On confidence regions in canonical discriminant analysis

Yasunori FuJIKOSHI
(Received May 20, 1991)

1. Introduction

Consider $q p$-variate populations $\Pi_{j}, j=1, \ldots, q$ with means μ_{j} and the same covariance matrix Σ, where μ_{j} and Σ are unknown. Suppose that there are N_{j} observations $\boldsymbol{x}_{j k}$ from the j-th population $\Pi_{j}\left(k=1, \ldots, N_{j} ; j=1, \ldots, q ; N=\sum N_{j}\right)$. Let S and B be the matrices of sums of squares and products due to within populations and between populations, respectively, i.e.

$$
S=\sum_{j=1}^{q} \sum_{k=1}^{N_{j}}\left(x_{j k}-\bar{x}_{j}\right)\left(x_{j k}-\bar{x}_{j}\right)^{\prime}
$$

and

$$
B=\sum_{j=1}^{q} N_{j}\left(\bar{x}_{j}-\bar{x}\right)\left(\bar{x}_{j}-\bar{x}\right)^{\prime},
$$

where $\quad \bar{x}_{j}=\left(1 / N_{j}\right) \sum_{k=1}^{N_{j}} x_{j k}$ and $\bar{x}=(1 / N) \sum_{j=1}^{q} \sum_{k=1}^{N_{j}} x_{j k}$. The canonical discriminant analysis introduced by Fisher [3] was developed by Rao [5, 6]. The method is used to summarize the differences between populations in terms of only a few transformed variates. Let $y_{\alpha}=\boldsymbol{c}_{\alpha}^{\prime}(\boldsymbol{x}-\overline{\boldsymbol{x}}), \alpha=1, \ldots, p$ be the transformed variates, which are called canonical discriminant variates. The coefficient vectors \boldsymbol{c}_{α} 's are defined as the solutions of

$$
\begin{equation*}
B c_{\alpha}=\ell_{\alpha} S c_{\alpha}, \quad c_{\alpha}^{\prime} S c_{\beta}=n \delta_{\alpha \beta}, \tag{1.1}
\end{equation*}
$$

where $\ell_{1} \geq \cdots \geq \ell_{p} \geq 0$ and $n=N-q$. Let $\zeta_{\alpha}=\gamma_{\alpha}^{\prime}(x-\bar{\mu}), \alpha=1, \ldots, p$ be the corresponding population canonical discriminant variates whose discriminant vectors are defined by

$$
\begin{equation*}
\Omega \gamma_{\alpha}=\lambda_{\alpha} \Sigma \gamma_{\alpha}, \quad \gamma_{\alpha}^{\prime} \Sigma \gamma_{\beta}=\delta_{\alpha \beta}, \tag{1.2}
\end{equation*}
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{p} \geq 0, \Omega=\sum_{j=1}^{q}\left(N_{j} / n\right)\left(\mu_{j}-\bar{\mu}\right)\left(\mu_{j}-\bar{\mu}\right)^{\prime}$ and $\bar{\mu}=(1 / N) \sum_{i=1}^{q} N_{j} \mu_{j}$. We assume that $\operatorname{rank}(\Omega)=m \leq \min (p, q-1)$. Then $\lambda_{m+1}=\cdots=\lambda_{p}=0$, and only the first m canonical discriminant variates are meaningful. Suppose we are interesting in the canonical discriminant variates based on the first $s(\leq m)$ discriminant variates. Let $C=\left[c_{1} \cdots c_{s}\right]$, and

$$
\begin{equation*}
\overline{\boldsymbol{y}}_{j}=C^{\prime}\left(\bar{x}_{j}-\overline{\boldsymbol{x}}\right), \boldsymbol{\eta}_{j}=C^{\prime}\left(\boldsymbol{\mu}_{j}-\overline{\boldsymbol{\mu}}\right) . \tag{1.3}
\end{equation*}
$$

It is assumed that all the observations are normal.

