

Lemma 5.14. Let

$$
S(t)=\sum_{t_{\gamma}>j_{0}} t_{\gamma}\left(\alpha+t_{\gamma}\right) e^{-t_{\gamma}^{2} t / 4} e^{t_{\gamma} \alpha t / 2} \quad \text { for } \quad t \in R .
$$

Then $S(t)$ converges for every $t>0$, and is bounded for $t \geq 1$.

Proof.

$$
\begin{aligned}
S(t)= & \sum_{t_{y}>j_{0}} \leq \sum_{j_{0} \leq t_{y}<j_{0}+1}+\sum_{j_{0}+1 \leq t_{y}<j_{0}+2}+\sum_{j_{0}+2 \leq t_{y}<j_{0}+3}+\cdots \\
\leq & \delta \frac{j_{0}+1}{j_{0}}\left(\alpha+j_{0}+1\right) e^{-j_{0}^{t / 4}} e^{\left(j_{0}+1\right) a t / 2} e^{\beta j_{0}} \\
& +\delta \frac{j_{0}+2}{j_{0}+1}\left(\alpha+j_{0}+2\right) e^{-\left(j_{0}+1\right)^{2} t / 4} e^{\left(j_{0}+2\right) a t / 2} e^{\beta\left(j_{0}+1\right)} \\
& +\delta \frac{j_{0}+3}{j_{0}+2}\left(\alpha+j_{0}+3\right) e^{-\left(j_{0}+2\right)^{2} t / 4} e^{\left(j_{0}+3\right) \alpha t / 2} e^{\beta\left(j_{0}+2\right)} \\
& +\cdots \quad(\text { by } \#)= \\
= & \delta \sum_{n=1}^{\infty} \frac{\left(j_{0}+n\right)}{j_{0}+n-1}\left(\alpha+j_{0}+n\right) e^{-\left(j_{0}+n-1\right)^{2} t / 4} e^{\left(j_{0}+n\right) a t / 2} e^{\beta\left(j_{0}+n-1\right)}
\end{aligned}
$$

which converges for every $t>0$ by the ratio test. In particular for $t \geq 1$ we have

$$
S(t) \leq \delta \sum_{n=1}^{\infty} \frac{j_{0}+n}{j_{0}+n-1}\left(\alpha+j_{0}+n\right) e^{-\left(j_{0}+n-1\right)^{2} / 4} e^{\left(j_{0}+n\right) \alpha / 2} e^{\beta\left(j_{0}+n-1\right)}
$$

Going back to (5.5) we have

$$
\begin{align*}
\theta_{2}\left(\frac{1}{t}\right)= & \frac{e^{-b / t}}{4 \sqrt{\pi}} t^{3 / 2} \sum_{t_{\gamma} \leq j_{0}} t_{\gamma} j(\gamma)^{-1} C(\gamma)\left(\alpha-t_{\gamma}\right) e^{-\left(t_{\gamma}-\alpha\right)^{2} t / 4} \tag{5.15}\\
& +e^{-\alpha^{2} t / 4} \frac{e^{-b / t}}{4 \sqrt{\pi}} t^{3 / 2} \sum_{t_{\gamma}>j_{0}} t_{\gamma} j(\gamma)^{-1} C(\gamma)\left(\alpha-t_{\gamma}\right) e^{-t_{\gamma}^{2} t / 4} e^{t_{\gamma} \alpha t / 2}
\end{align*}
$$

$$
\begin{aligned}
& +e^{-\alpha^{2} t / 4} \frac{e^{-b / t}}{4 \sqrt{\pi}} t^{3 / 2} \sum_{\gamma \in C_{r}-\{1\}} t_{\gamma} j(\gamma)^{-1} C(\gamma)\left(\alpha+t_{\gamma}\right) e^{-t_{\gamma}^{2} t / 4} e^{-t_{r} \alpha t / 2} \\
& \text { for } t>0
\end{aligned}
$$

