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1. Introduction

It is important to search similarities between two character sequences or
characteristic patterns of a subset in a large set of sequences, in the areas of
molecular biology, computer science and so on. For simplicity, we call
sequences instead of character sequences.

The problem of searching similarities between two sequences has been
formulated as the one of searching the longest common subsequence of two
sequences under certain deletion/insertion constraints. This problem can be
modified so as to search an optimum alignment under certain scoring rules,
such as +1 for a base match and —g for a gap. These problems have been
studied by many authors. For global search methods, see Fitch [4], Dayhoff
[1], Lipman and Pearson [13], Needleman and Wunsch [17], Sellers [20],
Sankoff [19], and Wilbur and Lipman [23, 24]. For local search methods,
see Hirschberg [10], Sellers [21], Smith and Waterman [22], and Goad and
Kanehisa [9].

With the development of large database of sequences such as genes or
images, it is necessary to compare several sequences. Relating to this problem,
Korn et al. [12] developed a program for searching subsequences common to
all of several sequences. In this paper we consider the problem of searching
characteristic patterns of a subset in a large set of sequences. We formulate
this problem as follows:

Let Z be a finite set of some alphabet, and let S and P be two finite
sets of sequences whose units are composed from Z, such that S 2 P. Then,

we are interesting in a sequence a =(a;,...,q) with a,e ZU{0}, i=1,...,k
satisfying the following conditions (1) ~ (4):
(1) a#(,...,0),

(2) k <min {/(b)|beP} (£(b) denotes the length of b),
(3) For any b = (b,,...,b,) € P, there exists an integer i, such that

0§i0§h_k and al=b,+,oifa,7’—‘0,
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(4) For any b=(b,,...,b,)eS — P, there does not exist an integer i,
satisfying the above condition,
where 0 denotes an element not to belong to Z.

We call such a a characteristic pattern of a subset P in S or a solution
of (S, P). A solution of (S, P) means a sequence which gives a characteristic
of P in S. In general, it is difficult to find all solutions of (S, P) when |S]
(= the number of elements in S) and |P| are large or the length of elements
in S or Pis long. The purpose of this paper is to propose an efficient method
of finding all solutions of (S, P), which has an application to molecular
biology. To do this, we first consider the case when S and P consist of
elements with fixed length k, i.e., solutions of (k, S, P). Then, we consider
the case when S and P consist of elements with various lengths.

In Section 2, we give a formal setup for the problem of searching all
characteristic patterns of P in S, i.e., all solutions of (S, P). Section 3 discusses
the problem in the case when S and P consist of elements with fixed length
k. We introduce a notion of the maximum common element and a mapping
from Zu{0} to {0, 1,2}. It is shown that our problem can be essentially
reduced to the one in the case [P|=1 and |Z|=2. Section 4 treats the
problem in a general case. In order to find solutions of (S, P) more effectively,
we present an inductive method on |P| and length k of solutions, whose
algorithm is given in Section S. In Section 6, we give an application to
analysis of large database of nucleic acid sequences.

2. Definitions and the statement of the problems

Let Z be a set of some alphabet. Without loss of generality, we may
denote Z by

Z=1{1,2..12Z|},

which consists of |Z| integers. Let Z = {0}UZ. We denote by 0 an element
which is any one in Z. Moreover, for any positive integer k, consider the
cartesian product Z* (resp. Z*) of the k copies of Z (resp. Z), whose element
is denoted by

a=(a,--a),aeZ (resp. Z) for 1<i<k,
instead of a = (ay,...,a,) omitting the commas.

DerINITION 2.1. For two elements a = (a,---a,) and b = (b,---b,) in Z*,
we say that b contains a, denoted by

achbh,
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(P;kl=U[b; k1= U:[b; k]l (P'={beP|s(b)Zk});

beP beP’

where J(P; k) = ¢ when k > £(b) for some beP.
(iii) Moreover, consider the maximum common element m(P(j; k))e Z*
of P(j; k) = Z* in (ii) given by Definition 3.2, and we define

M(P; k) = {m(P(j; k))|je J(P; k)} < Z*.

By using those notations for < in Definition 2.3 and B*(P) and C*(S)
in Proposition 4.1, we have the following

LEMMA 4.1. (1) a < b in Definition 2.3 means that
ac b’ in Definition 2.1 for some b’ = b(i; ¢(a))e[b; £(a)],

which is a = b in Definition 2.1 when ¢{(a) = ¢(b).
(i) The sets in Proposition 4.1 are given as follows:

B*(P) = {aeZ*|a = m for some me M(P; k)},
i.e., B«(P) is the union of B(k, {m})= {a€Z*|a cm} for me M(P; k); and
Ck§=cC(s) (8 =[3;k],5=8-P),

where C(S8') = C¥(S') = {an"Ia_c ¢ for some c'€S'} for ' c Z*.
(iii) A*(S, P) = B¥(P) — C*(S) in Proposition 4.1 is the union of

B(k, {m}) — C(S')  for me M(P; k) — C(S').
ProoF. (i) According to Definition 4.1(i), it is the restatement of

Definitions 2.3 and 2.1.

(i) According to Definition 4.1 and (i), ae B“(P) means ae Z* and that
for any beP, there exists j,el(b; k) with a < b(j,; k), or equivalently, that
there exists j = (j,|be P)e J(P; k) with a = b’ for any b’ eP(j; k), i.e., with
aeB(k, P(j; k) = B(k, {m(P(j; k)}) by Lemma 3.5 in Section 3. Therefore,
ae B¥(P) is equivalent to ae B(k, {m}) for some me M(P; k) by Definition 4.1
(iii); and (ii) for B*(P) is proved.

The equality for C*(S) follows from its definition, (i) and Definition 4.1 (ii).

(i) According to (ii), 4*(S, P) is the union of

B(k, {m}) — C(S") for me M(P; k);

and if meC(S’), then any a —m satisfies aeC(S'), ie., B(k, {m}) < C(S).
Therefore, we see (iii).

In Lemma 4.1(iii), the last set is equal to

{aeZ¥|lacm, and a & ¢ for any c'eS'}.
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Therefore, relating to the extension of Definition 2.2 to the case P = S = Z*,
we also use the notation in the following
DErINITION 4.2. By using the notations in Lemma 4.1, we put
NS, P; k)=M(P; k)—CS)<=Z* (8'=[S;k],S=S—-P),
A(k, S'U{m}, {m}) = B(k, {m}) — C(S") = Z* for meN(S, P; k),
and call the latter the set of all solutions of (k, S'U{m}, {m}).

Now, we find all solutions of (S, P) in the following example by using
Lemma 4.1(iii) and Definition 4.2.

ExaMPLE 4.1. Let S = {(121), (211), (221), (112), (122), (222)} and P =
{(121), (211), (221)}, then we have P(j; k) and m(P(j; k)) for k = 2 as follows:

P(j; 2) m(P(j; 2))
{(12), 21), (22)} (00)
{(12), 21} (00)

{(12), (11), (22)} (00)
{(12), (11), 2D} (00)
{@21), 22)} (20)
{@n} @y
{@n, 11, 22)} (00)
{@1), an} (o1

Hence, we have
M = M(P; 2) = {(00), (20), (21), (01)},
§' =[S - P; 2] = {(11), (12), (22)},
N=M—-C(S) = {21},
A*(S, P) = mkE)N(A(Z, §'u{m}, {m}),

= {@V)}.

Here, we notice the following lemma, which is seen by the definition
according to Lemmas 3.2 and 3.3.

LEMMA 4.2. Let m=(m,---m)€Z*, m#(0---0) and I = I(m) = {i|m;=0}.
Then, we have

m=m[I] and m' =m[—1]1€Z* for k' =k —|I| #0,

and

Ak, S"U{m}, {m}) = A(K', S'[—11u{m’}, {m'})[+1]
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when a; = b; for any 1 <i < k with q; #0. If b does not contain a, we denote
it by a# b.

DerFiNITION 2.2. Let k be a positive integer, and S and P be two sets
of Z* such that

Z¥>8>P and S#P#¢.
Then, we say that aeZ* is a solution of (k, S, P) when
(*) acbh for any beP and a ¢ b for any beS — P.
Moreover, the set of all solutions of (k, S, P) is denoted by
A(k, S, P) = {ae Z*|a satisfies ()}.