For the confidence regions on $\boldsymbol{\eta}_{j}$, it has been used that $N_{j}\left(\overline{\boldsymbol{y}}_{\boldsymbol{j}}-\boldsymbol{\eta}_{j}\right)^{\prime}\left(\overline{\boldsymbol{y}}_{\boldsymbol{j}}-\boldsymbol{\eta}_{\boldsymbol{j}}\right)$ has an asymptotic χ^{2}-distribution with s degrees of freedom. We note that the asmptotic distributional result should be corrected under the sampling variability of the canonical discriminant vectors. Krzanowski [4] has noted that such regions are not appropriate as a surrounding for the set of transformed data $\boldsymbol{y}_{j k}=C^{\prime}\left(\boldsymbol{x}_{j k}-\overline{\boldsymbol{x}}\right), k=1, \ldots, N_{j}$. In the connection with the latter regions, we consider the confidence regions for a new observation from Π_{j} based on

$$
\begin{equation*}
w_{j}=y_{j}-\bar{y}, \tag{1.4}
\end{equation*}
$$

where $\boldsymbol{y}_{j}=C^{\prime}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right)$ and \boldsymbol{x}_{j} is a new observation from Π_{j}. In the case $q=2$, \boldsymbol{w}_{j} is equal to the studentized classification statistic W, whose asymptotic distribution has been obtained by Anderson [1]. In Section 2 we give a fundamental reduction for the distributions of $\sqrt{N_{j}}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)$ and \boldsymbol{w}_{j}. In Section 3 asymptotic confidence regions for $\boldsymbol{\eta}_{\boldsymbol{j}}$ and $\boldsymbol{y}_{\boldsymbol{j}}$ are given by obtaining asymptotic distributions of $N_{j}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)^{\prime}\left(\overline{\boldsymbol{y}}_{j}-\eta_{j}\right)$ and $\boldsymbol{w}_{j}^{\prime} \boldsymbol{w}_{j}$, respectively. In Section 4 we obtain an asymptotic expansion of the distribution of $\boldsymbol{w}_{j}^{\prime} \boldsymbol{w}_{j}$, which gives the confidence regions for y_{j} with confidence coefficients up to the order N^{-1}.

2. A fundamental reduction

As is well known, S and B are independently distributed as a central Wishart distribution $\mathrm{W}_{p}(\Sigma, n)$ and a noncentral Wishart distribution $\mathrm{W}_{p}(\Sigma, q-1 ; n \Omega)$, respectively. Let

$$
\begin{equation*}
\tilde{S}=\frac{1}{n} \Gamma^{\prime} S \Gamma, \tilde{B}=\frac{1}{n} \Gamma^{\prime} B \Gamma, \boldsymbol{h}_{\alpha}=\Gamma^{-1} c_{\alpha}, \alpha=1, \ldots, p . \tag{2.1}
\end{equation*}
$$

Then the transformed vectors \boldsymbol{h}_{α} 's are the solutions of

$$
\begin{equation*}
\tilde{B} \boldsymbol{h}_{\alpha}=\ell_{\alpha} \tilde{S} \boldsymbol{h}_{\alpha}, \boldsymbol{h}_{\alpha}^{\prime} \tilde{\mathbf{S}} \boldsymbol{h}_{\beta}=\delta_{\alpha \beta} . \tag{2.2}
\end{equation*}
$$

Here $\tilde{S} \sim \mathrm{~W}_{p}\left(I_{p}, n\right)$. Further, it is well known that we can write \tilde{B} as

$$
\begin{equation*}
\tilde{B}=\Lambda+\frac{1}{\sqrt{n}} M+\frac{1}{n} U_{1} U_{1}^{\prime}, \tag{2.3}
\end{equation*}
$$

where $U_{1}=\left[\boldsymbol{u}_{1} \cdots \boldsymbol{u}_{q-1}\right]$, the columns of $U=\left[U_{1} \boldsymbol{u}_{q}\right]$ are independently distributed as $\mathrm{N}_{p}\left(\mathbf{0}, I_{p}\right), M=\left[\sqrt{\lambda_{1}} \boldsymbol{u}_{1} \cdots \sqrt{\lambda_{m}} \boldsymbol{u}_{m} O\right]+\left[\sqrt{\lambda_{1}} \boldsymbol{u}_{1} \cdots \sqrt{\lambda_{m}} \boldsymbol{u}_{m} O\right]^{\prime}$ and $\Lambda=\operatorname{diag}\left(\lambda_{1} \cdots \lambda_{p}\right)$.