We denote the 3 terms in (5.15) by $T_{1}(t), T_{2}(t), T_{3}(t)$ respectively. Therefore $T(s) \stackrel{\text { def }}{=} \int_{1}^{\infty} \theta_{2}\left(\frac{1}{t}\right) t^{-s-1} d t=\int_{1}^{\infty} T_{1}(t) t^{-s-1} d t+\int_{1}^{\infty} T_{2}(t) t^{-s-1} d t+$ $\int_{1}^{\infty} T_{3}(t) t^{-s-1} d t$. We claim $1^{\text {st }}$ that $\int_{1}^{\infty} T_{2}(t) t^{-s-1} d t$ is an entire function of s. As in [12] there is a bound M_{0} for the numbers $C(\gamma)$. If $M=\frac{M_{0}}{4 \sqrt{\pi}}$ we have for $t \geq 1,\left|T_{2}(t)\right| \leq e^{-\alpha^{2} t / 4} M t^{3 / 2} \sum_{t_{\gamma}>j_{0}} t_{\gamma}\left(\alpha+t_{\gamma}\right) e^{-t_{\gamma}^{2} t / 4} e^{t_{\gamma} a t / 2}=$ $e^{-\alpha^{2} t / 4} M t^{3 / 2} S(t) \leq e^{-\alpha^{2} t / 4} t^{3 / 2} M C$, for some constant C, by Lemma 5.14. It follows that $\int_{1}^{\infty} T_{2}(t) t^{-s-1} d t$ converges uniformly on compact subsets of the plane and thus defines an entire function of $s . \quad T_{1}(t)$ is a finite sum with each term $\frac{e^{-b / t} t^{3 / 2}}{4 \sqrt{\pi}} t_{\gamma} j(\gamma) C(\gamma)\left(\alpha-t_{\gamma}\right) e^{-\left(t_{\gamma}-\alpha\right)^{2} t / 4}, t_{\gamma} \leq j_{0}$, bounded by $t^{3 / 2} M t_{\gamma}\left(\alpha+t_{\gamma}\right)$. $e^{-\left(t_{r}-\alpha\right)^{2} t / 4}$; ie. $\int_{1}^{\infty} T_{1}(t) t^{-s-1} d t$ similarly is entire in s, being a finite sum of functions entire in s. We have $\left|T_{3}(t)\right| \leq e^{-\alpha^{2} t / 4} M t^{3 / 2} \tilde{S}(t)$, where

$$
\tilde{S}(t) \stackrel{\text { def }}{=} \sum_{\gamma \in C_{r}-\{1\}} t_{\gamma}\left(\alpha+t_{\gamma}\right) e^{-t_{\gamma}^{2} t / 4}=\widetilde{S}_{1}(t)+\widetilde{S}_{2}(t)
$$

where

$$
\begin{aligned}
& \tilde{S}_{1}(t)=\sum_{t_{\gamma} \leq j_{0}} t_{\gamma}\left(\alpha+t_{\gamma}\right) e^{-t_{\gamma}^{2} t / 4} \\
& \tilde{S}_{2}(t)=\sum_{t_{\gamma}>j_{0}} t_{\gamma}\left(\alpha+t_{\gamma}\right) e^{-t_{\gamma}^{2} t / 4} \leq S(t) \Rightarrow \tilde{S}_{2}(t) \leq C \quad \text { for } \quad t \geq 1
\end{aligned}
$$

again by Lemma 5.14. Recalling the definition of $E(x)$ one has $\tilde{S}_{1}(t) \leq$ $\sum_{t_{1} \leq j_{0}} j_{0}\left(\alpha+j_{0}\right)=j_{0}\left(\alpha+j_{0}\right) E\left(j_{0}\right)$ for $t>0$. Thus we see that, similarly, $\int_{1}^{\infty} T_{3}(t) t^{-s-1} d t$ converges uniformly on compact subsets of the plane and therefore also is an entire function of s. In conclusion, we have that $T(s)=$ $\int_{0}^{1} x^{s-1} \theta_{2}(x) d x=\int_{1}^{\infty} \theta_{2}\left(\frac{1}{t}\right) t^{-s-1} d t$ is an entire function of s; here we allow $b \geq 0$.