Our notation a = b means that a and b have a similarity. The problem
of finding solutions of (k, S, P) can be generalized as follows:

DerFiniTION 2.3. For two elements a = (a,---q) and b= (b,---b;) in

9]

Z* = |J Z*, we say that b contains a, denoted also by
k=1 sch
when k < h and there exists an integer i, such that
0<iy=h—k, and g;=b,,,; for any 1 <i < k with a; #0.
If b does not contain a, we denote it also by a & b.
DErFINITION 2.4. Let S and P be two finite sets such that

0

Z*= ) Z¥>S>P and S#P#¢.

k=1

Then, we say that acZ* is a solution of (S, P) with length k when aeZ*
and a satisfies () in Definition 2.2, for < in Definition 2.3. Also, the set of
all solutions of (S, P) is denoted by A*(S, P) (See Proposition 4.1).

The main purpose in this paper is to study the problems of finding
solutions of (k, S, P) and (S, P). It may be noted that such solutions express
the characteristic patterns of P in S.

We give simple examples in order to understand our problems.

ExampLE 2.1. Let Z = {1, 2}, S = {(11), (12), (21)} and P = {(11)}, then
A2, S, P) = A%(S, P) = {(11)}.

ExaMmpLE 2.2. Let P = {(12), (21)} in the above example, then A(2, S, P)
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= ¢ and A*(S, P) = {(2)}.

3. Solutions of (k, S, P) in Definition 2.2

Let k, S and P be the same ones as in Definition 2.2. Then, by Definition
2.2, we easily have the following properties of solutions of (k, S, P).

LEMMA 3.1. If aeZ* is a solution of (k, S, P), then a # (0---0).

PrROOF. 0 =(0---0) satisfies 0 b for any beZ* by Definition 2.1.
Therefore, if a = 0 satisfies (*¥) in Definition 2.2, then P = S.

PropPoOSITION 3.1. Let A(k, S, P) be the set of all solutions of (k, S, P).
Then

A(k, S, P) = B(k, P) — C(k, S, P),
where
B(k, P) = {aeZ*|a c b for any beP},
C(k, S, P) = {aeB(k, P)|a c ¢ for some ceS — P}.
ProOOF. The result immediately follows from Definition 2.2.
We try to find the set of all solutions of the following example by using
the above proposition.
ExampLE 3.1. Let S and P be given as follows:

(1122)
(112)
(1212)
(2212)
(1222)

In order to find the set of all solutions of (4, S, P), we find B(4, P) and
C(4, S, P) as follows:

B(4, P) = {(0000), (0100), (0002), (0102)},
C(4, S, P) = {(0000), (0002)}.
Then, we have
A4, S, P) = {(0100), (0102)}.

In general, it is troublesome to list up all elements of B(k, P) and C(k, S, P)
as k, |P| or |Z| are large. Therefore, in the rest of this section, we will try
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to reduce k, |P| and |Z|.
First, we prepare some notations.

DerNITION 3.1, For b = (b, ---b,)e Z*, we define
b[i]=(by-b;_,0b;,, - b)eZ* (1Ligh),
b[—il=(by-bi_1bisy--b)eZ*"' (1Z2iZk),
bL+j]1=(by-b;_ Ob;-b)eZ¥*t  (1<j<k+1).

More generally, for a subset I of {1,...,k} with |I| elements, b[I]e Z* is
the element whose i-th coordinate is given by

0 foriel,
b; otherwise,

b[1]; ={

and b[—I1]eZ* W (|I| # k) is the one obtained by removing b; for i€l from
(by---by). Also, for a subset J of {1,...,k +|J|}, we define b[+J]eZ**V!
by the equalities

b[+IJN[J]=b[+J] and (B[+J][-J]=0D.
Moreover, for a subset B of Z*, we define
B[K] = {b[K]|beB} (K =i, —i, +j, I, =1 or +J).
The following lemma is immediately seen by the definition.

LemMMmA 3.2. (i) b[IJ=b=(b,---by) if and only if b;=0 for any iel.
(i) (B[—I1[+1]1=">b[I] when I #{1,...,k}.
(iii) a[+J]=b[+J] if and only if a="b.

For a = b in Definition 2.1, we immediately see the following

LeMMA 3.3. (i) a < b means a = b[I(a)], where I((a,---a,)) = {i|a; = 0}.

(i) b[I1<b for any b and I

(i) a < b implies a[K] =« b[K] (K =1, —1I or +J).

(iv) a[lI] < b[I] is equivalent to a[—1] < b[—1I], and so is a<b to
a[+J] < b[+J].

(v) If a=a[l], then a[I] < b[I] or a[—I] = b[—1] is equivalent to
ach.

DEerFINITION 3.2. For B c Z*, we define the subsets L(B) and R(B) of
{1,....,k} by

L(B) = {i|there is s; such that b; =s; for any (b,---b,)€ B},

and
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R(B) = {i|a; # b; for some (a;---a,), (b,---b)e B},

respectively. We call m(B) = (m,---m;), defined by m;=s; if ieL(B), =0
otherwise, or s(B) = m(B)[—R(B)] the maximum common element of B.

Lemma 3.4. (i) R(B)={l,....,k} — L(B).
(ii) When L(B) # ¢, B[ —R(B)] consists of the one element s(B), i.e.

b[—R(B)]=s(B)  for any beB.

(i) Let L(B)# ¢ and aecZ* satisfy a[—R(B)] = s(B). Then for any
beB, a c b is equivalent to a[L] = b[L] or a[ —L] = b[— L] where L= L(B).

Proor. (i) and (ii) hold by the definition.

(iii) Let a=(a,---a). Then a;=s; if ie L and a; # 0 by the assumption.
For b= (b,---b,)eB, a[L] = b[L] means a;=b; if i¢ L and a; # 0, which
implies a = b since b; = s; if ieL.

Using these notations, we will obtain a reduction for B(k, P) in Proposition

3.1.
ProposITION 3.2. (i) If L(P)= ¢, then B(k, P)= {(0---0)}.
@) If |L(P)l=h+#0, then

B(k, P) = {aeZ*|a[R] = a and a[—R] < s}
= B(h, {s})[+R],
where R = R(P) and s = s(P).
Proor. Take any aeB(k, P). Then, by the definition,
a=(a,-a)<b=(by-by for any beP.

If a;#0, then b,=aqa; by Definition 2.1, and so ieL(P) by Definition
3.2. Therefore
a;=0  for any ieR = {1,...,k} — L(P).

Thus we see (i), because (0---0)c=b. Also a[R]=a by Lemma 3.2(i).
Hereafter assume h # 0. Then a[—R] < b[—R] = s by Lemmas 3.3 (iii) and
3.4(ii); hence a belongs to the second set B’ in (ii).

Conversely, take any aeB’. Then, for any beP, we see a[—R] c s =
b[—R] by Lemma 3.4(ii). Hence a = b by Lemma 3.3(v), since a[R] = a.
Thus aeB(k, P). On the other hand, let @ =a[—R]eZ". Thus d cs
means a'€ B(h, {s}) by the definition; and using Lemma 3.2 (ii), we have

a=a[R] =(a[—R])[+R]=d[+R]eB(h, {s})[+R].
Finally, if a = a’'[ +R] for a'eB(h, {s}), then
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a[R] = @[+R)[R] = d[+R] =a
and a[—R]=@[+R])[—R]=d cs
by Definition 3.1, and these mean ae B'. Therefore, (ii) is proved completely.
For C(k, S, P) in Proposition 3.1, we have the following
ProrosITION 3.3. (i) If L(P)= ¢, or L(P)# ¢ and s(P)e(S — P)[—R(P)],

then C(k, S, P) = B(k, P).
(i) If IL(P) =h #0 and s = s(P)¢(S — P)[—R] (R = R(P)), then

(S—P)[-R]=S[—R]—{s} # ¢,
and
C(k, S, P)= C(h, S[—R], {s})[+R].

Proor. Recall that C(k, S, P) = {aeB(k, P)|a < ¢ for some ceS — P}.
(i) When L(P)=¢, we see (i) by Proposition 3.2(1). Assume that
L(P) # ¢ and

s = s(P) = ¢[—R] for some ceS — P (R = R(P)).

Take aeB(k, P). Then a[R]=a and a[—R] =s by Proposition 3.2(ii);
hence a[—R] =c[—R] and we see acc by Lemma 3.3(v). Thus ae
C(k, S, P); and (i) is proved.

(ii) Assume that L(P) # ¢ and s¢(S — P)[—R]. Then we see the first
desired equality, because {s} = P[—R] by Lemma 3.4(ii).