Since the distributions of $\sqrt{ } n_{j}\left(\overline{\boldsymbol{y}}_{\boldsymbol{j}}-\boldsymbol{\eta}_{\boldsymbol{j}}\right)$ and $\boldsymbol{w}_{\boldsymbol{j}}$ depend on $\overline{\boldsymbol{x}}_{\boldsymbol{j}}$ and $\overline{\boldsymbol{x}}$ as well as \tilde{S} and U, it is important to express these statistics in terms of \tilde{S} and U only. Let

$$
\Xi=\sqrt{N / n}\left[\sqrt{N_{1} / N}\left(\mu_{1}-\bar{\mu}\right) \cdots \sqrt{N_{q} / N}\left(\mu_{q}-\bar{\mu}\right)\right] .
$$

Then $\Omega=\Xi \Xi^{\prime}$, and $\operatorname{rank}(\Xi)=\operatorname{rank}(\Omega)=m$.
Lemma 2.1. There exist a nonsingular $p \times p$ matrix Γ and an orthogonal $q \times q$ matrix $G=\left[G_{1} g_{q}\right]$ such that

$$
\begin{align*}
& \Gamma^{\prime} \Omega \Gamma=\Lambda, \Gamma^{\prime} \Sigma \Gamma=I_{p} \text { and } \tag{2.4}\\
& \Gamma^{\prime} \Xi G_{1}=\left[\begin{array}{cc}
\Lambda_{1}^{1 / 2} & 0 \\
O & O
\end{array}\right],
\end{align*}
$$

where $g_{q}=\left(\sqrt{N_{1} / N} \cdots \sqrt{N_{q} / N}\right)^{\prime}$ and $\Lambda_{1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.
Proof. Let \tilde{G}_{1} be a $q \times \overline{q-1}$ matrix such that $I_{q}-\boldsymbol{g}_{q} g_{q}^{\prime}=\widetilde{G}_{1} \widetilde{G}_{1}^{\prime}$ and $\tilde{G}_{1}^{\prime} \tilde{G}_{1}=I_{q-1}$. It is easily checked that $\Xi \tilde{G}_{1} \tilde{G}_{1}^{\prime}=\Xi$. Let $\Gamma=\Sigma^{-1 / 2} \Gamma_{0}$ and $G_{1}=\tilde{G}_{1} G_{0}$, where Γ_{0} and G_{0} are orthogonal $p \times p$ and $\overline{q-1} \times \overline{q-1}$ matrices, respectively. Then $\Gamma^{\prime} \Sigma \Gamma=I_{p}$ and

$$
\begin{equation*}
\Gamma^{\prime} \Xi G_{1}=\Gamma_{0}^{\prime} \Sigma^{-1 / 2} \Xi \tilde{G}_{1} G_{0} \tag{2.5}
\end{equation*}
$$

Using Singular-valued Decomposition Theorem (see e.g., Rao [7, p. 42]) and noting that $\Sigma^{-1 / 2} \Xi \widetilde{G}_{1}\left(\Sigma^{-1 / 2} \Xi \widetilde{G}_{1}\right)^{\prime}=\Sigma^{-1 / 2} \Xi \Xi^{\prime} \Sigma^{-1 / 2}$, it is seen that there exist Γ_{0} and G_{0} such that the right-hand side of (2.5) is equal to the desired matrix. This completes the proof.

Lemma 2.2. Let $G=\left[G_{1} g_{q}\right]$ be an orthogonal $q \times q$ matrix satisfying (2.4), and let U be the random matrix difined in (2.3). Then
(i) $\sqrt{N_{j}}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)=C^{\prime} \Gamma^{\prime-1} U_{1} \boldsymbol{g}_{j 1}$
(ii) $\boldsymbol{w}_{j}=\boldsymbol{y}_{j}-\overline{\boldsymbol{y}}_{j}=C^{\prime}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{j}\right)-\left(1 / \sqrt{N_{j}}\right) C^{\prime} \Gamma^{\prime-1} U \tilde{\boldsymbol{g}}_{j}$,
where $G_{1}=\left[g_{11} \cdots g_{q 1}\right]^{\prime}$ and $\tilde{g}_{j}=\left(g_{j 1}^{\prime} \quad \sqrt{N_{j} / N}\right)^{\prime}$.
Proof. Let $z_{j}=\sqrt{N_{j}} \Gamma^{\prime}\left(\bar{x}_{j}-\mu_{j}\right)$ and $Z=\left[z_{1} \cdots z_{q}\right]$. Then $z_{j} \sim N_{p}\left(\mathbf{0}, I_{p}\right)$. We have