The one remaining term $\int_{0}^{1} x^{s-1} \theta_{0}(x) d x$ in (5.9) is the easiest to analyze. From (5.5), $\int_{0}^{1} x^{s-1} \theta_{0}(x) d x=\sum_{j=0} n_{j} t_{j}\left[e^{\alpha t_{j}}-e^{-\alpha t_{j}}\right] \Psi_{j}(s)$, where $\Psi_{j}(s) \stackrel{\text { def }}{=}$
$\int_{0}^{1} e^{-\left(b-t_{j}^{2}\right) x} x^{s-1} d x$. Let γ_{2} be the incomplete gamma function:

$$
\begin{equation*}
\gamma_{2}(s, t)=\int_{0}^{t} e^{-x} x^{s-1} d x \tag{5.16}
\end{equation*}
$$

where $\operatorname{Re} s>0, t \in R$. For $b-t_{j}^{2} \neq 0 \frac{\Psi_{j}(s)}{\Gamma(s)}=\frac{\left(b-t_{j}^{2}\right)^{-s} \gamma_{2}\left(s, b-t_{j}^{2}\right)}{\Gamma(s)}$, which is known to be entire in s. If $b=t_{j}^{2}, \quad \Psi_{j}(s)=\frac{1}{s}$ and clearly $\frac{\Psi_{j}(s)}{\Gamma(s)}=\frac{1}{s \Gamma(s)}$ (defined to be 1 for $s=0$) is entire. Thus $\frac{1}{\Gamma(s)} \int_{0}^{1} x^{s-1} \theta_{0}(x) d x$ is entire in s for $b \geq 0$.

In conclusion we deduce from (5.4), Corollary 5.7, (5.9), and the definition $I=I_{(0)}+I_{(1)}$ of $I_{(0)}, I_{(1)}$ the following key theorem.

Theorem 5.17. $Z_{\alpha, b}$ as defined in (3.6) indeed extends to an entire function, for every $b>0$.

Remark. We shall see in the next section that for $b=0, Z_{\alpha, 0}$ also extends to an entire function.

6. Analytic continuation of \boldsymbol{Z}_{α}

Because of the term $\int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ in (5.9) we had to assume $b>0$ to analytically continue $Z_{\alpha, b}$ as we did in section 5 . There we saw that $I_{(1)}$ was entire for $b \geq 0$ (Corollary 5.7), $\int_{0}^{1} x^{s-1} \theta_{2}(x) d x$ was entire for $b \geq 0$ and $\frac{1}{\Gamma(s)} \int_{0}^{1} x^{s-1} \theta_{0}(x) d x$ was entire for $b \geq 0$. Thus to handle the analytic continuation of $Z_{\alpha}=Z_{\alpha, 0}$ we need only to analytically continue $\int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ (by some different means) in case $b=0$. We address this matter in this section. For $b=0$,

$$
\begin{align*}
& \int_{0}^{1} x^{s-1} \theta_{1}(x) d x=\frac{v o l(\Gamma \backslash G)}{\pi} \int_{0}^{1} \int_{0}^{\infty} x^{s-1} r e^{-r^{2} x}(\sin \alpha r)|c(r)|^{-2} d r d x \tag{6.1}\\
& \quad=\frac{v o l(\Gamma \backslash G)}{C_{G}} \sum_{j=0}^{(d / 2)-1} a_{2 j} \int_{0}^{1} \int_{0}^{\infty} x^{s-1} e^{-r^{2} x}(\sin \alpha r) r^{2(j+1)} \tanh ^{\varepsilon} a r d r d x,
\end{align*}
$$

say for $G \neq S O_{1}(2 n+1,1)$, where $\varepsilon= \pm 1, a=\pi$ or $\pi / 2$. Consider the case
$\varepsilon=1$; write \tanh ar $=1-\frac{2}{e^{2 a r}+1}$ so that the double integral in (6.1) which we denote by $\Phi_{j}(s)$ is

$$
\begin{align*}
\Phi_{j}(s)= & \int_{0}^{1} \int_{0}^{\infty} x^{s-1} e^{-r^{2} x}(\sin \alpha r) r^{2(j+1)} d r d x \tag{6.2}\\
& -2 \int_{0}^{1} \int_{0}^{\infty} \frac{x^{s-1} e^{-r^{2} x}(\sin \alpha r) r^{2(j+1)} d r d x}{e^{2 a r}+1}
\end{align*}
$$