Take any aeC(k, S, P). Then aeB(k, P), i.e.,

a[R]=a, a =a[—R]eB(h, {s}) and d[+R] =a
by Proposition 3.2 (ii) and its proof. Also a < ¢ for some ce S — P. Hence
d =a[—R]cc[-R]eS[—R] — {s}

by the first equality, and we see a'e C(h, S[—R], {s}) by the definition. Thus,
a=d[+R]eC(h, ST—R], {s})[+R].
Conversely, take any a'€ C(h, S[—R], {s}). Then a' €B(h, {s}), and

a=a[+R]eB(k, P)

by Proposition 3.2 (i). Also a’ < ¢ for some ¢’eS[—R] — {s} =(S—P)[—R].
Hence ¢’ = c[—R] for some ceS — P, and

a=ad[+Rlcc[+R]}=(c[-R])[+R}=c[R]lcec
Therefore ae C(k, S, P); and the last equality is proved.
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Propositions 3.1, 3.2 and 3.3 imply the following theorem for the set
A(k, S, P) of all solutions of (k, S, P) in Definition 2.2.

THEOREM 3.1. Let P and S be the subsets in Z* such that P < S and P # S.
(i) There exists a solution of (k, S, P) if and only if

h=k—|R|#0 and s¢(S— P)[—R],

where R = R(P) = {1,...,k} and the maximum common element s = s(P)e Z" of
P are defined by Definition 3.2.
(i) In case of (i), it holds that

A(k, S, P) = A(h, ST—R], {s})[+R],

i.e., all solutions of (k, S, P) are a'[+R] (see Definition 3.1) of those a' of
(h, SL—R], {s}), where the correspondence sending a'€Z" to a'[+R]eZ* is
one-to-one.

(i) For seS’ = S[—R] = Z", consider L= L[S'] = {1,...,h} in Definition
32 and put m=h—|L| >0 and s' =s[—L]. Then, it holds that

A(h, S, {s})={aeZ"|a[+L] cacs for some a e Am, S'[~L], {s})};
and this set contains any a with s[L] cacs.

Proor. A(k, S, P) = B(k, P) — C(k, S, P) by Proposition 3.1, and the
correspondence sending a’' to a'[+R] is one-to-one by Lemma 3.2 (iii).
Therefore, (i) and (ii) follow from Propositions 3.2 and 3.3, since A(h, S[—R],

{s})>s.
(iii) Take any aeA(h, S’, {s}). Then, by Definition 2.2,

acs, and b=sif acbes’;

and we can prove @' =a[—L]eA(m, S”, {s'}) where " =S'[—L]. In fact,
ad=a[-L]lcs[—L]=5s. Assume a’ cb'€S”. Then b’ = b[~L] for some
beS’, and so a[—L] = b[—L]. This implies a = b by Lemma 3.4 (iii), since
a[—R(S)] = s[—R(S)]=s(S) by Lemma 3.4(i). Therefore, b=s, and
b'=s[—L]=s. Thus deA(m, S",{s'}) is proved. Now, da[+L]=
(a[—L])[+L]=a[L] <cacs; and a belongs to the right hand side A’ of
the desired equality.
Conversely, take any ac A’. Then, there exists a’'e Z™ such that

adcs, bV=sifadcbeS[-L], and d[+L]cacs.

Assume ac beS’. Then a' =(@[+L])[—L]<a[—-L]<b[-L]eS'[-L],
and so b[—L] =5 =s[—L]. This and beS’ imply b =s by the definition
of L= L(S). Thus aeA(h, S, {s}); and the desired equality is proved.
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The last fact holds, because s'€ A(m, S'[—L], {s'}) and s'[+L] = s[L].

ExaMPLE 3.2. Let S and P be given as follows:

Then R = R(P) = {2, 3}, s(P)=(1) and (S — P)[—R] = {(2), (1)}. Therefore,
by Theorem 3.1(i) we obtain A(3, S, P) = ¢ since se(S — P)[—R].

In the following examples, we find all solutions of (k, S, P) by using
Theorem 3.1.

ExaMpLE 3.3. In Example 3.1, we easily see that L(P)= {2, 4},
R=R(P)={1, 3}, s=5(P)=(12) and S[—R] = {(12), (22)}. Then

B(2, {s}) = {(00), (10), (02), (12)},
C(2, S[-R], {s}) = {(00), (02)},
A2, S[-R], {s}) = {(10), 12},

and
A4, S, P) = {(0100), (0102)}.

ExampPLE 3.4. In the above example, let S' = S[—R]. Then L= L(S') =
{2}, s =s[—L]=(1) and S'[—L] = {(1), (2)}. Therefore

B(1, {s}) = {0, ()},

Cc, S'[-L1, {s}) ={0O},

A, S'[-L], {sh) = {()},
and from Theorem 3.1(iii)) we have

A2, 5, {s}) = {(10), (12)}.

For the set A(m, S'[—L], {s'}) in (ii) of Theorem 3.1, we have the
following

THEOREM 3.2. For s' = (sy:--sn)€Z™, we define the mapping
foiZm—{0,1,2}"
sending b = (by---b,)eZ™ to f.(b) = (e, em)€{0, 1, 2}™ given by
e;,=01if bj=0,=11if b;=s!,=2if 0#b; # 5] 1=sism.
Moreover, for s€S'[—L] < Z™ in Theorem 3.1(iii), let
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1=(01--1)=f(s)eT=f,(S'[—L]) = {1, 2}".
Then
aeA(m, S'[—L1, {s'}) if and only if f.(a)e A(m, T, {1}).

Furthermore, if de A(m, T, {1}), then we have a solution ae A(m, S'[—L], {s'})
with f.(a) = d, which is uniquely determined by a = s'[ 1], where the subset 1
of {1,...,m} is defined by d = 1[I].

Proor. By the definition of f = f,, and Definition 2.1 of =, we see that
a c s (resp. b =s') is equivalent to f(a) = f(s') = 1 (resp. f(b) = 1). Moreover,
a < b implies f(a) = f(b); and when a c s, f(a) = f(b) implies a = b. Thus,
the conditions that

acs, and b=¢ if acbeS[—-L]
are equivalent to the ones that
f@cl, and b =11if f(a)cb'eT=f(S'[—L]);
and we see the first half. The second half is seen by the definition.
These two theorems mean the following main result in this section.

THeOREM 3.3. (i) The problem of finding solutions of (k, S, P) in
Definition 2.2 for subsets

PcScZ¥with Z={1,2,...,|Z|} and ¢ #P #S

can be reduced by Theorems 3.1 and 3.2 to the one of finding solutions of
(m, T, {1}) for

l=(1--1)eTc{,2}" withm<k

such that for any ie{l,...,m}, e;=2 for some (e,--e,)eT.
(i) Moreover, d is a solution of (m, T, {1}) if and only if there exists a
proper subset I of {1,...,m} such that

d=1[1] and e[I] #d for any ee T— {1}.

Here, ((e,---e,)[1]1);=0 if iel, =e; if i¢I (cf. Definition 3.1), and (ii) is the
restatement of Definition 2.2 in case of (m, T, {1}).

This theorem considerably simplifies the problem in the case that |Z| and
k are so large.

ExaMPLE 3.5. Let S and P be given as follows:
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(3123)
(3323)
(1323)
(3113)
(1223)
(3233)

Then R = R(P) = {2}, L= L(P) = {1, 3, 4} and s = s(P) = (323). Therefore, we
apply the mapping f,. in Theorem 3.2 as follows:

S’ = S[—R] = {(323), (123), (313), (333)},
L(S) = {3},

s =s[—-L(S)] =(32),

8" = §'[-L(S)] = {(32), (12), 31), (33)},
T = f,(8") = {(11), (21), (12)}.

Then, the problem of finding solutions of (4, S, P) is reduced to the one of
(2, T, {1}). Then

B(2, {1}) = {(00), (01), (10), (11)},
C@2, T, {1}) = {(00), (01), (10},
4@, T {1}) = {1},

By Theorem 3.2, we obtain I = ¢ since (11)=(11) [I] and a=s =(32) as a
solution of A(2, S”, {s'}). Therefore

AB, 8, {s}) = {(320), 323)},
A4, S, P) = {(3020), (3023)}.
The following lemma is used in the next section.
LemMMA 3.5. In Proposition 3.2(ii), it holds also that
B(k, P) = {acZ*|a = m(P)} = B(k, {m(P)})
for the maximum common element m(P)e Z* in Definition 3.2.
Proor. It is proved in Proposition 3.2(ii) that
B(k, P)= B = {aeZ*|a[R] = a and a[—R] c s},
where s = s(P), m = m(P) and R = R[P] in Definition 3.2 satisfy
s=m[—R] and s[+R] =m = m[R]
for b[K] in Definition 3.1. By Definitions 2.1 and 3.1, we see that
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acm and m =m[R] imply a = a[R].