$$
\begin{equation*}
\bar{x}_{j}-\bar{x}=\mu_{j}-\mu+\left(1 / \sqrt{N_{j}}\right) \Gamma^{\prime-1} \tilde{z}_{j} \tag{2.6}
\end{equation*}
$$

where $\tilde{z}_{j}=z_{j}-\sqrt{N_{j} / N}\left(\sqrt{N_{1} / N} z_{1}+\cdots+\sqrt{N_{q} / N} z_{q}\right)$. First we show that the random matrix U in (2.3) may be defined by

$$
\begin{equation*}
U=Z G=Z\left[G_{1} g_{q}\right] \tag{2.7}
\end{equation*}
$$

whose columns are independently distributed as $\mathrm{N}_{p}\left(\mathbf{0}, I_{p}\right)$. This will be shown by substituting (2.6) into $\tilde{B}=(1 / n) \Gamma^{\prime} B \Gamma$. In fact,

$$
\begin{equation*}
\tilde{Z}=\left[\tilde{z}_{1} \cdots \tilde{z}_{q}\right]=Z G_{1} G_{1}^{\prime}=U_{1} G_{1}^{\prime} \tag{2.8}
\end{equation*}
$$

and hence

$$
\begin{aligned}
\tilde{B} & =\Lambda+(1 / \sqrt{n})\left(\Gamma^{\prime} \Xi \tilde{Z}^{\prime}+\tilde{Z} \Xi^{\prime} \Gamma\right)+(1 / n) \tilde{Z} \tilde{Z}^{\prime} \\
& =\Lambda+(1 / \sqrt{n}) M+(1 / n) U_{1} U_{1}^{\prime} .
\end{aligned}
$$

Using (2.6) $\sim(2.8)$ we obtain the expressions (i) and (ii) in the following way:

$$
\sqrt{N_{j}}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)=C^{\prime} \Gamma^{\prime-1} \tilde{z}_{j}=C^{\prime} \Gamma^{\prime-1} U_{1} \boldsymbol{g}_{j 1}
$$

and

$$
\begin{aligned}
\boldsymbol{w}_{j} & =C^{\prime}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{j}\right)-\left(1 / \sqrt{N_{j}}\right) C^{\prime} \Gamma^{\prime-1} z_{j} \\
& =C^{\prime}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{j}\right)-\left(1 / \sqrt{N_{j}}\right) C^{\prime} \Gamma^{\prime-1} U \tilde{g}_{j} .
\end{aligned}
$$

Next we consider perturbation expansions for

$$
\begin{equation*}
C=\Gamma\left[\boldsymbol{h}_{1} \cdots \boldsymbol{h}_{s}\right]=\Gamma H . \tag{2.9}
\end{equation*}
$$

We make the following assumptions:
A1. All the first s characteristic roots of $\Omega \Sigma^{-1}$ are simple, i.e.,

$$
\lambda_{1}>\cdots>\lambda_{s}>\lambda_{s+1} \geq \cdots \geq \lambda_{m}>\lambda_{m+1}=\cdots=\lambda_{p}=0
$$

A2. $\lim _{N \rightarrow \infty} N_{j} / N=d_{j}>0, j=1, \ldots, q$.
Let

$$
\begin{equation*}
\tilde{S}=I_{p}+\frac{1}{\sqrt{n}} V \tag{2.10}
\end{equation*}
$$

Then, \boldsymbol{h}_{α} 's and ℓ_{α} 's are the solutions of

$$
\begin{gather*}
{\left[\Lambda+\frac{1}{\sqrt{n}} M+\frac{1}{n} U_{1} U_{1}^{\prime}\right] \boldsymbol{h}_{\alpha}=\ell_{\alpha}\left(I_{p}+\frac{1}{\sqrt{n}} V\right) \boldsymbol{h}_{\alpha}} \\
\quad \boldsymbol{h}_{\alpha}^{\prime}\left(I_{p}+\frac{1}{\sqrt{n}} V\right) \boldsymbol{h}_{\beta}=\delta_{\alpha \beta} . \tag{2.11}
\end{gather*}
$$

