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1. Introduction

It is important to search similarities between two character sequences or

characteristic patterns of a subset in a large set of sequences, in the areas of
molecular biology, computer science and so on. For simplicity, we call

sequences instead of character sequences.

The problem of searching similarities between two sequences has been

formulated as the one of searching the longest common subsequence of two
sequences under certain deletion/insertion constraints. This problem can be
modified so as to search an optimum alignment under certain scoring rules,
such as +1 for a base match and — g for a gap. These problems have been
studied by many authors. For global search methods, see Fitch [4], Dayhoff

[1], Lipman and Pearson [13], Needleman and Wunsch [17], Sellers [20],

Sankoff [19], and Wilbur and Lipman [23, 24]. For local search methods,
see Hirschberg [10], Sellers [21], Smith and Waterman [22], and Goad and
Kanehisa [9].

With the development of large database of sequences such as genes or

images, it is necessary to compare several sequences. Relating to this problem,
Korn et al. [12] developed a program for searching subsequences common to

all of several sequences. In this paper we consider the problem of searching

characteristic patterns of a subset in a large set of sequences. We formulate

this problem as follows:

Let Z be a finite set of some alphabet, and let S and P be two finite

sets of sequences whose units are composed from Z, such that S g P. Then,
we are interesting in a sequence a = (al9...9ak) with a{eZU{0}, i = 1,...,k

satisfying the following conditions (1)~(4):

(1) α^(0,...,0),

(2) k ̂  mm {/(h)|beP} (/(b) denotes the length of b),
(3) For any b = (b 19...9bh)eP, there exists an integer i0 such that

O ^ i o ^ Λ - f c and at = bi+io if a{ φ 0,
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(4) For any b = (bί9...,bh)εS - P, there does not exist an integer ί0

satisfying the above condition,
where 0 denotes an element not to belong to Z.

We call such a a characteristic pattern of a subset P in S or a solution

of (S, P). A solution of (S, P) means a sequence which gives a characteristic

of P in S. In general, it is difficult to find all solutions of (S, P) when \S\

(= the number of elements in 5) and |P| are large or the length of elements
in 5 or P is long. The purpose of this paper is to propose an efficient method

of finding all solutions of (S, P), which has an application to molecular

biology. To do this, we first consider the case when S and P consist of

elements with fixed length fc, i.e., solutions of (fe, 5, P). Then, we consider

the case when S and P consist of elements with various lengths.
In Section 2, we give a formal setup for the problem of searching all

characteristic patterns of P in S, i.e., all solutions of (5, P). Section 3 discusses
the problem in the case when S and P consist of elements with fixed length

k. We introduce a notion of the maximum common element and a mapping
from Z(j{0} to {0, 1,2}. It is shown that our problem can be essentially

reduced to the one in the case |P| = 1 and |Z| = 2. Section 4 treats the
problem in a general case. In order to find solutions of (S, P) more effectively,
we present an inductive method on |P| and length k of solutions, whose
algorithm is given in Section 5. In Section 6, we give an application to

analysis of large database of nucleic acid sequences.

2. Definitions and the statement of the problems

Let Z be a set of some alphabet. Without loss of generality, we may
denote Z by

which consists of |Z| integers. Let Z = {0}uZ. We denote by 0 an element
which is any one in Z. Moreover, for any positive integer /c, consider the
cartesian product Zk (resp. Zk) of the k copies of Z (resp. Z), whose element
is denoted by

a = (a1 ak)9 ateZ (resp. Z) for 1 ig i ^ fc,

instead of a = (α l 5...,α f c) omitting the commas.

DEFINITION 2.1. For two elements a = (al ak) and b = (br"bk) in Zfc,
we say that b contains a, denoted by



A method for searching characteristic patterns 609

beP beP'

where J(P; k) = φ when k> t(b) for some be P.
(in) Moreover, consider the maximum common element m(P(j; k))eZk

of P(/; fc) c Zfc in (ii) given by Definition 3.2, and we define

M(P; fe) = {m(P(/; *))L/e J(P; fc)} c Z*.

By using those notations for c in Definition 2.3 and £fc(P) and C*(S)
in Proposition 4.1, we have the following

LEMMA 4.1. (i) a c fc j>ι Definition 2.3

α c 2?' UPI Definition 2.1 /or jo/we ft' = fc(i; *f(α))e[ί?;

wA/cA is a c: b in Definition 2.1 wAew ίf(α) =
(ii) TΆe 5eί5 in Proposition 4.1 are gr/veft as follows:

Bk(P) = {aeZk\adm for some meM(P; fc)},

i.e., Bk(P) is the union of B(k, {m}) = {aeZk\a c m] for meM(P; k); and

Ck(S) = C(SO (5' = [S fc], S = S - P),

C(S') = Ck(S') = {aeZ f c |0 c c' /or some c'eS'} /or 5' c Z*.
(iii) Ak(5, P) = Bk(P) - Ck(S) in Proposition 4.1 is the union of

B(k, {m}) - C(S') for meM(P; Jk) -

PROOF, (i) According to Definition 4.1(i), it is the restatement of

Definitions 2.3 and 2.1.
(ii) According to Definition 4.1 and (i), aeBk(P) means aeZk and that

for any feeP, there exists jbel(b:>k) with a c b(jb\ fc), or equivalently, that
there exists j = (jb\bεP)eJ(P; k) with a c= V for any b ' e P ( j ; k ) , i.e., with
αeβ(fe, P(j;k)) = B(k, {m(P(j;k}}) by Lemma 3.5 in Section 3. Therefore,
aeBk(P) is equivalent to aeB(k, {m}) for some meM(P; fc) by Definition 4.1

(iii); and (ii) for Bk(P) is proved.
The equality for Ck(S) follows from its definition, (i) and Definition 4.1 (ii).
(iii) According to (ii), Ak(S, P) is the union of

B(k, {m} ) - C(S') for m e M (P k)

and if weCβ'), then any a c m satisfies αeC(S'), i.e., B(fc, {m}) c C(S').
Therefore, we see (iii).

In Lemma 4.1 (iii), the last set is equal to

{aeZk\a c m, and α φ c' for any c'eS'}.
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Therefore, relating to the extension of Definition 2.2 to the case P a S a Z*,
we also use the notation in the following

DEFINITION 4.2. By using the notations in Lemma 4.1, we put

N(S9 P; k) = M(P\ k) - C(Sf) c Zk (Sf = [S; fe], S = S- P),

A(k, S'u{m}, {m}) = B(k> {m}) - C(S') c Zk for roeΛΓ(S, P; fc),

and call the latter the set of all solutions of (fc, S'u{w}, {m}).

Now, we find all solutions of (S, P) in the following example by using
Lemma 4.1(iii) and Definition 4.2.

EXAMPLE 4.1. Let S = {(121), (211), (221), (112), (122), (222)} and P =
{(121), (211), (221)}, then we have P(j\ k) and m(P(j\ k)) for k = 2 as follows:

P(i; 2)
{(12), (21), (22)}

{(12), (21)}

{(12), (11), (22)}

{(12), (11), (21)}

{(21), (22)}

{(21)}
{(21), (11), (22)}

{(21), (11)}

m(P(j; 2))

(00)

(00)

(00)

(00)

(20)

(21)

(00)

(01)

Hence, we have

M = M(P 2) = {(00), (20), (21), (01)},

A2(S,P)= (
meN

= {(21)}.

Here, we notice the following lemma, which is seen by the definition
according to Lemmas 3.2 and 3.3.

LEMMA 4.2. Let m = (mί- mk)εZk, m^(O---O) and I = I(m) = {i| &!,. = ()}.
Then, we have

m = m[7] and m' = m[-/]eZ*' for k = k - |/| Φ 0,

and
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when a{ = bt for any 1 ̂  i ^ k with at φ 0. If b does not contain α, we denote

it by α £ b.

DEFINITION 2.2. Let k be a positive integer, and S and P be two sets
of Zk such that

Z f c = > S i D P and S Φ P Φ φ.

Then, we say that α e Zk is a solution of (k, S, P) when

(*) a c= b for any b e P and α φ b for any beS — P.

Moreover, the set of all solutions of (k, 5, P) is denoted by

A(k, S,P) = {aεZk\a satisfies (*)}.

Our notation a c= b means that a and b have a similarity. The problem

of finding solutions of (k, 5, P) can be generalized as follows :

DEFINITION 2.3. For two elements a = (al -ak) and b = (bl'-bh) in
_ °° _
Z* = (J Zfc, we say that b contains α, denoted also by

fc=l

a c= b,

when k ̂  fc and there exists an integer i0 such that

0 ̂  i0 ^ /i — k, and a{ = bίo + ί for any 1 ̂  ϊ ^ k with αf / 0.