Therefore, if aeB’, then a=a[R] =(a[—R])[+R] =s[+R] =m; and if
acm, then a=a[R] and a[—R] cm[—R] =s, and so aeB’, by Lemmas
3.2 and 3.3. Thus the first equality is proved. The second one is the
definition.

4. Solutions of (S, P) in Definition 2.4

In this section, let S and P be given finite sets satisfying
PcScZ*= ) Z¥ and ¢ #P+#S,
k=1

where Z = {1, 2,...,|Z|}. Then, the following proposition is seen in the same

way as Proposition 3.1, where Z = {0}UZ and Z* = (J Z*.

k=1

PROPOSITION 4.1. Let A*(S, P) be the set of all solutions of (S, P) with
length k in Definition 2.4 for 1 <k < oo or k= *. Then

A*(S, P)= |) AS, P) and A, P) = B(P) — C*(S),

k=1
where S=S — P,
B*(P) = {aeZ*|ac b for any beP},
C*S) = {aeZ*|a c c for some ceS},
by the notation c— in Definition 2.3.
To study the above sets, we prepare some notations.

DEFINITION 4.1. (i) For a = (a,---a,)eZ*, let £(a)=h and call it the
length of a. Moreover, when 1 < k < /(a), we define

I(a; k)= {1,....4(a) — k + 1},
a(i; k) = (a;+a;+x—,)€ Z* for iel(a; k),
[a; k] = {a(i; k)|iel(a; k)} = Z*;

and I(a; k) = ¢ = [a; k] when k > £(a).

(i) For any subset P = Z* and 1 <k < o0, we define

J(P; k)=[]1(b; k) = {(s| be P)|j€l(b; k) for be P},

beP

P(j; k) = {b(jy; k)| be P} for j = (j,|be P)eJ(P; k),
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for the set in Definition 4.2, where B[K] is the notation in Definition 3.1.
Moreover, A(k', S'[—11u{m'}, {m'}) of the above is the set of solutions
in Definition 2.2, and so we can apply Theorems 3.1(iii), 3.2 and 3.3 to it.

If the size of M(P; k) or N(S, P; k) is large, it is difficult to obtain it.
Therefore it is important to reduce M(P; k) or N(S, P; k) without any change
of solvability.

DerINITION 4.3. (i) For any subset M = Z*, we call meM a reduced
element in M when

mcecm #m for some m' e M.

(i) Moreover, we denote by M the set of all non-reduced elements in
M, i.e, by M = M(P; k), N(S, P; k), A*(S, P) or B“(P) when M = M(P; k),
N(S, P; k), A(S, P) or B*(P), respectively.

LEMMA 4.3. (i) M # ¢ if and only if M # ¢; and then any me M satisfies
mc h for some heM, i.e., M = C(M) = C(M). Moreover, for meM, meM
holds if and only if m < m e M implies m' = m.

(i) If M <N < C(M)=C(M), then N = M.

(i) If N=M—C(S) (S <=Z, then N=M — C(S).

PrOOF. We see (i) by the definition. Let M = N < C(M). If neN,
then n < m for some meM c N, and so n= meM, by (i). Conversely, if
meM, then m = n < m’ for some neN and m'e M ; hence m = m’ by (i) and
m=neN. Thus N =M, and (ii) is proved. (iii) is proved in the same way
by noticing that n « m and n¢ C(S’') imply m¢ C(S).

Now, we see the following results by Proposition 4.1 and Lemma 4.1.

THEOREM 4.1. (i) For the set A*(S, P) of all solutions of (S, P) of length
k in Definition 2.4, and the sets in Definitions 4.1, 4.2 and 4.3, we have

AS, P= U Ak S'u{m}, {m}) (8'=I[S— P;k]),
meN(S, P;k)
the union of the sets in Lemma 4.2. Also we have B*(P) = C(M (P; k)) and
AX(S, P) = BX(P) — C(S) = C(N(S, P; k)) — C(S).

(ii) In particular, there exists a solution of (S, P) of length k if and only
if NS, P;k)+# ¢ or equivalently, N(S, P; k) # ¢; and then any meN(S, P; k)
is a solution.

PrOOF. By the above statements, we have already seen that B*(P) (resp.
A¥(S, P)) is the union of B(k, {m}) (resp. A(m) = A(k, S'U{m}, {m}) = B(k, {m})
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— C(8")) for me M(P; k) (resp. N(S, P; k)). Therefore, the same is valid also
for meM(P ; k) (resp. N(S, P; k)) by Lemma 4.3(i), because m = m’ implies
B(k, {m})cB(k, {m'}) and so A(m)= A(m’). Thus we see (i), since {J B(k, {m})

= C(M) by the definition. meM

(ii) follows from (i), because me B(k, {m}) — C(S’) = A(m) when m¢ C(S’).
We note that N(S, P; k) = A%(S, P) = M(P; k) — C(S") and M(P; k) = B*(P)
by Lemma 4.3 (iii).

We shall find all solutions of (S, P) by using Theorem 4.1.

ExampLE 4.2. Let S = {(121), (211), (122), (222)} and P = {(121), (211)},
then we have for k =2

M(P; 2) = {(00), (10), (21), (O1)},
§'=[S-P;21={(12), (22},
N(S, P; 2) = {(21), (01)},
N =N(S, P; 2) = {(21)}.
Hence, we have only to find the set of solutions A(2, S'U {m}, {m}) for m = (21),

then
A*(S, P)= A2, S'u{(21)}, {2D)})

= {©1), @1)}.
Also we have
C(N) = {(00), (20), (01), (21)},
A%(S, P) = C(N) — C(S")
= {(01), 21)}.
EXAMPLE 4.3. ALet S and P be the same as in Example 4.1, then we see
that N(S, P;2) = N(S, P; 2) = {(21)}. Hence
A%(S, P)= A2, s'u{(2D}, {@D})
= {2}

ExAMPLE 4.4. Let the element (112) in S of Example 4.1 be changed to
(212). Then
[S - P; 21 ={(21), (12), (22)},

M(P; 2) = {(00), (20), (21), (O1)},

NG, P;2) = ¢.
Hence there is no solution.
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By Proposition 4.1 and Theorem 4.1, solutions of (S, P) can be obtained
by examining the sets of solutions in Lemma 4.2 and the sets

N(S, P; ko N(S, P; k) for 1 <k < oo

and by Definitions 4.1, 4.2 and 4.3, the latter two sets are obtained by making
J(P; k), by taking m(P(j; k)) for all jeJ(P; k), and then finding m(P(j, k)) ¢
C(S’), and so on. However, J(P; k) may contain many elements, e.g.

|J(P; k)| = (h—k + 1) when P c Z*.

Therefore, we are concerned hereafter with the problem of finding a
non-empty set N(S, P; k) more effectively.

In the first place, we present an inductive method on the number |P| of
elements in P.

DEFINITION 4.4. For a, be Z*, we denote m({a, b}) in Definition 3.2 by
a&hb, ie., for a=(a,---a,) and b = (b,---b,), the i-th coordinate of a&b is
given by

(a&b),=a; if a;=b;,, =0 if a; #b; 1=ZiLk).

For A, B< Z*, we put A& B = {a&blacA and beB}.

LEMMA 4.4. (i) For beZ*, M({b}; k) = [b; k] = M({b}; k), which is ¢
if k> {(b).
(ii) Let P=P,UP, and P,nNP, =¢. Then

M(P; k)= M(P,; k)& M(P,; k), and
M(P;k)=M for M = M(P,; k)& M(P,; k).

Proor. (i) We see (i) by the definition.

@) J(P;k)=J(P,;k)x J(P,; k), ie, j=(,lbeP)eJ(P; k) gives us
j = (,|beP,)eJ(P,; k) for e = 1, 2, and also the converse holds, by Definition
4.1; and moreover P(j; k) = P,(j'; k)UP,(j*; k). Therefore, m(P(j; k)) =
m(P,(j*; k)) &m(P,(j?; k)) by Definitions 3.2 and 4.4; and we see the first
equality by Definition 4.1 (iii).