Under Assumption A1 it is known (see, e.g., Siotani, Hayakawa and Fujikoshi [8, p. 464]) that ℓ_{α} and $h_{\alpha}, \alpha=1, \ldots, s$ are expanded as

$$
\begin{align*}
& \ell_{\alpha}=\lambda_{\alpha}+\frac{1}{\sqrt{n}} \ell_{\alpha}^{(1)}+\frac{1}{n} \ell_{\alpha}^{(2)}+\frac{1}{n \sqrt{n}} \ell_{\alpha}^{(3)}+O_{p}\left(n^{-2}\right), \tag{2.12}\\
& \boldsymbol{h}_{\alpha}=\boldsymbol{e}_{\alpha}+\frac{1}{\sqrt{n}} \boldsymbol{h}_{\alpha}^{(1)}+\frac{1}{n} \boldsymbol{h}_{\alpha}^{(2)}+\frac{1}{n \sqrt{n}} \boldsymbol{h}_{\alpha}^{(3)}+O_{p}\left(n^{-2}\right)
\end{align*}
$$

where \boldsymbol{e}_{α} is the $p \times 1$ vector with α-th element one and other zero. The coefficients in (2.12) can be obtained by substituting (2.12) into (2.1) and equating the terms of $n^{-1 / 2}$ and n^{-1} in the expansions. These imply that

$$
C=\Gamma\left\{\left[\begin{array}{c}
I_{s} \tag{2.13}\\
O
\end{array}\right]+\frac{1}{\sqrt{n}} H^{(1)}+\frac{1}{n} H^{(2)}+\frac{1}{n \sqrt{n}} H^{(3)}+O_{p}\left(n^{-2}\right)\right\} .
$$

The matrices $H^{(j)}=\left[h_{i \alpha}^{(j)}\right]$ are given as follows.

$$
\begin{aligned}
& h_{\alpha \alpha}^{(1)}=-\frac{1}{2} v_{\alpha \alpha}, \\
& \begin{aligned}
h_{i \alpha}^{(1)}, & i \neq \alpha \\
= & \lambda_{\alpha i}\left(m_{i \alpha}-\lambda_{\alpha} v_{i \alpha}\right), \\
h_{\alpha \alpha}^{(2)}= & \frac{3}{8} v_{\alpha \alpha}^{2}-\sum_{i \neq \alpha}^{p} \lambda_{\alpha i} v_{\alpha i}\left(m_{i \alpha}-\lambda_{\alpha} v_{i \alpha}\right) \\
& -\frac{1}{2} \sum_{i \neq \alpha}^{p} \lambda_{\alpha i}^{2}\left(m_{\alpha i}-\lambda_{\alpha} v_{\alpha i}\right)^{2}, \\
h_{i \alpha}^{(2)}, & i \neq \alpha \\
= & \lambda_{\alpha i}\left[\left(U_{1}^{\prime} U_{1}\right)_{i \alpha}+\sum_{j \neq \alpha}^{p} \lambda_{\alpha j}\left(m_{i j}-\lambda_{\alpha} v_{i j}\right)\left(m_{j \alpha}-\lambda_{\alpha} v_{i j}\right)\right. \\
& -\frac{1}{2}\left(m_{i \alpha}-\lambda_{\alpha} v_{i \alpha}\right) v_{\alpha \alpha}-v_{i \alpha}\left(m_{\alpha \alpha}-\lambda_{\alpha} v_{\alpha \alpha}\right) \\
& \left.-\lambda_{\alpha i}\left(m_{i \alpha}-\lambda_{\alpha} v_{i \alpha}\right)\left(m_{\alpha \alpha}-\lambda_{\alpha} v_{\alpha \alpha}\right)\right],
\end{aligned}
\end{aligned}
$$

where $\lambda_{\alpha i}=\left(\lambda_{\alpha}-\lambda_{i}\right)^{-1}, i \neq \alpha, M=\left[m_{i \alpha}\right]$, and $h_{i \alpha}^{(3)}$ is a homogeneous polynomial (not depending on n) of degree 3 in the elements of U and V. The coefficients $h_{i \alpha}^{(1)}$ have been given in Anderson [1].