If b does not contain a, we denote it also by a φ b.

DEFINITION 2.4. Let S and P be two finite sets such that

Z* = U Zk => 5 => P and S ^ P =£ φ.
fc=l

Then, we say that αeZ* is a solution of (S, P) wz7/z fern?//* k when αeZ k

and α satisfies (*) in Definition 2.2, for c= in Definition 2.3. Also, the set of

all solutions of (5, P) is denoted by A*(S, P) (See Proposition 4.1).

The main purpose in this paper is to study the problems of finding

solutions of (k, 5, P) and (S, P). It may be noted that such solutions express

the characteristic patterns of P in S.

We give simple examples in order to understand our problems.

EXAMPLE 2.1. Let Z = {1, 2}, S = {(11), (12), (21)} and P = {(11)}, then

EXAMPLE 2.2. Let P = {(12), (21)} in the above example, then A(2, 5, P)
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3. Solutions of (A, S, P) in Definition 2.2

Let fc, S and P be the same ones as in Definition 2.2. Then, by Definition
2.2, we easily have the following properties of solutions of (/c, 5, P).

LEMMA 3.1. If aeZk is a solution of (fe, S, P), then a + (O O).

PROOF. 0 = (O O) satisfies 0 c ft for any feeZ* by Definition 2.1.
Therefore, if α = 0 satisfies (*) in Definition 2.2, then P = S.

Then
PROPOSITION 3.1. Let A(k, S, P) be the set of all solutions of (/c, 5, P).

A(k, S, P) = B(k, P) - C(/c, S, P),
where

k, P) = {0eZ* I a c ft /or α«y

5, P) = {0eB(/c, P)\aac for some ceS - P}.

PROOF. The result immediately follows from Definition 2.2.

We try to find the set of all solutions of the following example by using

the above proposition.

EXAMPLE 3.1. Let S and P be given as follows:

(1122)
(2112)

(1212)

(2212)

(1222)

In order to find the set of all solutions of (4, 5, P), we find £(4, P) and
C(4, S, P) as follows:

5(4, P) - {(0000), (0100), (0002), (0102)},

C(4,S,P) = {(0000), (0002)}.

Then, we have

= {(0100), (0102)}.

In general, it is troublesome to list up all elements of B(k, P) and C(/c, 5, P)
as fc, |P| or |Z| are large. Therefore, in the rest of this section, we will try
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to reduce k, |P| and |Z|.
First, we prepare some notations.

DEFINITION 3.1. For b = (b1" bk)eZk

9 we define

More generally, for a subset / of {!,...,k} with |/| elements, fe[/]eZfc is
the element whose i-th coordinate is given by

*[/], = ί° fθrί6/'[ bt otherwise,

and &[ — /jeZ*"' 7 ' ( |/| φ k) is the one obtained by removing b( for iel from
(fer A)- Also, for a subset J of {!,...,k + \J\}9 we define b[ + J]eZ fc+|J |

by the equalities

and

Moreover, for a subset B of Zfc, we define

B[K] = {b[K]|be£} (X = i, -i, +y, /, -/ or

The following lemma is immediately seen by the definition.

LEMMA 3.2. (i) b[J] = b = (bί" bk) if and only if bf = 0 for any iel.
(ii) (&[-/])[ + /] = 6[/] wΛe« / Φ {!,... ,fc}.
(iii) α[ + J] = b\_ + J] z/ α«J 0«/y if a = b.

For Λ c= ft in Definition 2.1, we immediately see the following

LEMMA 3.3. (i) α c b raeαws α = b[/(α)], w/zer^ /((^ "-αfc)) = {ί | α{ = 0}.
(ii) ft[/] c= b for any b and I.
(iii) a c b zw/?//^ α[K] c ί?[K] (X = I, -I or + J).
(iv) α[/] c: ft[7] w equivalent to α[ — /] c= b[ — /], α«ί/ 50 w α c: b to

(v) If a = α[/], ί/z^w α[/] c b[7] or α[ — /] c fe[ — /] w equivalent to
a c= fc.

DEFINITION 3.2. For B a Zk, we define the subsets L(£) and R(B) of

{!,...,*} by

= {i I there is Sj such that b{ = st for any

and
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R(B)= {i\at φbi for some (α^- flk), (b1—bJeB}9

respectively. We call m(B) = (ml'"mk), defined by mί = si if z'eL(£), =0
otherwise, or s(B) = m(B)[ — R(5)] the maximum common element of B.

Lemma 3.4. (i) R(B) = {!,..., k} - L(B).
(ii) When L(B) φ φ, B[-R(B)] consists of the one element s(B)9 i.e.

b [ - R(B)] = s(B) for any bεB.

(iii) Let L(B) ̂  φ and aeZk satisfy fl[-Λ(B)] c 5 (5). ΓA^/i /or
^b is equivalent to α[L] c= ί?[L] or α[ — L] c= b\_ — L~] w/zere L=

PROOF, (i) and (ii) hold by the definition.
(iii) Let a = (a1--ak). Then at = st if /eL and a{ / 0 by the assumption.

For b = (b1'"bk)EB, α[L] c= fe[L] means ai = bi if iφL and af / 0, which
implies α c b since fef = s^ if ιeL.

Using these notations, we will obtain a reduction for B(k, P) in Proposition

3.1.
PROPOSITION 3. 2. (i) If L(P) = φ, then B(k, P) = { (0 - - - 0) } .
(ii) // |L(P)| = /ί^O, then

B(k, P) = [aeZk\a[_K\ = a and α[-Λ] c s}

s = s(P).

PROOF. Take any αeJ5(fc, P). Then, by the definition,

a = (a± - - ak) c b = (b± fcfc) for any fe 6 P.

If uEf / 0, then bi = ai by Definition 2.1, and so ieL(P) by Definition
3.2. Therefore

a,- = 0 for any ΐ e # = {!,... ,/c} - L(P).

Thus we see (i), because (O O ) d f c . Also α[Λ] = a by Lemma 3.2 (i).
Hereafter assume h Φ 0. Then 0[-jR]c=fe[-fl] = s by Lemmas 3.3 (iii) and
3.4 (ii); hence a belongs to the second set B' in (ii).

Conversely, take any aeB'. Then, for any fteP, we see a[-R] c= s =
fc[ — -R] by Lemma 3.4 (ii). Hence a c b by Lemma 3.3 (v), since a\_R~] = α.
Thus aeB(k,P). On the other hand, let β' = Λ[-Λ]eZ*. Thus Λ' c 5
means a'eB(h, {s}) by the definition; and using Lemma 3.2 (ii), we have

a =

Finally, if α = a'l + R] for fl'eB(Λ, {s}), then
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= a

and al-R] =(a'l + K])[-K] = a' as

by Definition 3.1, and these mean aeB' . Therefore, (ii) is proved completely.

For C(fc, S, P) in Proposition 3.1, we have the following

PROPOSITION 3. 3. (i) // L(P) = φ, or L(P) Φ φ and s(P)e(S - P) [ -
then C(k, S, P) = B(k, P).

(ii) // |L(P)| = h Φ 0 and s = s(P)φ(S - P) [-K] (R = R(P)), then

and

PROOF. Recall that C(fc, 5, P) = {aeB(k, P)|α c c for some cεS - P}.
(i) When L(P) = φ9 we see (i) by Proposition 3.2 (i). Assume that

L(P) Φ φ and

s = 5(P) = cl-R] for some ceS -P (R = R(P)).

Take aeB(k,P). Then α[#] = a and a[-,R]c=s by Proposition 3.2(ii);
hence a[-R]c=c[-R] and we see a c c by Lemma 3.3 (v). Thus αe
C(/c, S, P); and (i) is proved.

(ii) Assume that L(P) φ φ and sφ(S - P)[-R]. Then we see the first
desired equality, because {s} = P[ — -R] by Lemma 3.4(ii).

Take any αeC(fe, S, P). Then aεB(k, P), i.e.,

= α, α' = α[-R]6B(Λ, {s}) and a'[ + K] = a

by Proposition 3.2 (ii) and its proof. Also a c c for some ceS — P. Hence

a' = al-R] c c[-Λ]6S[-K] - {s}

by the first equality, and we see α'eC(Jι, S[ — R], {s}) by the definition. Thus,
α = α'[ + R]eC(Λ,5[-R],{S})[ + R].