Take any me M(P; k), and m*e M, = M(P,; k) with m = m* &m?. Then,
m* < m® for some m‘e]\fls by Lemma 4.3(1). Thus mc m'&m*e M(P; k)
and so m = m! & m? by Lemma 4.3(i), since me M(P; k). Therefore, we see
M(P;k)c M, &M, =M = M(P; k), and M(P; k)= M by Lemma 4.3 (ii).

PROPOSITION 4.2. For ¢ #QcPc S, let S=S— P and

Nu(©Q) =N@ESUQ, Q; k) = M(Q; k) — C([5; k).
) N({b}) =[b; k1 —[S; k1  for any beP;
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and this is ¢ if k > £(b). Also, N,.({b}) = ¢ if k' < k < £(b) and N,({b}) = ¢.
(i) If Ny(Q)=¢ and Q = Q' < P, then N(Q) = ¢. In particular,

NS, P;k)=N,(P)=¢ if [b;k]<[S;k]  for some beP.
(iii) Let beP — Q. Then
N(QU{b}) =N for N = (N,(Q) & N,({b})) — C([5; K])-

Proor. (i) We see the first half by Lemma 4.4(). If k' <k <Z(b),
then we see [b; k'] =[[b; k]; k'] by Definition 4.1. Hence, if Nk({b})= ¢
in addition, then [b; k'] = [[S; k]; k'] = [S; k'], and so N,.({b}) = ¢.

(i) Hereafter, denote simply by N(Q)= N,(Q) and S’ =[S;k]. Put
M =M(@Q'; k), M, =M(@Q;k), M,=M(Q —Q; k), and take M of them.
Then M’ = M, &M, by Lemma 4.4(ii). If m* is contained in C = C(S") for
e=1 or 2, then so is m! & m? c m*. Therefore,

(M, &M,) ~ C (M, — C)&(M, — C)) - C = (N(Q&N(Q — Q)) - C.

Thus, N(Q) = ¢ implies M' = M, &M, = C and N(Q)) = ¢.
(iii) By the above proof for Q' = QU {b} and Lemma 4.4(ii), we have

N@)=M —Cc(NQ&N({p})-C=N
c(M,;&M,)—-C=M - C=N(Q),
and the desired equality N (@)=N by Lemma 4.3 (ii).

According to (i) and (ii) in Proposition 4.2, we put k, = min {£(b)|be P}
and take the smallest k, < k, such that

N.({b})=[b; k1 —[S; ky1#¢  for any beP,

finding b(j; k,)¢[S; k;] by their definition. Moreover, we put P =
{b!, b%,...,b"} by giving some order of its elements, and put P? = {b,...,b%}.
Then, for k, < k £ k,, Nk(Pq) =N (SuP, P?; k) is seen inductively on g by
the equality in Proposition 4.2(iii) for Q = P?~! and b = b?; and we obtain
N(S, P; k) = N, (P9, which is ¢ if so is N,(P% for some g < p.

Therefore, to find a non-empty set N(S, P; k), we may examine it for
k =ky, ki + 1,... successively by the above way; and when k, does not exist
or when N(S, P; k)= ¢ for k, <k <k,, we have no solution of (S, P) by
Theorem 4.1.

ExaMPLE 4.5. We obtain N,(P) for S and P of Example 4.1 by
Proposition 4.2 as follows:
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q 1 2 3
M({b%}; 2) {12, 2D} | {@D,AD} | {(2), @1}
N, ({b%) {2n} {@n} {2n}
N (P~ & N,({b%) - {@n} {@n}
(No(P™H &N, ({b%)) - € - {en} {@n}
N,(P?) {@v)} {@n} {@}

Hence N,(P) = {(21)}.

EXAMPLE 4.6. Let S = {(22112), (22212), (21211), (11212), (22122), (12122),
(12121), 21221)} and P = {(22112), (22212), (21211), (11212)}, then [S — P; 3]
= {(221), (212), (122), (121)}. Similarly We obtain N,(P) as follows:

q 1 2
M({b"}; 3) {(221), (211), (112)} {(222), (221), (212)}
N5({p*}) {(211), (112)} {(222)}
N3 (P~ 1) & N5 ({b%) - {(200), (002)}
(N3 (P ) &Ny ({b*})) — C - ¢
N,(P%) {11), (112)} ¢

Hence N 3(P) = ¢.

In the rest of this section, we consider an inductive method on k.

DEerFINITION 4.5. (i) We put (a;---a,) ® (by-+-by) = (a,---ayb, ---b,)e Z***,
and A®@B={a@®blacA and beB]}.
(i) For a=(a; -ay4y) (k, h21), we put d,a=(a,---a) and &a=
(@x 41 aep) so that a = 0,a @ d*a.
(ii)) In Definition 4.1, we consider j = (j,|be P)e J(P; k) satisfying

1<j,sf(b)—k+1—h(resp. h+1=<j,<¢(b)—k + 1) for any beP,

and denote the set of m(P(j; k)) of all such j by

M,(P; k) (resp. M"(P; k)) = M(P; k).

LemMa 4.5. () M(P;t)c M,(P; k)® M*(P; h) for t =k + h.

(ii) Consider the set

B'(P)= {aeZ'|a = b (in Definition 2.3) for any be P} = C(M(P; 1))

in Proposition 4.1 and Theorem 4.1(i).

Then

M(P;t)=M' for M’ = MnB'(P), when M(P;t)c M c Z.
(i) [S;k+ k] <[6,S; k1®[6*S; h] < [S; k1@ [S; h].
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Proor. (i) Take any m=m(P(j;t))e M(P;t) for j = (j,|be P)eJ(P; t).
Then, Definitions 4.5 and 4.1 show that m = ,m ® o*m, d,m = m(P(j; k))e
M, (P; k) and 0*m = m(P(j + k; h))e M*(P; h) by regarding as jeJ(P; k) and
j+k=(,+ k|beP)eJ(P; h), because 0,b' = b(j,; k) and &*b’ = b(j, + k; h)
for b’ = b(j,; t). Hence me M,(P; k) ® M*(P; h); and we see (i).

(ii) Put M,= M(P;t). Then M, c C(M,) = B'(P). Therefore, if M, c
McZ', then M,c M,c MnB(P)=M'<cC(M), and so M,=M’ by
Lemma 4.3 (ii).

(iii) In the same way as the proof of (i), we see d,b(i;t)=b(i; k)=
(@yb)(i; k), 0*b(i; t) = b(i + k; h) = (6*b)(i; h), and (iii).

We see the following lemma in the same way as Lemma 4.4.

LEMMA 4.6. We have M,({b}; k) = [0,b; k], and
M,(P,UP,; k) = M,(P,; k)& M,(P; k) if P,NP, = ¢.

These are also valid for M" and &" instead of M, and o,.

PROPOSITION 4.3. (i) M(P; 1)=B*(P) and N(S, P; 1)=B*(P)—C([S; 1]).
(i) My (P;1)= B'(6,P) and M*(P; 1) = B'(¢*P).
(iii) By starting from k, we take any M'(P; k) > M,(P; k) and put

M'(P;h)=(M'(P; h— 1)@ M" Y(P; 1))nB"(P)  for h2k+1
inductively. Then M(P; h)< M'(P; h), M(P; h) = M'(P; h) and
N(S, P;h)=M'(P; h)— C([S; h]) (S=S—P) for h> k.
(iv) In (i), m@®b¢C([S; h]) holds if m¢C([0,S;h—1]) or b¢
C([0"~'S; 1]).

ProoF. (i) and (ii) are seen by the definition.
(iii) (i) and (i) of Lemma 4.5 show (iii) for h =k + 1. Moreover, if
M(P; h) = M'(P; h), then

MP;h+1)c (M(P; h)® M"P, ))nB""'(P)c M'(P; h + 1),

and we see M(P; h+1)= M’(P; h+ 1) by Lemma 4.5(ii)). Therefore (iii) is
proved inductively.
(iv) is a consequence of Lemma 4.5 (iii).

In (iii) of this proposition, we may start from k=1 by using
M'(P; 1) = B'(9, P) in (i). However, we know that N(S, P; k) = ¢ for k < k,
in the statement given after Proposition 4.2. Therefore, it is reasonable to
start from k =k,, where P =P? and M,(P%; k)= [0,b'; k] & --& [d,b%; k]
by Lemma 4.6.
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Moreover, we take the first p; > 1 with Nkl(P"‘)=¢> and p;, <p+1,
where p, = p + 1 means N «(P) # ¢. When p, <p, we apply Proposition 4.3
for P=P""cS=S8UP", k=k, and M'(P"; k)= M,(P"; k,) to find the
first k, > k, with k, <k, and Nkz(P"‘) # ¢. When such k, exists, we take
the first p, > p, with Nkz(sz) =¢ and p, < p+ 1. When p, < p, we find k,
from p, and k, in the same way as k, finding from p, and k,, where we can
take M’'(PP*; k,) = M'& M,(P?> — PP'; k,) for M’ = M'(P";k,) obtained
already to find k,; and so on.