3. Asymptotic confidence regions

In this section we obtain asymptotic confidence regions for $\boldsymbol{\eta}_{\boldsymbol{i}}$ and \boldsymbol{y}_{j}, based on asymptotic distributions of $N_{j}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)^{\prime}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)$ and $\boldsymbol{w}_{j}^{\prime} \boldsymbol{w}_{j}$, respectively.

Theorem 3.1. Under Assumptions A. 1 and A. 2 it holds that $\sqrt{N_{j}}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)$ is asymptotically distributed as $N_{s}\left(0,\left(1-N_{j} / N\right) I_{s}\right)$.

Proof. Using Lemma 2.2 and the fact that C converges to $\Gamma\left[I_{s} O\right]^{\prime}$ in probability, we have that the asymptotic distribution of $\sqrt{N_{j}}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)$ is the same as the distribution of $U_{11} g_{i 1}$. The distribution of $U_{11} g_{j 1}$ is an s-dimensional normal with mean zero and covariance matrix

$$
\boldsymbol{g}_{j 1}^{\prime} \boldsymbol{g}_{j 1} I_{s}=\left(1-N_{j} / N\right) I_{s} .
$$

This completes the proof.
From Theorem 3.1 we have

$$
\begin{equation*}
N_{j}\left(1-N_{j} / N\right)^{-1}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right)^{\prime}\left(\overline{\boldsymbol{y}}_{j}-\boldsymbol{\eta}_{j}\right) \longrightarrow \chi_{s}^{2} \tag{3.1}
\end{equation*}
$$

This gives confidence regions for $\boldsymbol{\eta}_{j}$ as hypersphere centered at $\overline{\boldsymbol{y}}_{j}$ and having squared radii $\left\{\left(1-N_{j} / N\right) / N_{j}\right\} \chi_{s, \alpha}^{2}$, where $\chi_{s, \alpha}^{2}$ is the upper α point of the χ^{2}-distribution with s degrees of freedom. It should be noted that the radii are not $\left\{N_{j}^{-1} \chi_{s, \alpha}^{2}\right\}^{1 / 2}$, but [$\left.\left\{\left(1-N_{j} / N\right) / N_{j}\right\} \chi_{s, \alpha}^{2}\right]^{1 / 2}$. Krzanowski [4] has pointed that the traditional confidence regions as hypersphere centered at $\overline{\boldsymbol{y}}_{j}$ and having squared raii $N_{j}^{-1} \chi_{\mathrm{s}, \alpha}^{2}$ are not appropriate as a surrounding for the set of transformed data $\boldsymbol{y}_{j k}, k=1, \ldots, N_{j}$. This note may be extended to the corrected regions as hypersphere centered at \bar{y}_{j} and having squared radii $\left\{\left(1-N_{j} / N\right) /\right.$ $\left.N_{j}\right\} \chi_{s, \alpha}^{2}$.

Next we consider asymptotic confidence regions for the canonical discriminant value $\boldsymbol{y}_{\boldsymbol{j}}$ of a new observation $\boldsymbol{x}_{\boldsymbol{j}}$ from Π_{j}, which are closely related to a surrounding for the set of transformed data $\boldsymbol{y}_{j k}, k=1, \ldots, N_{j}$. From Lemma 2.2. (ii) it is easily seen that the asymptotic distribution of \boldsymbol{w}_{j} is the same as the distribution of $\left[I_{s} O\right] \Gamma^{\prime}\left(x_{j}-\mu_{j}\right)$. The latter distribution is an s variate normal with mean zero and covariance matrix $\left[I_{s} O\right] \Gamma^{\prime} \Sigma \Gamma\left[I_{s} O\right]^{\prime}=I_{s}$. Therefore, \boldsymbol{w}_{j} is asymptotically distributed as $\mathrm{N}_{s}\left(0, I_{s}\right)$. This asymptotic result is also obtained by noting that y_{j} is independent of C and C converges to $\Gamma\left[I_{s} O\right]^{\prime}$ in probability. This implies that $\boldsymbol{w}_{j}^{\prime} \boldsymbol{w}_{j}$ is asymptotically distributed as χ_{s}^{2}, and we obtain confidence regions for \boldsymbol{y}_{j},

$$
\begin{equation*}
\left(y_{j}-\bar{y}_{j}\right)^{\prime}\left(y_{j}-\bar{y}_{j}\right) \leq \chi_{s, \alpha}^{2} \tag{3.2}
\end{equation*}
$$

as hyperspheres centered at \bar{y}_{j} and having squared radii $\chi_{s, \alpha}^{2}$.