Conversely, take any α'eC(fc, S[-R], {s}). Then aΈB(h, {s}), and

k, P)

by Proposition 3.2 (ii). Also a' a c1 for some c'εS[-R] - {s} = (S - P) [-R].
Hence c' = c\_ — R] for some ceS — P, and

a = a'l + R] c: c'l + R] = (c[-R])[ + R] = c[R] c c.

Therefore αeC(/c, S, P); and the last equality is proved.
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Propositions 3.1, 3.2 and 3.3 imply the following theorem for the set
A(k, S, P) of all solutions of (/c, S, P) in Definition 2.2.

THEOREM 3. 1. Let P and S be the subsets in Zk such that P c S and P Φ S.

(i) There exists a solution of (fc, S, P) if and only if

h = k-\R\=£0 and sφ(S-P)\_-K\9

where R = R(P) c: {!,..., k] and the maximum common element s = s(P)eZΛ of

P are defined by Definition 3.2.
(ii) In case of (i), it holds that

A(k, S, P) = A(h, S[-Λ], {*})[ + *],

i.e., all solutions of (fc, S, P) are a'\_ + R~] (see Definition 3.1) of those a' of
(h, S\_ — K]9 {s}), where the correspondence sending a'eZh to a'[ + K]eZk is
one-to-one.

(\\\) For seS' = S[-K] c Z*, consider L= L[S'] c {!,..., A} i>ι Definition
3.2 0«rf /7M/ m = A - |L| > 0 α«ί/ 5' = s[ — L]. 7%e«, if holds that

A(h, S', {s}) = {aεZh\a'ί + L] c α c s for some aΈA(m, S'[-L], { s ' } ) } ;

and this set contains any a with s[L] c: a a s.

PROOF. A(k, S, P) = B(k, P) - C(k, S, P) by Proposition 3.1, and the
correspondence sending d to α'[ + R] is one-to-one by Lemma 3.2 (iii).
Therefore, (i) and (ii) follow from Propositions 3.2 and 3.3, since A(h, S[-#],
{S})9S.

(iii) Take any aεA(h, S', {s}). Then, by Definition 2.2,

a c= 5, and b = s if a c= beS';

and we can prove a' = a[-L]eA(m, S", {s'}) where 5" = S'[-L]. In fact,
a' = α[ — L] c: s[ — L] = s' . Assume a' <= b'eS". Then b' = b\_ — L~] for some
fteS", and so α[ — L] c= fc[ — L]. This implies a c= fe by Lemma 3.4 (iii), since

a[-R(S')] cιs[-JR(SO] = s(S') by Lemma 3.4(ii). Therefore, b = s, and
f>' = s [ - L] = s' . Thus α' 6 A (m, S" , {s'} ) is proved. Now, α' [ + L] =
(α[ — L])[ + L] = α[L] d α c= s; and α belongs to the right hand side A' of
the desired equality.

Conversely, take any aεA. Then, there exists a'eZm such that

a' c <>', fe' = s' if α' c: b'eS'[-L]9 and α'

Assume aabeS'. Then α' = (αr[ + ̂ ])[-^] c ̂ [-L] c fr[-
and so &[ — L] = s' = s[ — L]. This and fce5r imply fc = s by the definition
of L= L(S'). Thus aGA(h,S', {s}); and the desired equality is proved.
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The last fact holds, because s'eΛ(m, S'[-L], {s'}) and s'

EXAMPLE 3.2. Let S and P be given as follows:

605

= s[L].

(121)

(211)

(122)

Then R = R(P) = {2, 3}, s(P) = (1) and (S - P) [-Λ] = {(2), (1)}. Therefore,
by Theorem 3.1(i) we obtain A(3, S, P) = φ since se(S - P)[-Λ].

In the following examples, we find all solutions of (fc, S, P) by using
Theorem 3.1.

EXAMPLE 3.3. In Example 3.1, we easily see that L(P) = {2,4},
R = R(p) = {l, 3}, 5 = s(P) = (12) and S[-#] = {(12), (22)}. Then

5(2, {5}) = {(00), (10), (02), (12)},

and

A(4, S,P) = {(0100), (0102)}.

EXAMPLE 3.4. In the above example, let S' = S[-Λ]. Then L = L(S')
{2}, s' = s[-L] = (1) and S'[-L] = {(1), (2)}. Therefore

B(l, {*'}) = {(0), (1)},

A(l, S'[-L], {s'}) =

and from Theorem 3.1(iii) we have

For the set A(m, S'[-.L], {s'}) in (Hi) of Theorem 3.1, we have the
following

THEOREM 3.2. For s' = (sj •• sJeZm, we define the mapping

f,:Zm — >{0, 1,2}"

sending b = (bl-bm)eZm to fs,(b) = (eι-eje{0, ί, 2}m given by

e. = 0 if bι = 0, = 1 if bi = s,', =2 if 0 Φ bt =£ s (1 ̂  i ̂  m).

Moreover, for s'eS'[-L] c Zm //i Theorem 3.1 (iii), /eί
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Then

αeA(m, S'[-L], {*'}) if 0«rf only if f,(a)eA(m, T, {!}).

Furthermore, if deA(m, T, {!}), fAe« we Λflt e # solution aeA(m, S'[-L], {s'})
wϊϊΛ /s>(α) = d, wA/cA £y uniquely determined by a = s'[/], wAere /Ae swfoe/ /

0/ {!,..., w} is defined by d = ![/].

PROOF. By the definition of f = fa. and Definition 2.1 of c, we see that
α c= 5' (resp. b = s') is equivalent to f(ά) c /(s') = 1 (resp. /(ft) =1). Moreover,
0 c= ft implies /(α) cf(b); and when α c s', /(α) <=/(ft) implies α c ft. Thus,
the conditions that

α c sr, and ft = s' if α c fteS'[ — L]

are equivalent to the ones that

/(α)cιl, and b' = 1 if /(α) c 6'eT = /(S'[-L]);

and we see the first half. The second half is seen by the definition.

These two theorems mean the following main result in this section.

THEOREM 3.3. (i) The problem of finding solutions of (/c, S, P) in
Definition 2.2 for subsets

P c z S c Z * with Z = {1, 2,...,|Z|} an d φ Φ P φ S

can be reduced by Theorems 3.1 and 3.2 to the one of finding solutions of

(m, T, {!}) for

1 =(l l)eΓc:{l, 2}

that for any ίe {!,..., m}, e£ = 2 /or
(ii) Moreover, d is a solution of (m, T, {I}) if and only if there exists a

proper subset I of {!,..., m} SMC/Z that

d=l[/ ] and e[I] * d for any eeT-{l}.

Here, ((el—ej\_l])i = 0 ι/ ίe/, = «?, // ί^/ (c/ Definition 3.1), and (ii) w /Ae
restatement of Definition 2.2 /'« case of (m, 7^ {!}).

This theorem considerably simplifies the problem in the case that |Z| and
/c are so large.

EXAMPLE 3.5. Let S and P be given as follows:
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(3123)
(3323)

(1323)

(3113)

(1223)

(3233)

Then R = R(P) = {2}, L = L(P) = {1, 3, 4} and s = s(P) = (323). Therefore, we
apply the mapping fs, in Theorem 3.2 as follows :

S' = S[-Λ] = {(323), (123), (313), (333)},

L(S') = {3},

S" = S'[-L(S')] = {(32), (12), (31), (33)},

Then, the problem of finding solutions of (4, 5, P) is reduced to the one of
(2, T 9 { 1 } ) . Then

c(2, τ;
A(2, T,

By Theorem 3.2, we obtain I = φ since (11) = (11) [/] and a = s' = (32) as a
solution of A(2, S", {s'}). Therefore

3,S',{s}) = {(320),(323)},

A(4, S,P) = {(3020), (3023)}.

The following lemma is used in the next section.

LEMMA 3.5. In Proposition 3.2 (ii), // holds also that

B(k, P) = {aεZk\a a m(P)} = B(k, (

for the maximum common element m(P)εZk in Definition 3.2.

PROOF. It is proved in Proposition 3.2 (ii) that

B(k, P) = B' = {αeZk |α[R] = a and α[-R] c s},

where s = s(P), m = m(P) and R = Λ[P] in Definition 3.2 satisfy

s = m[-Λ] and s[ + Λ] = m = m[K]

for b[K] in Definition 3.1. By Definitions 2.1 and 3.1, we see that
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a c= m and m = w[/Γ| imply a = a[K].

Therefore, if aeB', then a = a[K] = (<*[-#])[ + #] c s[ + #] = m; and if
0 c m, then α = α[#] and α[ — #] c= m[ — R] = 5, and so aeB'9 by Lemmas
3.2 and 3.3. Thus the first equality is proved. The second one is the
definition.