Then, we reach to the case p, = p + 1 or the case p; < p and k; does not
exist; and N(S, P; k;) = Nki(P) # ¢ in the first case, and N(S, P; k) = ¢ for any
k in the second case. Moreover, in the first case, N (S, P; k) is seen by
Proposition 4.3 for any k > k; with k < k,.

According to the above statements, we find all solutions of (S, P) in the
following example.

ExAMPLE 4.7. In example 4.6, we find A*(S, P) illustrated as follows:

(1) Since ko =5 and k; = 3 are seen, we start from k =3 and find first
py > 1 with N5(P?) = ¢ by using Proposition 4.2. Then p, = 2.

(2) We find the first k, > 3 with Nkz(PZ) # ¢ by Proposition 4.3 (iii) as
follows:

M'(P?; 3) = M,(P?*;3)
= {(200), (220), (201), (221)},
M3(P?; 1) = {(0), (1), )},
B*(P?) = C(M(P?;4)
= C({(2201), (2210), (2012)}),
M'(P%; 4) = (M’'(P%; 3)® M3(P%; 1))nB*(P?)
= {(2000), (2001), (2002), (2010), (2012), (2200),
(2201), (2210)},
[S;4]  ={(2212), (2122), (1212), (2121), (1221)},
N4(PY) = M'(P*; 4)— C([S; 4])
= {(2201)} # ¢,

then k, = 4. i
(3) From (2), we find the first p, > 2 with N,(P"?) = ¢ as follows:

(N4(P?) & N, ({b*})) — C([S; 4])

= {(0201)} — C([S; 4])
= ¢,
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then p, = 3. A
(4) We find the first ky > 4 with N, (P°) # ¢ as follows:

M'(P%; 4) = M'(P*; 9 &M, (P> — P*; 4)

= {(2000), (2001)},
M*(P3; 1) = {(0)},
BS(P%) = C(M(P*;5))

= C({(20010)}),

M'(P?; 5) = (M'(P*; 4 ® M*(P*; 1))n B*(P?)
= {(20000), (20010)},

[§; 5] = {(22122), (12122), (12121), (21221)},
Ns(P% = M'(P*;5)— C([5; 51)
= (20010) # ¢,

then k3 = 5.
(5) In the same way as (3), we find the first p; > 3 with Ns(P")) = ¢
as follows:

(N5(P}) & N4({b*})) — C([S; 51)

= {(00010)}
£,
then p = 5 and N(S, P; 5) = N4(P) = {(00010)}.
(6) We find
A%(S, P) = C(N(S, P; 5)) — C([S; 5])
= {(00010)}.

Therefore, (00010) is a solution of the given (S, P).

5. An algorithm for finding solutions of (S, P)

In this section, we propose an algorithm for finding solutions of (S, P)
in Definition 2.4. Let k, be the minimum length of P. Then we can write
the set of all solutions of (S, P) as

ko
AX(S, P)= | A“S, P),
k=1
where A*(S, P) denotes the set of all solutions of (S, P) with length k. Further
we have shown in Theorem 4.1(i) that
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AX(S, P) = C(N,(P)) — C(5)),
where ' =[S;k], S'=S—P,
N,(P) = M(P; k) — C(S).

For the definitions of M(P; k), M (P; k) and C(S’), see Definitions 4.1, 4.3 and
Lemma 4.1(ii), respectively.

Our algorithm is essentially based on the above expression for
AX(S, P). However, in order to reduce its computational time, we employed
several devices stated bellow. Let P = {b',...,b"} and P?= {b',...,b%} for
q < p. Here we choose b' whose length is k,. Consider the set of sequences
with length k constructed from b', ie., [b'; k] = {b'(i; k)|ieI(b*; k)}. Let
Py = {b'(i; k), b*,...,b"} and P§ = {b'(i; k), b*,...,b%} for ¢ < p. Then it is
easily seen that

AXS, P = U A“S, Py)

iel(b;k)

= U (CN(Py) — C(5).
iel(b!;k)
In our algorithm, we obtain 4*(S, P,), ieI(b'; k) inductively on k. As being
noted in the statement given after Proposition 4.2, we may start from k =k,
where k, is the minimum number of k satisfying [b; k] & [S; k] for any
beP. Also we start from P!, i,e., ¢g=1. The whole computation method,
which is based on the statement given after the proof of Proposition 4.3, is
given in Algorithm 1.
Relating to redundant solutions, we give the following

DEerFINITION 5.1.  For any ae A*(S, P), we call a a redundant solution when
there exists a’ # a in A*(S, P) such that

adca and d[-Il=a[-1I],

where @' =a'[I'] and a=a[I]. We denote by A*(S, P) the set of all
non-redundant solutions. Further, let A(S, P;) = A(S, P;)n A*(S, P).

In this algorithm, we obtain only the set of non-redundant solutions, since
the set of all redundant solutions can be constructed from the set of
non-redundant solutions by Definition 5.1.

Here we note that we employ the following devices inside a computer:

(i) Let M be a subset of Z¥. We use the mapping

fb‘(i;k): M— T(Ma l) = fb‘(i;k) (M) < {0’ l}k

sending ¢ = (¢, -, )EM to
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f~b1(i;k) (c) =(dy---dy),
where .
d— {1 ifc; = b (i; k));,

o otherwise.

Then we can use AND/OR binary operations. Moreover, it is possible to
convert any element in M(P{,; k) (resp. Nk(Pf,-))) into an integer between 0
and 2 — 1. This enables us to check easily whether an element matches with
the other in M(P{,; k) (resp. Nk(P;‘,.))). Moreover M*~1(P; 1) can be replaced
by a subset of {0, 1} in Proposition 4.3 (iii).

(ii) In order to obtain S’ rapidly, we prepare a hashing table in the
main memory which gives a correspondence from the first few components of
the elements of S’ to a set of integers.

Some of the computations used in Algorithm 1 are given in Algorithms
2~6. In Algorithm 2, we obtain the set D of all elements a = (a,---a)
satisfying

ac(l-1)=frau(®'(i, k) and a¢T=T(C(S),i)
for b'(i; k). Let T={d',...,d"}. We define

ifdi=1
c={0 if d; for 1<j<k 1<i<t.

1 ifdi=0

-

Then, ae D, if and only if

k
Y da; 21 for1<ist

Therefore, this problem is related to the set covering problem whose
computation methods have been studied in [7, 18]. We define

Dy ={deDg|d & d for any d'eD; — {d}},

since de D with d'e D) and d' = d. For me T(M(P;’,-,; k), i) = C({1}), m¢T
implies d = m for some deD; by the definition. Our algorithm uses this
property in obtaining T(M (P¢); k), i) — T. These are also valid for T(A" (PE),
i) or T(C(N,(P)), i) instead of T(M(P%; k), i). Let

I={i|b'(i; ke M,({b'}; k)},
J = {ieI(b'; k)| N, (P%) # ¢},
where k; <k <k, and 1 <q<p.

In Algorithm 3, we obtain the first integer ¢’ such that T(Nk(P}’i;), i)=4¢
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for any ieJ and g<q <p. Then, let g=q if such ¢ exists, =p+1
otherwise. Further, the sets T(M(P},; k), i), iel and T(]\?k(Pfi,), i), ieJ are
obtained by applying Lemma 4.4(ii)) and Proposition 4.2 (iii), respectively.

In Algorithm 4, we apply Proposition 4.3 (iii) for T(M(P{,; k), i), obtain
the first k' such that T(I\?k,(P;’i)), i) # ¢ for some ieJ and k <k’ < k,. Then,
let k =k’ if such k' exists, = k, + 1 otherwise. All non-redundant solutions
with length k are found in Algorithm 5 by using D in Algorithm 2. In
Algorithm 6, the computation removing all elements in T(C(S’), i) from
T(M(P%; k), i) or T(N(P% '), i)& T(N,({b?}), i) is also done by using Dy
in Algorithm 2.

We list some additional notations used in Algorithms 1 ~ 6.