The $1^{\text {st }}$ integral in (6.2) is by (4.22), (4.25) exactly $\phi_{j+1}(s ; \alpha)$, which we know is well-defined and holomorphic in s for $\operatorname{Re} s>j+1+\frac{1}{2}$; this inequality is satisfied for $\operatorname{Re} s>\frac{d+1}{2}$ (see (5.4)), as $j \leq \frac{d}{2}-1$. Moreover by Proposition 4.27, $\phi_{j+1}(; \alpha) / \Gamma(\cdot)$ extends to an entire function. Thus we concentrate on the $2^{\text {nd }}$ integral in (6.2), which we denote by $\Psi_{j}(s)$. For $\operatorname{Re} s>0$, Fubini's Theorem applies:

$$
\begin{equation*}
\Psi_{j}(s)=\int_{0}^{\infty} \frac{(\sin \alpha r) r^{2(j+1)}}{e^{2 a r}+1}\left[\int_{0}^{1} x^{s-1} e^{-r^{2} x} d x\right] d r \tag{6.3}
\end{equation*}
$$

where $\int_{0}^{1} x^{s-1} e^{-r^{2} x} d x=r^{-2 s} \int_{0}^{r^{2}} e^{-u} u^{s-1} d u=r^{-2 s} \gamma_{2}\left(s, r^{2}\right)$, by (5.16). Define γ_{2}^{*} by $\gamma_{2}^{*}(s, t)=t^{-s} \gamma_{2}(s, t) / \Gamma(s)$, say for $s \in \boldsymbol{C}, t \in R$. Then $\gamma_{2}^{*}(s, t)$ is an entire function of s, a fact already used, following (5.16). We therefore have

$$
\Psi_{j}(s) / \Gamma(s) \stackrel{\#}{=} \int_{0}^{\infty} \frac{(\sin \alpha r) r^{2(j+1)}}{e^{2 a r}+1} \gamma_{2}^{*}\left(s, r^{2}\right) d r .
$$

By page 135 of [3]

$$
\begin{equation*}
\gamma_{2}^{*}(s, t)=t^{-s}-\frac{t^{-1} e^{-t}}{\Gamma(s)}\left[1+O(|t|)^{-1}\right] \quad \text { as } \quad|t| \rightarrow \infty \tag{6.4}
\end{equation*}
$$

There are positive constants C, M therefore such that for $r \geq M$

$$
\begin{equation*}
\left|\gamma_{2}^{*}\left(s, r^{2}\right)\right| \leq r^{-2 \operatorname{Res}}+\frac{e^{-r^{2}}}{r^{2}|\Gamma(s)|}+\frac{C e^{-r^{2}}}{r^{4}|\Gamma(s)|} \tag{6.5}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left|\gamma_{2}^{*}\left(s, r^{2}\right)\right| \leq r^{-2 \operatorname{Res}}+\frac{C_{1} e^{-r^{2}}}{|\Gamma(s)|} \tag{6.6}
\end{equation*}
$$

for $r \geq M$, where $C_{1}=1+C$. Accordingly we have

$$
\Psi_{j}(s) / \Gamma(s)=\int_{0}^{M} \frac{(\sin \alpha r)}{e^{2 a r}+1} r^{2(j+1)} \gamma_{2}^{*}\left(s, r^{2}\right) d r+\int_{M}^{\infty} \frac{(\sin \alpha r)}{e^{2 a r}+1} r^{2(j+1)} \gamma_{2}^{*}\left(s, r^{2}\right) d r
$$

where the $1^{\text {st }}$ term is entire in s. The $2^{\text {nd }}$ term is also entire in s as the integral converges uniformly on compact subsets K of the plane, by (6.6):

$$
\left|\frac{(\sin \alpha r)}{e^{2 a r}+1} r^{2(j+1)} \gamma_{2}^{*}\left(s, r^{2}\right)\right| \leq r^{2(j+1)-2 \eta} e^{-2 a r}+C_{1} C_{2} r^{2(j+1)} e^{-2 a r}
$$

where $\operatorname{Re} s>\eta, \frac{1}{|\Gamma(s)|} \leq C_{2}$ for $s \in K$. We now have that $s \rightarrow \frac{1}{\Gamma(s)} \int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ extends to an entire function in case $\varepsilon=1$. To handle the case $\varepsilon=-1$ we use the idea preceding Theorem 4.4. Namely, write coth $a r=\tanh a r+$ $(\tanh a r) \operatorname{csch}^{2} a r$, so that the double integral in (6.1) is now $\Phi_{j}(s)+$ $\int_{0}^{1} \int_{0}^{\infty} x^{s-1} e^{-r^{2} x}(\sin \alpha r) r^{2(j+1)}(\tanh \operatorname{ar}) \operatorname{csch}^{2} \operatorname{ardrdx}$, where $s \rightarrow \frac{1}{\Gamma(s)} \Phi_{j}(s)$ extends to an entire function, as we have just shown, and where again Fubini's Theorem applies to the $2^{\text {nd }}$ term-call it $T_{j}(s)$:

$$
\begin{equation*}
\frac{T_{j}(s)}{\Gamma(s)}=\int_{0}^{\infty}(\sin \alpha r) r^{2(j+1)}(\tanh a r)\left(\operatorname{csch}^{2} a r\right) \gamma_{2}^{*}\left(s, r^{2}\right) d r \tag{6.7}
\end{equation*}
$$

exactly as in equation \#. Using (6.6) again we therefore see that $s \rightarrow T_{j}(s) / \Gamma(s)$ extends to an entire function-noting that $r \rightarrow r^{2} \operatorname{csch}^{2}$ ar (defined to be $\frac{1}{a^{2}}$ at $r=0$) is continuous on R, and that for some $C>0, r^{2} \operatorname{csch}^{2} a r<C e^{-a r} \forall r \geq$ 0 . This gives the analytic continuation of $s \rightarrow \frac{1}{\Gamma(s)} \int_{0}^{1} x^{s-1} \theta_{1}(x) d x$ to an entire function in the case $\varepsilon=-1$.

In case G is locally isomorphis to $\mathrm{SO}_{1}(2 n+1,1)$ (the final case to consider).

$$
\begin{equation*}
\int_{0}^{1} x^{s-1} \theta_{1}(x) d x=C_{G} \operatorname{vol}(\Gamma \backslash G) \sum_{j=0}^{n} a_{2 j} \int_{0}^{1} \int_{0}^{\infty} x^{s-1} e^{-r^{2} x}(\sin \alpha r) r^{2 j+1} d r d x \tag{6.8}
\end{equation*}
$$

by (2.5), (2.9), and the $1^{\text {st }}$ double integral in (6.1). By page 496 of [9]

$$
\begin{equation*}
\int_{0}^{\infty} e^{-r^{2} x}(\sin \alpha r) r^{2 j+1} d r=(-1)^{j} \frac{\sqrt{\pi}}{(2 \sqrt{x})^{2 j+2}} e^{-\left(\alpha^{2} / 4 x\right)} H_{2 j+1}\left(\frac{\alpha}{2 \sqrt{x}}\right) \tag{6.9}
\end{equation*}
$$

where H_{n} is the $n^{\text {th }}$ Hermite polynomial. Therefore

$$
\begin{aligned}
& \int_{0}^{1} x^{s-1} \theta_{1}(x) d x \\
& \quad=C_{G} \operatorname{vol}(\Gamma \backslash G) \sqrt{\pi} \sum_{j=0}^{n} \frac{a_{2 j}(-1)^{j}}{2^{2 j+2}} \int_{1}^{\infty} x^{-s-1} x^{j+1} H_{2 j+1}\left(\frac{\alpha}{2} \sqrt{x}\right) e^{-\alpha^{2} x / 4} d x
\end{aligned}
$$

which is entire in s. This concludes the proof of
Theorem 6.10. The zeta function $Z_{\alpha} \stackrel{\text { def }}{=} Z_{\alpha, 0}$ defined in (3.6) for $\operatorname{Re} s>\operatorname{dim}$ G / K admits an extension to the whole plane, which in all cases of G is an entire function.

Compare Theorem 5.17

7. A limit formula

As in [6] we can compute the special value $Z_{\alpha}(0)$ (given Theorem 6.10). The result, which is rather long and technical, will not be stated here. Using this result we can prove the following theorem. Recall the notation of section 3; see (3.9), (3.10) in particular.

Theorem 7.1. For any $\gamma_{1} \in \Gamma-\{1\}$

$$
\lim _{\alpha \rightarrow t_{\gamma_{1}}}\left(\alpha-t_{\gamma_{1}}\right) Z_{\alpha}(0)=\frac{1}{2} \sum_{\gamma \in C_{\Gamma}-\{1\}} j(\gamma)^{-1} t_{\gamma} C(\gamma) .
$$

The proof of Theorem 7.1 will appear elsewhere. We note in closing that Theorem 7.1 coincides with statement (1.2). Namely we define first of all the von Mangoldt function $\tilde{\Lambda}$ by

$$
\begin{equation*}
\tilde{\Lambda}(\gamma)=e^{t_{\gamma} / 2} j(\gamma)^{-1} t_{\gamma} C(\gamma) \quad \text { for } \quad \gamma \in \Gamma-\{1\} . \tag{7.2}
\end{equation*}
$$