4. Solutions of (5, P) in Definition 2.4

In this section, let S and P be given finite sets satisfying

P c S c Z* = U Z* and φ ^ P ̂  S,
k=l

where Z={1, 2,...,|Z|}. Then, the following proposition is seen in the same
_ _ °° _

way as Proposition 3.1, where Z= {0}uZ and Z* = U Z*.
fc=l

PROPOSITION 4.1. Lef Λ*(S, P) be the set of all solutions of (5, P) with
length k in Definition 2.4 for l g f c < o o or k = *.

, P) = U >**(S, P) and Ak(S9 P) = Bk(P) - Cfc(5),
k=ί

where S = S - P,

Bk(P) = {aeZk\a c 6 /o

α c c /o

Z>^ /Λ^ notation c: m Definition 2.3.

To study the above sets, we prepare some notations.

DEFINITION 4.1. (i) For a = (aί aJeZ*9 let *f (α) = h and call it the
length of α. Moreover, when 1 ̂  fe ̂  f (a)9 we define

fl(i; fc) = (^..-α^^JeZ* for i6/(α; /c),

and I(a-9k) = φ = [a 9 k] when k > /(α).
(ii) For any subset P c Z* and 1 ̂  k < oo, we define

J(P; k) = Π/(&; fc) = {0*l*eP)|Λe/(fc; k) for
beP

P} for y = (/b | ft ep)6j(p; fe),
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for the set in Definition 4.2, where B[K~] is the notation in Definition 3.1.

Moreover, A(k' ', S'\_ — /]ll{w'}, |w'}) of the above is the set of solutions
in Definition 2.2, and so we can apply Theorems 3.1(iii), 3.2 and 3.3 to it.

If the size of M(P; k) or N(S, P; k) is large, it is difficult to obtain it.

Therefore it is important to reduce M(P; k) or N(S9P; k) without any change

of solvability.

DEFINITION 4.3. (i) For any subset M c Zfc, we call weM a reduced
element in M when

m c= w' 7^ m for some w' e M.

(ii) Moreover, we denote by M the set of all non-reduced elements in

M, i.e., by M = M(P; fc), JV(S, P; /c), Λ*(S, P) or £*(P) when M = M(P; /c),
ΛΓ(S, P; fc), Ak(S, P) or Bk(P), respectively.

LEMMA 4. 3. (i) M / </> // αwrf 0«/y if M ^ φ\ and then any meM satisfies

m ci m /or wme meM, i.e., M c= C(M) = C(M). Moreover, for weM, meM
z/ α«J o«/y if m^mΈM implies m' = m.

(ii) If M ^N ^ C(M) = C(M), /Aew N = M.
(iii) If N = M - C(S') (Sf c Zfc), /Ae« N = M -

PROOF. We see (i) by the definition. Let M c N c C(M). If

then n c m for some m e M c N , and so n = meM, by (i). Conversely, if

meM, then m^n<=.rri for some n e N and mr e M hence m = m' by (i) and
m = neN. Thus JV = M, and (ii) is proved, (iii) is proved in the same way
by noticing that n c m and n^C(S') imply m^C(S').

Now, we see the following results by Proposition 4.1 and Lemma 4.1.

THEOREM 4.1. (i) For the set Ak(S, P) of all solutions of (5, P) of length

k in Definition 2.4, and the sets in Definitions 4.1, 4.2 and 4.3, we have

Ak(S,P}= ^U Λ(fc,S'u{m},{m}) (S' = [S- P; *]),
meN(S,P;fc)

ί/ze wmow 0/ the sets in Lemma 4.2. Also we have Bk(P) = C(M(P; /c))

A*(S, P) = Bk(P) - C(S') = C(N(S, P; k)) -

(ii) In particular, there exists a solution of (S, P) of length k if and only

if N(S9 P;k)^φ or equivalently, N(S, P\k)^φ\and then any meN(S, P; k)

is a solution.

PROOF. By the above statements, we have already seen that Bk(P) (resp.

Ak(S, P)) is the union of B(k, {m}) (resp. A(m) = A(k, S' U {m}, {m}) = B(k, {m})
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- C(S")) for meM(P; fe) (resp. TV (5, P; k)). Therefore, the same is valid also
for weM(P fc) (resp. N(S, P',k)) by Lemma 4.3 (i), because w c= w' implies

B(k, {m})c:B(k, {m'}) and so A(m)dA(m'). Thus we see (i), since (J B(k, {m})

= C(M) by the definition.
(ii) follows from (i), because we£(fc, {m}) - C(S') = A(m) when mφC(Sf).

We note that N(S, P; k) = Ak(S, P) = M(P; k) - C(S') and M(P; k) = Bk(P)
by Lemma 4.3(iii).

We shall find all solutions of (S, P) by using Theorem 4.1.

EXAMPLE 4.2. Let S = {(121), (211), (122), (222)} and P = {(121), (211)},
then we have for k = 2

; 2) ={(00), (10), (21), (01)},

Hence, we have only to find the set of solutions A(2, S' U {m}, {m}) for m = (21),
then

-{(01), (21)}.

Also we have

A2(S, P) = C(N) - C(S')

= {(01), (21)}.

EXAMPLE 4.3. Let S and P be the same as in Example 4.1, then we see
that N(S, P; 2) = N(S, P; 2) = {(21)}. Hence

EXAMPLE 4.4. Let the element (112) in S of Example 4.1 be changed to
(212). Then

[S-P;2] = {(21),(12),(22)},

M(P; 2) = {(00), (20), (21), (01)},

N ( S , P ; 2 ) = φ.

Hence there is no solution.
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By Proposition 4.1 and Theorem 4.1, solutions of (S, P) can be obtained
by examining the sets of solutions in Lemma 4.2 and the sets

N(S, P; k) ̂  N(S, P; fc) for 1 g k < oo

and by Definitions 4.1, 4.2 and 4.3, the latter two sets are obtained by making
J(P; fc), by taking m(P(j\ k)) for all jeJ(P\ fc), and then finding m(P(/, k))φ
C(S'), and so on. However, J(P; k) may contain many elements, e.g.

\j(p; fc)| = (h - k + l)|p| when P c ZΛ.

Therefore, we are concerned hereafter with the problem of finding a
non-empty set N(S9 P; k) more effectively.

In the first place, we present an inductive method on the number \P\ of

elements in P.

DEFINITION 4.4. For α, beZ*, we denote m({α, b}) in Definition 3.2 by
a&b, i.e., for α = (#ι •••#&) and fe = (fc1 6k), the z-th coordinate of α & f c is
given by

(a&b)ι = di if αf = ftί9 =0 if α£ φ bt (1 ̂  i ̂  fc).

For A,BaZk, we put A&B = {a&b\aeA and

LEMMA 4.4. (i) For feeZ*, M({b}; k) = [b; k] = M({ί?}; k), wA/cA is φ

if k > t(b).
(ii) Let P = Pl U P2 and PlnP2 = Φ Then

M(P; fc) = M(Pi; fc)&M(P2; k), and

M(P; k) = M for M = M(P1 k)&M(P2; k).

PROOF, (i) We see (i) by the definition.
(ii) J(P;k) = J ( P ι ; k ) x J(P2;k), i.e., j = (jb\beP)eJ(P; k) gives us

jε = (jb\bePε)eJ(Pε; k) for ε = 1, 2, and also the converse holds, by Definition

4.1 and moreover P(j k) = Pl (j1 k) U P2(/2 k). Therefore, m(P(j k)) =
m(Pl(jl\k))&m(P2(j2\k)) by Definitions 3.2 and 4.4; and we see the first
equality by Definition 4.1(iii).

Take any meM(P; k), and mεeMε = M(Pε; k) with m = mί&m2. Then,
mεc:mε for some rhεεMε by Lemma 4.3 (i). Thus m c ml&m2eM(P; k)
and so m = m1 &rfι2 by Lemma 4.3 (i), since meM(P; fc). Therefore, we see
M(P; k) c M! &M2 = M c M(P; k), and M(P; k) = M by Lemma 4.3 (ii).

PROPOSITION 4.2. For φ Φ Q c P c S, feί S" = 5 - P

^(0 = JV^Uβ, β; fc) = M(Q; k) - C([S; k]).