(1) T(I\:I,‘{, i)= T(JYI(P;’D; k), i) for iel

(ii) T(N{, i) = T(N (P, i) for ielJ.

(iii) (T(M,i),I) or (Dg,I) denote T(M,i) or D, for each iel,
respectively.

(vi) Let e" be the element whose i-th coordinate is given by

,}__{1 ifi=h,

o otherwise.

ALGORITHM 1.

Function: To find the set A*(S, P) of all non-redundant solutions of
(S, P).

(S1) Find b' whose length is k, = min {£(b)| be P}.
(S2) Let k:=1, p:=|P|, S:=S — P, §':=[S; k] and A*(S, P):= ¢.
(S3) For each beP, do steps S4 and S5.

(S4) If [b; k] — S’ = ¢, then do step SS.
"~ (S5) If k <k, then let k:=k + 1,
S :=[S§; k],

go to step S4,
else exit: “there is no solution”.
(S6) Let I:={i|b'(i; ke M ({b'}; K},
J:={i| b (i; ke N ({b'})}.
(S7)  Let T(M;, i):= T(M(P,; k), i) for each iel,
T(N}, i):= T(N,(P}), i) for each ieJ.
(S8) For each ieJ, do step S9.
(S9) Obtain D by Algorithm 2 with parameters k, b'(i; k) and S'.
(S10) Let g:=1.
(S11) Obtain ¢, (T(ME, i),I) and (T(NEi),J) by Algorithm 3 with
parameters kg, k, p, g, S’, P, (T(M{, i), I), (T(N3, i), J) and (D, J)-
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(S12)
(S13)

(S14)
(S15)

(S16)
(S17)

(S18)

(S19)
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If g < p, then do steps S13 to S14.
Obtain k, ', (T(M§, i), I), (T(Ng, i), J) and (D, J) by Algorithm 4
with parameters ko, k, g, S, P and (T(M%, i), I).
If k < kg, then go to step S11, else exit.
Obtain A4*(S, P) by Algorithm 5 with parameters (T(NE, i), J), D J)
and A*(S, P).
Let q:=p.
Obtain k, S', (T(MY, i), I), (T(NZ, i), J) and (D, J) by Algorithm 4
with parameters ko, k, g, S, P and (T(M, i), I).
If k <k, then obtain A*(S, P) by Algorithm 5 with parameters
(T(NE, i), J), (D, J) and A*(S, P), and go to step S17.
End ALGORITHM 1.

ALGORITHM 2.

Function: To find all solutions of the set covering problem.
Input parameters: k, b'(i; k) and S'.

Output parameters: D).

(S20)
(S21)
(S22)
(S23)

(S24)

(S25)
(S26)

(S27)
(S28)

(S29)
(S30)

(S31)
(S32)

Let m:=(1---1), s:=b'(i; k), n:=(0---0), R:= ¢ and D := ¢.
For each beS’, do steps S22 to S26.

If b =b'(i; k), then go to step S35.

Let ¢ be the element whose j-th coordinate is given by

_ {o if b, = (b(i; k),

1 otherwise.

Let m:=m&ec,
s :=s5&b.
If c&n=(0---0), then do step S26.
If ¢ =e" for some he{l,...,k}, then let
=1,
R:=R—{reR|r,=1},
else if r # ¢ for any reR, then let
R:=R—{reR|ccr},
R:=Ru{c}.
If R = ¢, then do step S28.
If n#(0---0), let Dy := {n}.
Go to step S34.
Let L:= {je{l,...,k}|s; #0 or nj=1 or m; =1},
C:={clc=(1---1)[L]}.
For each ceC, do steps S31 and S32.
If d & c for any deDy,, then do step S32.
If c&r #(0---0) for any reR, then let D := DU {c}.
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(S33) For each deD,, let

di:=1ifnj=1for 1 <j<k
(S34) For j from 1 to k,

if mj=1 and n; # 1, then let D,:= DU {e’}.
(S35) End ALGORITHM 2.

ALGORITHM 3.
Function: To obtain the first integer q' such that g<¢q <p and
T(N{, i) = ¢ for any ielJ.
Input parameters: ko, k, p, q, S’, P, (T(M{, i), {), (T(N,‘{, i), J) and (D, J).
Output parameters: g, (T(M{, i), I) and (T(N{, i), J).
(S36) If g =p, then let g:=p + 1 and go to step S43.
(S37) Let q':=q+ 1.
(S38) If k < kg, then let T(M,‘{', i):= T(M}, i)& T(M,({b?}; k), i) for each

iel
(S39) Let T(NY,i):= T(N{, i)& T(N,({b*}), i) for each ieJ,
q:=q.
(S40) Obtain (T(N{, i), J) by Algorithm 6 with parameters (T(N{, i), J) and
(1_)(1’)"])'

(S41) If J = ¢, then go to step S43.
(S42) Obtain T(N,‘f, i) from T(N{, i) for each ieJ and go to step S36.
(S43) End ALGORITHM 3.

ALGORITHM 4.

Function: To obtain the first integer k' such that k <k’ <k, and
T(N,‘Z., i) # ¢ for some ielJ.

Input parameters: ko, k, g, S, P and (T(M{, i), I).

Output parameters: k, S, (T(ME, i), I), (T(N,‘f, i), J) and (D, J).

(S44) If k =k, then let k:=ky,+ 1 and go to step S57.
(S45) Let k':=k+ 1,
S":=[S; k],
J:={i|b*(i; K)e M({b'}; k)}.
(S46) For each ieJ, do step S47.
(S47) If i¢l,
then find j such that jel and b'(i; k)=b'(j; k) and let
T(MZ, i):= T(ME, j).
(S48) Let T(M{,i):= T(M{, i)® {0, 1} for each ieJ,

k:=k'"
(S49) For each bep?, do steps S50 to S51.
(S50) For each ieJ, do step SS1.

(S51) Let T(Mg, i):= T(M}, iyn T(B*([b; k]), i) and
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if T(M{, i) = ¢, then let T(M{, i):= {0}.
(S52) If T(MZ,i)= {0} for any ieJ, then go to step S44.
(S53) Obtain T(M{, i) from T(M{, i) for each ieJ.
(S54) For each ieJ, do step S55.
(S55) Obtain D, by Algorithm 2 with parameters k, b (i; k) and S'.
(S56) Obtain (T (N4, i), J) by Algorithm 6 with parameters (T(M{, i), J) and
(Q(i)’ J)
(S57) If J = ¢, then go to step S44.
(S58) Let I:= {i|b'(i; ke M,({b'}; k)}.
(S59) End ALGORITHM 4.

ALGORITHM 5.
Function: To obtain all non-redundant solutions of (S, P) with length k.

Input parameters: (T(Ng, i), J), (D, J) and A*(S, P).
Output parameters: A*(S, P).

(S60) For each ieJ, do steps S61 to S65.

(S61) Let C:= {c|c = n and neT(NE, i)}.
(S62) For each ceC, do steps S63 to S65.
(S63) If d c ¢ for some deD, then do steps S64 and S65.
(S64) Let L:= {i|c; = 0},
a:= (b'(i; k) [L].
(S65) If a¢a or a[—L]#d'[—L"] for any a'=a'[L]e A*(S, P),

then add a to A*(S, P).
(S66) End ALGORITHM 5.

ALGORITHM 6.

Function: To obtain T(N{, i) — T(C(S’), i) (resp. T(M,‘,’, i)— T(C(S), i)
for each ieJ.

Input parameters: (T(N, i), J) (resp. (T(M,‘g, i), J)) and (D, J).

Output parameters: (T(NZ, i), J) (resp. (T(N,‘{, i), J)).

(S67) For each ieJ, do steps S68 to S71.

(S68) Let W := ¢.

(S69) For each me T(MZ, i), do step S70.

(S70) If d = m for some deD, then add m to W.
(S71) Let T(NE, i):= W.

(872) Let J:= {i|T(N}, i) # ¢}.
(S73) End ALGORITHM 6.

ExaMPLE 5.1. We show the solutions of (S, P) can be constructed through
Algorithms 1 ~ 6 for the sets S and P of Example 4.6.

1) We have b' = (22112) and k, =5 in SI.



2)
3)
4)
5)
6)
7)
8)
9)
10)

11)

12)
13)

14)

15)

16)

17)

18)
19)
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We have k=1, p=4, §={(22122),(12122),(12121), (21221)} and
S’ ={1,2} in S2.

We have k =3 and §’ = {(221), (212), (122), (121)} in S3-S5.

We have I = {1, 2} and J = {2, 3} in S6.