Define the norm $N(\gamma)$ of $\gamma \in \Gamma-\{1\}$ by $N(\gamma)=e^{t_{\gamma}}$. For $G=S L(2, R), N(\gamma)=$ maximum of $\left\{|c|^{2} \mid c=\right.$ an eigenvalue of $\left.\gamma\right\}$ is the usual definition of the norm. Also in this case $C(\gamma)=\frac{1}{e^{t_{\gamma} / 2}-e^{-t_{\gamma} / 2}}$ so that $\tilde{\Lambda}(\gamma)=\frac{j(\gamma)^{-1} t_{\gamma}}{1-e^{-t_{\gamma}}}=\frac{\log N(\delta)}{1-N(\gamma)^{-1}}$ for $\gamma=\delta^{j(\gamma)}$ with δ a primitive element as section 3. That is $\tilde{\Lambda}$ in (7.2) reduces to the usual von Mangoldt function for the Selberg zeta function.

Theorem 7.1 can now be written as

$$
\lim _{\alpha \rightarrow \log N\left(\gamma_{1}\right)}\left(\alpha-\log N\left(\gamma_{1}\right)\right) Z_{\alpha}(0)=\frac{1}{2} \sum_{\substack{\gamma \in C_{r}^{-}\{1\} \\ N(\gamma)=N\left(\gamma_{1}\right)}} \tilde{\Lambda}(\gamma) / \sqrt{N(\gamma)},
$$

which is (1.2) for our normalization of Haar measures.

References

[1] D. DeGeorge, Length spectrum for compact locally symmetric spaces of strictly negative curvature, Ann. E'cole Norm. Sup. 10 (1977) 133-152.
[2] J. Delsarte, Formules de Poisson avec reste, J. Analyse Math. 17 (1966) 419-431.
[3] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher transcendental functions, Bateman Manuscript Project, vol. II (1953) McGraw Hill, New York.
[4] A. Fujii, Zeros, eigenvalues and arithmetic, Proc. Japan Acad. 60 series A (1984) 22-25.
[5] -, A zeta function connected with the eigenvalues of the Laplace-Beltrami operator on the fundamental domain of the modular group, Nagoya Math. J. 96 (1984) 167-174.
[6] -_, Arithmetic of some zeta function connected with the eigenvalues of the LaplaceBeltrami operator, from Advanced Studies in Pure Math. 13, Investigations in Number Theory, Edited by T. Kubota (1988) 237-260, Academic Press.
[7] R. Gangolli, On the length spectrum of certain compact manifolds of negative curvature, J. Diff. Geometry 12 (1977) 403-424.
[8] R. Gangolli, G. Warner, On Selberg's trace formula. J. Math. Soc. Japan 27 (1975) 328-343.
[9] I. Gradshteyn, I. Ryzhik, Table of integrals, series, and products, corrected and enlarged edition prepared by A. Jeffrey (1965), 6th printing, Academic Press.
[10] A. Guinand, A summation formula in theory of prime numbers, Proc. London Math. Soc. 50 Series 2 (1945) 107-119.
[11] Harish-Chandra, Representations of semisimple Lie groups II, Trans. Am. Math. Soc. 76 (1954) 26-65.
[12] R. Miatello, The Minakshisundaram-Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature, Trans. Am. Math. Soc. 260 (1980) 1-33.
[13] , On the Plancherel measure for linear Lie groups of rank one, Manuscripta Math. 29 (1979) 249-276.
[14] S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Canadian J. Math. 1 (1949) 242-256.
[15] G. Mostow, Strong rigidity for locally symmetric spaces, Annals of Math. Studies 78 Princeton Univ. Press (1973).
[16] N. Wallach, On the Selberg trace formula in the case of compact quotient, Bull. AMS 82 (1976) 171-195.
[17] F. Williams, Formula for the class 1 spectrum and the meromorphic continuation of Minakshisundaram—Pleijel series, preprint (1989).
[18] -, Lectures on the spectrum of $L^{2}(\Gamma \backslash G)$. Pitman Research Notes in Math. Series, Vol 242, Longman House Pub. (1991).

[^0]: ${ }^{1}$ Research supported by CONICET, Argentina
 ${ }^{2}$ Research supported by NSF Grant No. DMS-8802597