(0 Nk({b}) = [b; k] - [S; k] /or α«7 fteP;
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and this is φifk> /(ft). Also, Nk.({b}) = φ if k' < k ̂  /(ft) and Nk({b}) = φ.
(ii) If Nk(Q) = φ and Q c β' c P, then Nk(Q) = φ. In particular,

N(S, P ; k ) = Nk(P) = φ if [ft; k] c [5; /c] /o

(iii) Let bεP -Q. Then

= N for N = (tfk(β) &#,({&})) - C([5; /c]).

PROOF, (i) We see the first half by Lemma 4.4 (i). If K < k ̂  /(ft),
then we see [ft; fc'] = [[ft; fe]; fc'] by Definition 4.1. Hence, if Λf f c({ft}) = φ
in addition, then [ft; fc'] c [[S; fc]; k'~\ c [S; fc'], and so W r({ft}) = <£.

(ii) Hereafter, denote simply by N(Q) = Nk(Q) and S' = [5; jfc]. Put
M' = M(β';fc), Mι=M(β;fe), M2 = M(β' - β; fc), and take M of them.
Then Mr cMl&M2 by Lemma 4.4 (ii). If mε is contained in C = C(S') for
ε = 1 or 2, then so is m1 &m2 c mε. Therefore,

(M !&M2) - C c ((Mi - C)&(M2 - C)) - C = (N(Q)&N(Q - β)) - C.

Thus, N(Q) = φ implies M' c Mx &M2 c= C and N(β') = 0.
(iii) By the above proof for Q' = βu{ft} and Lemma 4.4 (ii), we have

tf(β') = M' - C c (JV(β)&JV({ft})) - C = 7V

c= (Mi &M2) - C = M' - C = JV(fi'),

and the desired equality JV(β') = N by Lemma 4.3 (ii).

According to (i) and (ii) in Proposition 4.2, we put fc0 = min {/(ft) | fteP)

and take the smallest k1 ^ fc0 such that

Nkl({b}) = [ft; fcj - [S; fcj ̂  0 for any fteP,

finding b(j'9 k^φlS k^] by their definition. Moreover, we put P =
{ft1, ft2,...,ftp} by giving some order of its elements, and put Pq = {ft1,...,^}.
Then, for kl^k^kQ, Nk(Pq) = N(S[]Pq, Pq\k) is seen inductively on g by
the equality in Proposition 4.2 (iii) for β = Pq~l and ft = bq; and we obtain

N(S, P;k) = Nk(Pq), which is </> if so is Nk(Pq) for some q ^ p.
Therefore, to find a non-empty set N(S, P; /c), we may examine it for

& = &!,&! + !,... successively by the above way; and when /cx does not exist
or when N(S, P; k) = φ for k1 ^ fe ̂  fc0, we have no solution of (5, P) by
Theorem 4.1.

EXAMPLE 4.5. We obtain N2(P) for 5 and P of Example 4.1 by
Proposition 4.2 as follows:
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1

M ({fc'}; 2)

N2({6'})

JV2(f-1)&N2({&'})

(JV2(f- ')&ίί2({M}))-C

ΛΓ2(P<)

1

{(12), (21)}

{(21)}

-

-

{(21)}

2

{(21), (H)}

{(21)}

{(21)}

{(21)}

{(21)}

3

{(22), (21)}

{(21)}

{(21)}

{(21)}

{(21)}

Hence N2(P) = {(21)}.

EXAMPLE 4.6. Let S = {(22112), (22212), (21211), (11212), (22122), (12122),
(12121), (21221)} and P = {(22112), (22212), (21211), (11212)}, then [S - P; 3]
= {(221), (212), (122), (121)}. Similarly We obtain N3(P) as follows:

q
M({M};3)

N3({b'})

N3(P -1)&Nt({b'})

(N,(P'-*)&N,({b«}))-C

JV3(P«)

1

{(221), (211), (112)}

{(211), (112)}

-

-

{(211), (112)}

2

{(222), (221), (212)}

{(222)}

{(200), (002)}

Φ

Φ

Hence N3(P) = φ.

In the rest of this section, we consider an inductive method on fc.

DEFINITION 4.5. (i) We put K
and A®B = (a®b\aεA and beB}.

(ii) For a = (aί -ak+h) (fc, h ̂  1), we put

(ak + ι'"ak+h) so that a = dha®dka.
(iii) In Definition 4.1, we consider j = ( j b \ b e P ) ε J ( P ' , k) satisfying

) = (al'"akbl

dha = (al aj and dka =

1 ^jb ^ t(b) -k + l-h (resp. h -h 1 ̂ jb ^ t(b) - k + 1) for any

and denote the set of m(P(/; fc)) of all such j by

Mh(P; fc) (resp. MΛ(P; fc)) c M(P; fc).

LEMMA 4. 5. (i) M(P ί) c Mh(P fc) 0 Mk(P h) for t = fc + ft.
(ii) Consider the set

= {αeZ' lα c b (m Definition 2.3) /or αwj beP} = C(M(P; ί))

/w Proposition 4.1 αwrf Theorem 4.1(i). 7% «̂

M(P; ί) = M' /or Mr = Mnff(P), when M(P; ί) cz M c Zr.

(iii) [S; fc + Λ] c [δΛ5; fc] 0 [δfc5; ft] c [S; fc] © [S; ft].
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PROOF, (i) Take any m = m(P(j t ) ) e M(P ί) for 7 = (jb \ b e P) e J(P ί)
Then, Definitions 4.5 and 4.1 show that m = dhm® dkm, dhm = m(P(j\ fe))e

MΛ(P; fc) and d*w = m(P(j + k\ ft))eMfe(P; h) by regarding as jeJ(P; k) and

j + k = (jb + k\b€P)eJ(Pιh), because dhb' = b ( j b ; k ) and dkb' = b(jb + k'9 h)

for ft' = &(/&; O Hence meMΛ(P; fc)0 Mfc(P; ft); and we see (i).

(ii) Put M, = M(P; ί) Then M, c C(M,) = ff(P). Therefore, if M, c

McZ', then M, c M, c Mn£'(P) = M' c C(Mf), and so Mt = M' by

Lemma 4.3 (ii).

(iii) In the same way as the proof of (i), we see dhb(i\ t) = b(i; k) =

( d h b ) ( i ; k), dkb(iι t) = fc(i.+ /c; h) = (δ fcfe)(ί; ft), and (iii).

We see the following lemma in the same way as Lemma 4.4.

LEMMA 4.6. We have Mh({b}\ k) = [3fc6; fc], and

MΛ(P1 u P2 fc) = MA(P! k) & Mh(P2 k) if P1nP2 = φ.

These are also valid for Mh and dh instead of Mh and dh.

PROPOSITION 4.3. (i) M(P; l) = Bί(P) and N(S, P; 1) = B1(P)-C([S; 1]).

(ii) Mk(P\ 1) = Bl(dkP) and Mk(P; 1) = Bί(dkP).

(iii) By starting from fc, we take any M'(P; k) => Mj(P; k) and put

MX(P; ft) = (M;(P; ft - l)φ M^^P; 1))Π5Λ(P) for h^k

inductively. Then M(P; ft) c M'(P; ft), M(P; ft) = M7(P; ft) α«J

, P; ft) = AΓ(P; ft) - C([S; ft]) (S = S-P) for h> k.

(iv) //i (iii), mΘft^C([5;ft]) Ao/ώ ϊ/ mφCdd^; ft - 1]) or
1^; 1]).

PROOF, (i) and (ii) are seen by the definition.

(iii) (i) and (ii) of Lemma 4.5 show (iii) for ft = k + 1. Moreover, if

M(P; A)cM'(P; A), then

M(P; ft + 1) c (M(P; ft)0M"(P, l))n5*+1(P) c M'(P; ft + 1),

and we see M(P; A + 1) = M'(P; ft + 1) by Lemma 4.5 (ii). Therefore (iii) is

proved inductively.

(iv) is a consequence of Lemma 4.5 (iii).

In (iii) of this proposition, we may start from k = 1 by using

Mr(P; 1) = Bl(dlP) in (ii). However, we know that N(S, P; k) = φ for k < fct

in the statement given after Proposition 4.2. Therefore, it is reasonable to

start from k = kl9 where P = Pp and M^P ; k) = [δ^1; fcj& &C^M; fc]
by Lemma 4.6.
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Moreover, we take the first p1 > 1 with Nkl(PPl) = φ and p1 ^ p + 1,

where p1 = p + 1 means Nkί(P) Φ φ. When p^ g p, we apply Proposition 4.3

for P = PPI c S = SuPP l, fc = fei and M'(PPl kj = Mv(PPl fej to find the
first k2 > fei with fc2 ^ fe0 and Nk2(PPl) Φ φ. When such fc2 exists, we take

the first p2> Pi with Nk2(Pp2) = φ and p2 = P + l When p2 ^ p, we find fe3

from p2

 and ^2 in the same way as fc2 finding from pt and kί9 where we can
take M'(Pp2'9k2) = M'&Ml(Pp2-PPί

9k2) for Mr = M'(PPί fc2) obtained
already to find fc2; and so on.