We have T(M3, 1) = {(111)}, T(M}, 2) = {(111)}, T(N}, 2) = {(111)} and
T(N}, 3) = {(111)} in S7.

By Algorithm 2 with parameters k, b'(2; k) and S’ in S9, m = (000), s =
(000), n=(011) and R = ¢ are obtained in S20-S26. D, = {(011)} is
obtained as D, in S28.

By Algorithm 2 with parameters k, b!(3; k) and S’ in S9, m = (000),
s =(000), n = (110) and R = ¢ are obtained in S20-S26. D, = {(110)}
is obtained as D in S28.

We have q =1 in S10.

By Algorithm 3 with parameters ko, k, p, q, ', P, (T(MJ, i), I), (T(N§, i),
J) and (D), J) in S11, we have 10) to 11).

We have ¢ =2, T(M3,1)={(110), (111)}, T(M3,2) = {(100), (101)},
T(N32,2) = {(100)} and T(N3,3)={(001)} in S37, S38 and S39,
respectively. We have g =2 in S39.

By Algorithm 6 with parameters (T(N{,i),J) and (Dg, J) in S40,
T(N2,2)= ¢, T(N2,3) = ¢ and J = ¢ are obtained in S68-S71 and S72,
respectively.

By Algorithm 4 with parameters ko, k, g, S, P and (T(M{, i), I) in S13,
we have 13) to 18).

We have k' = 4, S’ = {(2212), (2122), (1212), (2121), (1221)} and J = {1, 2}
in S45.

We have T(MZ, 1) = {(1101), (1110)} and T(M3,2) = {(1011)} in S53,
since T(MZ, 1) = {(1100), (1101), (1110)} and T (M3, 2) = {(1000), (1001),
(1010), (1011)} in S48-S51. We have k =4 in S48.

By Algorithm 2 with parameters k, b'(1; k) and S’ in S55, m = (0000),
s = (0000), n = (0001) and R = {(0110), (1010)} are obtained in S20—S26.
L= ¢ and C = {c|c = (1111)} are obtained in S29. D, = {(1100), (0100)}
is obtained as D, in S30-S32. D, = {(1101), (0011)} is obtained as D,
in S33.

By Algorithm 2 with parameters k, b*(2; k) and S’ in S55, m = (0000),
s=(0000), n=(0110) and R=¢ are obtained in S20-S26. D,,={(0110)}
is obtained as D, in S28.

By Algorithm 6 with parameters (T(M %, 1), J) and (D, J) in S56,
T(N2, 1) = {(1101)}, T(N2,2) = ¢ and J = {1} are obtained in S68-S71
and S72, respectively.

We have I = {1} in S58.

By Algorithm 3 with parameters ko, k, p, q, S’, P, (T(M{, i), I), (T(N3, i),
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J) and (D), J) in S11, we have 20) to 21).

20) We have ¢’ =3, T(M3, 1) = {(1000), (1001)} and T(N3, 1) = {(0101)} in
S37, S38 and S39, respectively. We have g =3 in S39.

21) By Algorithm 6 with parameters (T(N{, i), J) and (D, J) in S40,
T(N3, 1) = ¢ and J = ¢ are obtained in S68—S71 and S72, respectively.

22) By Algorithm 4 with parameters ko, k, g, S, P and (T(M}, i), I) in S13,
we have 23) to 27).

23) We have k'=35, § ={(22122), (12122), (12121), (21221)} and J = {1}
in S45.

24) We have T(M2, 1) = {(10010)} in S53, since T(M2, 1)={(10000), (10010)}
in S48-S51. We have k=5 in S48.

25) By Algorithm 2 with parameters k, b*(1; k) and S’ in S55, m = (00010),
s = (00000), n=(00010) and R = ¢ are obtained in S20-S26. D, =
{(00010)} is obtained as D in S28.

26) By Algorithm 6 with parameters (T(M,‘g, i), J) and (Dg,J) in S56,
T(N2, 1) = {(10010)} and J = {1} are obtained in S68—S71 and S72,
respectively.

27) We have I = ¢ in SS8.

28) By Algorithm 3 with parameters ko, k, p, q, S’, P, (T(ME, i), I), (T(1\7,‘3, i),
J) and (D, J) in S11, we have 29) to 32).

29) We have ¢’ =4, T(N?, 1) = {(00010)} in S37 and S39, respectively. We
have ¢ =4 in S39.

30) By Algorithm 6 with parameters (T(N, i), J) and (D, J) in S40, T(N%, 1)
= {(00010)} and J = {1} are obtained in S68—S71 and S72, respectively.

31) We have T(N%, 1) = {(00010)} in S42.

32) g =75 is obtained in S36.

33) By Algorithm 5 with parameters (T(N,‘{, i), J), (Dg,J) and A*(S, P) in
S15, A*(S, P) = {(00010)} is obtained in S60—S65.

6. An application to molecular biology

In this section, we show an application to analysis of nucleic acid and
protein sequences in molecular biology by using our algorithm. These
sequences are basic in the biochemical activity of all living things. In case
of nucleic acids, the units (or elements) are any one of four nucleotides, and
the lengths of the sequences are typically from tens to millions. In case of
amino acids, the units are any one of twenty amino acids, and the lengths of
the sequences are typically a few hundred. All these sequences can be taken
from Nucleic Acid Sequence Databases; DDBJ [2], EMBL [3], GenBank [8]
and NBRF [15], and Protein Sequence Database; NBRF/PIR [16] stored in
Hiroshima University Database Management System HDM [5, 6, 11]. Here
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we consider nucleic acid sequences taken from GanBank Database whose

records (entries) are stored in HDM as Table 6.1.

Table 6.1 Number of records and groups in GenBank Database

GenBank release 67.0

No. of | No. of
Group entries | bases
Primates 8206 | 9814969
Rodent 8400 | 8546574

Other mammalian 1638 | 2077398
Other vertebrate 1965 | 2249342

Invertebrate 3383 | 4307294
Plant 3187 | 5069146
Organelle 1402 | 2021305
Bacterial 4616 | 7572518
Structural RNA 1735 518967
Viral 4032 | 7019564
Phage 602 705269
Synthetic 1053 550086
Unannotated 3684 | 4716844
TOTAL 43903 | 55169276

As an attempt of seeing the usefulness of our computation method, we
performed to find solutions of (S, P) for the case given in Table 6.2.

Table 6.2 The contents of P and S-P

P S-P

Retrieved group Structural RNA | Viral
No. of records 25 25
Minimum record length 100 195
Maximum record length 1486 4675

Table 6.3 shows the numbers of elements in M({b'}; k), Nk({lzl}) and
S’, the sum of the numbers of elements in Dy, for all b'(i; k) in N,({b'}),
T(M(P; k), i) for all b'(i; k) in M({b'}; k) and T(N,(P), i) for all b'(i; k) in
N.({b'}), 4*(S, P), and the time needed to find solutions, for the case k =
2 ~11. We note that each of the elements of A%(S, P) or A*(S, P) given in
Table 6.3 can be considered as the characteristic patterns of the 25 elements
in Structural RNA in the 50 elements in Structural RNA and Viral.
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Table 6.3 The characteristic patterns of P in S

k 2 3 4 S 6 7 8 9 10 11

M({b'}; k) 18
Ny | 2

N 20 70| 264 | 1034 3956 | 10577 | 16499 19275 20241 20574

D 2 6 12 18 31 72 253 877 2651 6863

T(M(P; k), i) | 79| 401 | 1159 | 2357 | 4198 | 6870 | 10649 15919 23138 32818

T(N,(P), i) 1 2 4 6 9 12 15 19 24 32

cn| — | c00On — | cn000g - - t0gg0O0taa | cg000taaOt | a00aggOttOg

45, ) tangt Eaa0sc000ge

g00t0aag00c

Time* 7.48 | 25.65 | 49.89 | 75.98 | 126.62 | 242.74 | 396.36 524.94 675.53 968.83

*) All times are expressed in second.
The set Z consists of 4 alphabet a, c, g, t.
The leter n denotes. an element of Z in Database.

The computer program for storing and retrieving sequences was written
in the Model 204 Database Management System User Language [14]. The
program consists of 3380 statements organized 15 programs and required 560 K
bytes basic storage and 6 M bytes extended storage. On the other hand,
the program for finding solutions was written in the FORTRAN programming
language and consists of 1530 statements organized into 32 subroutines.
All computing was done on the HITAC M-680H computer at Information
Processing Center of Hiroshima University.
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