Then, we reach to the case pt = p 4- 1 or the case pt g p and kt does not

exist; and N(S9 P; fe£) = JVk|(P) ^ φ in the first case, and N(S9 P; k) = φ for any
k in the second case. Moreover, in the first case, N(S,P;k) is seen by
Proposition 4.3 for any k > kt with k^k0.

According to the above statements, we find all solutions of (5, P) in the
following example.

EXAMPLE 4.7. In example 4.6, we find A*(S, P) illustrated as follows:

(1) Since fe0 = 5 and k^ = 3 are seen, we start from k = 3 and find first
p1 > 1 with N3(PPl) = φ by using Proposition 4.2. Then p1 = 2.

(2) We find the first fc2 > 3 with ΛΓk2(P2) ̂  φ by Proposition 4.3 (iii) as
follows :

M'(P2;3) = M ί ( P 2 ι 3 )

= {(200), (220), (201), (221)},

M3(P2;1) = {(0),(1),(2)},

B4(P2) =C(M(P2;4))

= C({(2201), (2210), (2012)}),

M'(P2;4) =(M /(P2;3)ΘM3(P2; l))nfl4(P2)

= {(2000), (2001), (2002), (2010), (2012), (2200),

(2201), (2210)},

[S; 4] = {(2212), (2122), (1212), (2121), (1221)},

N4(P2) =M'(P2;4)-C([5;4])

= {(2201)} Φ φ,

then k2 = 4.
(3) From (2), we find the first p2 > 2 with N4(PP2) = φ as follows:

= {(0201)} - C([S; 4])
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then p2 = 3.
(4) We find the first k3 > 4 with Nk}(P3) * φ as follows:

M'(P3; 4) = M'(P2; 4)&Mi(P3 - P2; 4)

= {(2000), (2001)},

B5(P3) = C(M(P3;5))

= C({(20010)}),

M'(P3; 5) = (M'(P3; 4)φM4(P3; l))nB5(P3)

= {(20000), (20010)},

[S; 5] = {(22122), (12122), (12121), (21221)},

N5(P3) =M'(P3;5)-C([S;5])

= (20010) / φ,

then fc3 = 5.

(5) In the same way as (3), we find the first p3 > 3 with N5(P"3) = φ
as follows:

(N5(P3)&JV5({ί>4}))-C([S;5])

= {(00010)}

then p3 = 5 and N(S, P; 5) = N5(P) = {(00010)}.

(6) We find

= {(00010)}.

Therefore, (00010) is a solution of the given (S, P).

5. An algorithm for finding solutions of (5, P)

In this section, we propose an algorithm for finding solutions of (S, P)

in Definition 2.4. Let k0 be the minimum length of P. Then we can write
the set of all solutions of (S, P) as

A*(S, P) = U A*(S, P),
k=l

where Ak(S, P) denotes the set of all solutions of (5, P) with length k. Further

we have shown in Theorem 4.1(i) that



A method for searching characteristic patterns 619

Ak(S9 P) = C(Nk(P)) -

where S' = [S; fe], S' = S - P,

For the definitions of M(P; fc), M(P; fc) and 0(5'), see Definitions 4.1, 4.3 and
Lemma 4.1(ii), respectively.

Our algorithm is essentially based on the above expression for
Ak(S, P). However, in order to reduce its computational time, we employed
several devices stated bellow. Let P = {bί,...,bp} and Pq = {b1,...,^} for
q g p. Here we choose b1 whose length is fc0. Consider the set of sequences
with length k constructed from fe1, i.e., [ft1; fc] = {bl(i, k)\ΐEl(bl-9 fc)}. Let
P(|) = {ft i( i ; jfc), b2,...9b

p} and P?0 = {bl(i-9 fc), &2,...,M} for 4^ p. Then it is
easily seen that

Ak(S9P)= U Λfc(S,P(ί))
ie/ίft1;*)

= U (C(N»(P(0)) - C(S')).
ie/ίM fc)

In our algorithm, we obtain >lk(S, P(ί)), iGl(bl;k) inductively on k. As being
noted in the statement given after Proposition 4.2, we may start from k = kί9

where k^ is the minimum number of k satisfying [b k] <£. [5 fe] for any
be P. Also we start from P1, i,e., <?= 1. The whole computation method,
which is based on the statement given after the proof of Proposition 4.3, is
given in Algorithm 1.

Relating to redundant solutions, we give the following

DEFINITION 5.1. For any αe^*(S, P), we call a a redundant solution when
there exists a' φ a in A* (5, P) such that

α ' c α and α'[-/'] = α[-/],

where α' = α'[/'] and α = α[/]. We denote by A*(S, P) the set of all
non-redundant solutions. Further, let A(S9 P(0) = Λ(S, P(ί))n>4*(S, P).

In this algorithm, we obtain only the set of non-redundant solutions, since
the set of all redundant solutions can be constructed from the set of
non-redundant solutions by Definition 5.1.

Here we note that we employ the following devices inside a computer:
(i) Let M be a subset of Zfc. We use the mapping

Λi ( ί ϊ k) : M — > T(M, i) = /bl(l;k) (M) c {0, 1}*

sending c = (c1 --ck)eM to
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Λι<i;*)(c) = (</ι" dk),

where
d. = (l if c, = (ft1 (*;*));,

j { 0 otherwise.

Then we can use AND/OR binary operations. Moreover, it is possible to

convert any element in M(Pf0;fc) (resp. Nk(Pq

(i))) into an integer between 0
and 2k — 1. This enables us to check easily whether an element matches with

the other in M(Pfi}; k) (resp. Nk(Pq

(i))). Moreover M*'1^; 1) can be replaced

by a subset of {0, 1} in Proposition 4.3 (iii).
(ii) In order to obtain S' rapidly, we prepare a hashing table in the

main memory which gives a correspondence from the first few components of

the elements of S' to a set of integers.

Some of the computations used in Algorithm 1 are given in Algorithms
2 ~ 6. In Algorithm 2, we obtain the set D(i) of all elements a = (a1 ~ak)
satisfying

α^(l-l)=Λi(u)(6 1 (i , fc)) and aφT= T(C(S')9 i)

for bl(i; k). Let T= {d1, ...,</'}. We define

° ί f = 1

Then, aeD(i) if and only if

k
£ ήdj ^ 1 for 1 ̂  i g t.

j=ι

Therefore, this problem is related to the set covering problem whose

computation methods have been studied in [7, 18]. We define

D(i) = {deD(i)\df φ a for any d'eD(i) - {</}},

since deD(i} with dΈD(i) and d' c= d. For meT(M(Pq

(i); /c), i) c= C({1}), mφT

implies d c= m for some deD(i) by the definition. Our algorithm uses this
property in obtaining T(M(Pq

(i); fc), 0 - T. These are also valid for T(Nk(Pq

(i)),

i) or T(C(Nk(P(i))), ί) instead of T(M(Ffί}; fe), i). Let

where k^ ^ k ̂  k0 and 1 g f̂ g p.

In Algorithm 3, we obtain the first integer q' such that T(Nk(Pfy, i) = φ
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for any i e J and q < q' ^ p. Then, let q = qr if such q' exists, = p + 1
otherwise. Further, the sets T(M(Pf0; k), ι), ie/ and T(Nk(Pq

(i}), i), ίeJ are
obtained by applying Lemma 4.4 (ii) and Proposition 4.2 (iii), respectively.

In Algorithm 4, we apply Proposition 4.3 (iii) for T(M(Pq

(i}\ k), ΐ ) > obtain
the first k' such that T(Nk,(P$, i) ̂  φ for some iε J and k < k' ̂  k0. Then,
let k = k' if such k' exists, = k0 + 1 otherwise. All non-redundant solutions
with length k are found in Algorithm 5 by using D(i} in Algorithm 2. In
Algorithm 6, the computation removing all elements in T(C(S'), i) from
T(Λf(P?0;fc),i) or T^P^1), i)&T(ΛΓk({&«}), j) is also done by using D(i)

in Algorithm 2.

We list some additional notations used in Algorithms 1 ~ 6.

( i ) T(Ml ί) = T(Af (Pf0 k), i) for i ε I.
(ii) T(Nl, i) = T(Nk(P^ i) f o r i e J .
(iii) (T(M,ί),I) or (D(ί), /) denote T(M, i) or I>(0 for each ie/,

respectively.
(vi) Let eh be the element whose ϊ-th coordinate is given by

0 otherwise.

ALGORITHM 1.
Function: To find the set A*(S9 P) of all non-redundant solutions of

(S, P).

(51) Find b1 whose length is k0 = min {S(b)\beP}.
(52) Let fc:= 1, p:= |P|, S:= S - P, S':= [5; fc] and A*(S, P):= </>.
(53) For each beP, do steps S4 and S5.
(54) If [fe; k] - S' = 0, then do step S5.
(55) If fc < k0, then let k:= k + 1,

S':=[S;k],
go to step S4,

else exit: "there is no solution".
(56) Let /:= { i l & ^ i ; QeM^b1}; k)},

(57) Let T(M^ i):= T(M(Pl^ k), i) for each ie/,
TίNfc1, i):= T(Nk(P^ i) for each ieJ.

(58) For each ieJ, do step S9.
(59) Obtain D(i) by Algorithm 2 with parameters k, ^(i; k) and 5'.
(510) Let q:= 1.
(511) Obtain q, (Γ(Mj?, i), /) and (T(Nli),J) by Algorithm 3 with

parameters k0, k, p, q, S', P, (Γ(Mj?, i), /), (T(Nl, i), J) and (D(0, J).
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(512) If q ^ p9 then do steps S13 to S14.
(513) Obtain fe, S', (T(Mj?, i), /),_(T(ΛΓj?, i), J) and (D(0, J) by Algorithm 4

with parameters fc0, fc, <?, S, P and (Γ(M£, ί), /).
(514) If k ̂  /c0, then go to step Sll, else exit.
(515) Obtain A*(S, P) by Algorithm 5 with parameters (T(Nξ9 i),«/), (£>(o> J)

and 4*(S, P).
(516) Let q:=p.
(Sll) Obtain fc, S', (T(Ml i), I)_, (T(N^ i), J) and (D(0, J) by Algorithm 4

with parameters kθ9 /c, ^ 5, P and (T(M^, i)» ^)
(518) If fe ^ fe0, then obtain v4*(S, P) by Algorithm 5 with parameters

(T(N(9 i), J), (D(i), J) and 4*(S, P), and go to step S17.
(519) End ALGORITHM 1.

ALGORITHM 2.
Function: To find all solutions of the set covering problem.
Input parameters: /c, b^(i\ k) and S'.
Output parameters: Z)(ί).

(520) Let m:=(l •••!), s:= b^i; k), n:=(0 0)> R:= φ and D(i):= φ.
(521) For each beS', do steps S22 to S26.
(522) If b = bl(i\ /c), then go to step S35.
(523) Let c be the element whose '-th coordinate is given by

T O

1 otherwise.

(524) Let m : = m & c ,
5 :=s&b.

(525) If c&n = (0-0), then do step S26.
(526) If c = £?Λ for some he{!,...,k}9 then let

else if r ̂  c for any r e R, then let

(527) If R = φ, then do step S28.
(528) If n Φ (0-0), let D(i):= {n}.

Go to step S34.
(529) Let L:={je{l,...9k}\Sj*Q or n, = 1 or m,- = 1},

(530) For each ceC, do steps S31 and S32.
(531) If d Φ c for any deDw, then do step S32.
(532) If c&r Φ (0-0) for any retf, then let D(i):= D ( 0U{c}.



A method for searching characteristic patterns 623

(533) For each deD(i}, let
dj:= 1 if Πj = 1 for 1 ^j^k.

(534) For j from 1 to fc,
if nij = 1 and nj φ 1, then let D(i}:= D(ΐ)\j{ej}.

(535) End ALGORITHM 2.

ALGORITHM 3.
Function : To obtain the first integer q' such that q < q' ^ p and

T(Nf, i) = 0 for any ieJ.
Input parameters: k0, k, p, β, S', P, (T(MZ, i), /), (T(NZ, i), J) and (D(ί), J).
Output parameters: q, (T(Mg, i), /) and (Γ(JV£, i), J).

(536) If ^ ̂  p, then let q:= p + 1 and go to step S43.

(537) Let q':=q+ 1.
(538) If k<k09 then let T(Mf, i):= T(Ml i)&,T(Mγ({bq'}\ k), i) for each

ze/ .
(539) Let T(Nf, i):= T(N?, 0&T(Nfc({M'}), i) for each feJ,

ί-ί'.
(540) Obtain (T(N2, i), J) by Algorithm 6 with parameters (T(N?, i), J) and

(2(0> Ό
(541) If J = φ, then go to step S43.
(542) Obtain T(N^ i) from Γ(ΛΓ2, i) for each ie J and go to step S36.
(543) End ALGORITHM 3.

ALGORITHM 4.
Function : To obtain the first integer k such that fc < k' ^ fe0 and

T(N£, ΐ ) / Φ for some ieJ.
Input parameters: fc0, fc, q, 5, P and (T(M£, i), /).

Output parameters: fe, S', (T(Aff, i), /), (T(Njf, 0, J) and (5(0> J)

(544) If fc ̂  fc0, then let fc:= fc0 + 1 and go to step S57.
(545) Let fc':=fc+ 1,

S' *= ΓS" fe'l

'

(546) For each teJ, do step S47.
(547) If iφl,

then find j such that jel and b 1(i; fc) = f^O'; fc) and let

T(Mli):=T(Mϊ,j).
(548) Let T(M2 , i):= T(Mξ, i)Θ {0, 1} for each ieJ,

fc:=f.
(549) For each bep", do steps S50 to S51.
(550) For each ieJ, do step S51.
(551) Let T(Mf , i):= T(M?, i)n T(Bk([b; fc]), i) and
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if T(Ml i) = φ9 then let T(Ml /):= {0}.
(552) If T(M£, 0 = {0} for any ie J, then go to step S44.

(553) Obtain T(Mj?, i) from T(Mj?, ϊ) for each ie J.
(554) For each ieJ, do step S55.
(555) Obtain D(i} by Algorithm 2 with parameters fc, fe^i; fc) and 5".

(556) Obtain (T(JV^ 0. •/) bY Algorithm 6 with parameters (T(Mj?, i), J) and

(557) If J = φ, then go to step S44.
(558) Let /:= {i\bl(i; QeM^b1}', k)}.
(559) End ALGORITHM 4.

ALGORITHM 5.
Function : To obtain all non-redundant solutions of (S, P) with length k.

Input parameters: (T(Nl, i), J), (O(0, J) and 4*(S, P).
Output parameters: A*(S, P).

(560) For each ieJ, do steps S61 to S65.

(561) Let C:= [c\c c n and neT(Nl, 0}
(562) For each ceC, do steps S63 to S65.
(563) If d c c for some dεD(i)9 then do steps S64 and S65.
(564) Let L:={i |c, = 0},

(565) If a'φa or α[-L] ̂ a'[-L'] for any α^α'C^e^*^, P),
then add α to A*(S, P).

(566) End ALGORITHM 5.

ALGORITHM 6.

Function: To obtain T(Nq

k, ί) - T(C(S')> i) (resp. T(M]?, i) - Γ(C(5r), 0)
for each ieJ.

Input parameters: (T(Nl i), J) (resp. (T(Mjf, i), J)) and (D(i), J).
Output parameters: (Γ(N?, ΐ), J) (resp. (Γ(NJ, 0, •/))•

(567) For each ιeJ, do steps S68 to S71.
(568) Let W := 0.

(569) For each meT(Ml i), do step S70.
(570) If dam for some deD(ί), then add m to W.
(571) Let T(Nli):= W.

(572) Let J :={i |T(ΛΓZ, O ^ Φ }
(573) End ALGORITHM 6.

EXAMPLE 5.1. We show the solutions of (5, P) can be constructed through
Algorithms 1 ~ 6 for the sets S and P of Example 4.6.

1) We have b1 = (22112) and k0 = 5 in SI.
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2) We have k = 1, p = 4, S = {(22122), (12122), (12121), (21221)} and
S' = {1, 2} in S2.

3) We have k = 3 and S' = {(221), (212), (122), (121)} in S3-S5.
4) We have / = {1, 2} and J = {2, 3} in S6.

5) We have T(Af|, 1) = {(111)}, T(M], 2) = {(111)}, T(JV|, 2) = {(111)} and

T(φ,3) = {(lll)} in S7.
6) By Algorithm 2 with parameters k, 6^2; k) and S" in S9, m = (000), 5 =

(000), n = (Oil) and R = φ are obtained in S20-S26. D(2) = {(Oil)} is
obtained as Z)(0 in S28.

7) By Algorithm 2 with parameters k,bl(3'9k) and 5' in S9, m = (000),

s = (000), n = (110) and R = φ are obtained in S20-S26. D(3) = {(110)}

is obtained as D(i} in S28.

8) We have q = 1 in S10.
9) By Algorithm 3 with parameters k0, k, p, q, S', P, (T(Mg, ί), /), (T(Nt, i),

J) and (D(ί), J) in Sll, we have 10) to 11).

10) We have tf = 2, Γ(M3

2, 1) = {(110), (111)}, Γ(M2, 2) = {(100), (101)},

T(JV|, 2) = {(100)} and T(ΛΓ|, 3) = {(001)} in S37, S38 and S39,
respectively. We have q = 2 in S39.

11) By Algorithm 6 with parameters (T(NJJ, ΐ), J) and (D(ί), J) in S40,

Γ(ΛT2, 2) = (/>, Γ(ΛT2, 3) = φ and J = φ are obtained in S68-S71 and S72,

respectively.
12) By Algorithm 4 with parameters fc0, k, g, S, P and (T(Mg, i), /) in S13,

we have 13) to 18).
13) We have k' = 4, S' = {(2212), (2122), (1212), (2121), (1221)} and J = {1, 2}

in S45.
14) We have T(M^, 1) = {(1101), (1110)} and T(M2, 2) = {(1011)} in S53,

since T(M|, 1) = {(1100), (1101), (1110)} and Γ(M|, 2) = {(1000), (1001),

(1010), (1011)} in S48-S51. We have k = 4 in S48.
15) By Algorithm 2 with parameters k, &(\\k) and S' in S55, m = (0000),

s = (0000), n = (0001) and R = {(0110), (1010)} are obtained in S20-S26.

L= φ and C = {c|c c (1111)} are obtained in S29. D(1) = {(1100), (0100)}

is obtained as D(i) in S30-S32. D(1) = {(1101), (0011)} is obtained as D(0

in S33.
16) By Algorithm 2 with parameters k, ^(2; fc) and S' in S55, m = (0000),

s = (0000), n = (0110) and R = φ are obtained in S20-S26. β(2) = {(0110)}

is obtained as D(ί) in S28.
17) By Algorithm 6 with parameters (T(Mg, i), J) and (D(i), J) in S56,

Γ(Λ^? i) = {(1101)}, T(Nl 2) = φ and J = {1} are obtained in S68-S71

and S72, respectively.

18) We have / = {1} in S58.

19) By Algorithm 3 with parameters k0> *> P, 1> Sr, P, (T(Ml i), /), (Γ(JVf, i)»
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J) and (Z)(0, J) in Sll, we have 20) to 21).

20) We have q' = 3, Γ(M|, 1) = {(1000), (1001)} and T(Nl, 1) = {(0101)} in

S37, S38 and S39, respectively. We have q = 3 in S39.
21) By Algorithm 6 with parameters (T(Nξ, i), J) and (D(ί), J) in S40,

T(Nl, 1) = φ and J = φ are obtained in S68-S71 and S72, respectively.

22) By Algorithm 4 with parameters fc0, fc, q, 5, P and (T(M£, i), /) in S13,

we have 23) to 27).
23) We have K = 5, S' = {(22122), (12122), (12121), (21221)} and J = {1}

in S45.
24) We have T(M|, 1) = {(10010)} in S53, since Γ(Mf, 1) = {(10000), (10010)}

in S48-S51. We have k = 5 in S48.

25) By Algorithm 2 with parameters fc, bl(l; k) and 5" in S55, m = (00010),
s = (00000), n = (00010) and R = φ are obtained in S20-S26. D(1) =

{(00010)} is obtained as Dw in S28.
26) By Algorithm 6 with parameters (Γ(M£, i), J) and (Z)(0, J) in S56,

Γ(ΛΓf, 1) = {(10010)} and J = {1} are obtained in S68-S71 and S72,
respectively.

27) We have / = φ in S58.

28) By Algorithm 3 with parameters kθ9 k, p, q, S',P, (T(M£, i), /), (T(Nl, i),
J) and (D(0, J) in Sll, we have 29) to 32).

29) We have <f = 4, Γ(/Vf, 1) = {(00010)} in S37 and S39, respectively. We

have q = 4 in S39.
30) By Algorithm 6 with parameters (T(Nl i), J) and (Z)(0, J) in S40, Γ(Λ/t, 1)

= {(00010)} and J = {1} are obtained in S68-S71 and S72, respectively.

31) We have T(Λ^, 1) = {(00010)} in S42.

32) q = 5 is obtained in S36.

33) By Algorithm 5 with parameters (T(Ni, i), J), (D(ί), J) and A*(S, P) in
S15, A*(S, P) = {(00010)} is obtained in S60-S65.

6. An application to molecular biology

In this section, we show an application to analysis of nucleic acid and

protein sequences in molecular biology by using our algorithm. These
sequences are basic in the biochemical activity of all living things. In case

of nucleic acids, the units (or elements) are any one of four nucleotides, and

the lengths of the sequences are typically from tens to millions. In case of
amino acids, the units are any one of twenty amino acids, and the lengths of

the sequences are typically a few hundred. All these sequences can be taken
from Nucleic Acid Sequence Databases; DDBJ [2], EMBL [3], GenBank [8]
and NBRF [15], and Protein Sequence Database; NBRF/PIR [16] stored in

Hiroshima University Database Management System HDM [5, 6, 11]. Here
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we consider nucleic acid sequences taken from GanBank Database whose

records (entries) are stored in HDM as Table 6.1.

Table 6.1 Number of records and groups in GenBank Database

GenBank release 67.0

Group

Primates
Rodent
Other mammalian
Other vertebrate
Invertebrate
Plant
Organelle
Bacterial
Structural RNA
Viral
Phage
Synthetic
Unannotated

TOTAL

No. of
entries

8206
8400
1638
1965
3383
3187
1402
4616
1735
4032

602
1053
3684

43903

No. of
bases

9814969
8546574
2077398
2249342
4307294
5069146
2021305
7572518

518967
7019564
705269
550086

4716844

55169276

As an attempt of seeing the usefulness of our computation method, we
performed to find solutions of (S, P) for the case given in Table 6.2.

Table 6.2 The contents of P and S-P

Retrieved group
No. of records

Minimum record length
Maximum record length

P

Structural RNA
25

100
1486

S-P

Viral
25

195
4675

Table 6.3 shows the numbers of elements in M({bl};k), N^b1}) and

S', the sum of the numbers of elements in D(i) for all bl(i; k) in Nk({b1}),

T(M(P; fc), i) for all b l ( ί ; k) in M({b1}; k) and T(Nk(P), i) for all bl(i; k) in

Nk({b1}), 4k(S, P), and the time needed to find solutions, for the case k =
2-11. We note that each of the elements of Ak(S, P) or Ak(S, P) given in

Table 6.3 can be considered as the characteristic patterns of the 25 elements

in Structural RNA in the 50 elements in Structural RNA and Viral.
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Table 6.3 The characteristic patterns of P in S

k

M({b
l
}',k)

N^b
1
})

S'

Qm

T(M(P;k), i)

T(N
k
(P), i)

A
k
(S, P)

Time*

2

18

2

20

2

79

1

en

7.48

3

70

6

401

2

25.65

4

264

12

1159

4

cOOn

49.89

5

1034

18

2357

6

75.98

6

3956

31

4198

9

cnOOOg
gaaggc
ttaagt

126.62

7

10577

72

6870

12

242.74

8

16499

253

10649

15

396.36

9

19275

877

15919

19

tOggOOtaa

524.94

10

20241

2651

23138

24

cgOOOtaaOt

675.53

11

20574

6863

32818

32

aOOaggOttOg
aOOaggOtOOg
gaaOgcOOOgg
gOOtOaagOOc

968.83

*) All times are expressed in second.
The set Z consists of 4 alphabet a, c, g, t.
The leter n denotes an element of Z in Database.

The computer program for storing and retrieving sequences was written
in the Model 204 Database Management System User Language [14]. The
program consists of 3380 statements organized 15 programs and required 560 K
bytes basic storage and 6M bytes extended storage. On the other hand,
the program for finding solutions was written in the FORTRAN programming
language and consists of 1530 statements organized into 32 subroutines.
All computing was done on the HITAC M-680H computer at Information
Processing Center of Hiroshima University.
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