4. Asymptotic expansion

In order to obtain more accurate confidence coefficients of the confidence regions (3.2), we shall obtain an asymptotic expansion of the distribution of $\boldsymbol{w}_{\boldsymbol{j}}^{\prime} \boldsymbol{w}_{j}$. The conditional distribution of \boldsymbol{w}_{j} given S and B is

$$
\mathrm{N}_{s}\left[-\frac{1}{\sqrt{N_{j}}} C^{\prime} \Gamma^{\prime-1} U g_{i}, C^{\prime} \Sigma C\right]
$$

Therefore, the characteristic function of $\boldsymbol{w}_{j}^{\prime} \boldsymbol{w}_{j}$ is given by

$$
\begin{align*}
\psi(t) & =\mathrm{E}\left\{e^{\mathrm{it} w_{j}^{\prime} w_{j}}\right\} \\
& =\mathrm{E}\left[\left|I_{s}-2 \mathrm{i} t C^{\prime} \Sigma C\right|^{-1 / 2}\right. \tag{4.1}
\end{align*}
$$

$$
\left.\times \exp \left\{\mathrm{i} t N_{j}^{-1} \boldsymbol{g}_{j}^{\prime} U^{\prime} \Gamma^{\prime-1} C\left(I_{s}-2 \mathrm{i} t C^{\prime} \Sigma C\right)^{-1} C^{\prime} \Gamma^{\prime} U \boldsymbol{g}_{j}\right\}\right] .
$$

From Lemma 2.3 we can write

$$
\begin{equation*}
C^{\prime} \Sigma C=I_{s}+\frac{1}{\sqrt{n}} Q^{(1)}+\frac{1}{n} Q^{(2)}+\frac{1}{n \sqrt{n}} Q^{(3)}+O_{p}\left(n^{-2}\right) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q^{(1)}=\left[I_{s} O\right] H^{(1)}+H^{(1)^{\prime}}\left[\begin{array}{l}
I_{s} \\
O
\end{array}\right], \\
& Q^{(2)}=\left[I_{s} O\right] H^{(2)}+H^{(2)^{\prime}}\left[\begin{array}{l}
I_{s} \\
O
\end{array}\right]+H^{(1)^{\prime}} H^{(1)},
\end{aligned}
$$

and $Q^{(3)}$ is a homogeneous polynomial of degree 3 in the elements of U and V. Substituting (4.2) into (4.1) and using $-\log \left|I_{s}-A\right|=\operatorname{tr} A+\frac{1}{2} \operatorname{tr} A^{2}+\cdots$, we have

$$
\begin{aligned}
\psi(t)= & \delta(t)^{s / 2} \mathrm{E}\left[1+\frac{1}{2 \sqrt{n}}(\delta(t)-1) \operatorname{tr} Q^{(1)}\right. \\
& +\frac{1}{n}(\delta(t)-1)\left\{\frac{1}{2} \operatorname{tr} Q^{(2)}+\frac{1}{4}(\delta(t)-1)\left(\operatorname{tr} Q^{(1)}\right)^{2}\right. \\
& \left.+\frac{1}{8}(\delta(t)-1)^{2}\left(\operatorname{tr} Q^{(1)}\right)^{2}\right\} \\
& \left.+\frac{1}{2 N_{j}}(\delta(t)-1) g_{j}^{\prime} U^{\prime}\left[\begin{array}{ll}
I_{s} & O \\
O & O
\end{array}\right] U g_{j}\right]+O\left(n^{-2}\right),
\end{aligned}
$$

where $\delta(t)=(1-2 \mathrm{i} t)^{-1}$. Here we used that $\mathrm{E}[\{$ homogeneous polynomial of degree 3 in the elements of U and $V\}]=O\left(n^{-1 / 2}\right)$. After much simplication, we obtain

$$
\begin{align*}
\psi(t)= & \delta(t)^{s / 2}\left[1+\frac{1}{n}(\delta(t)-1)\left\{s+\sum_{\alpha=1}^{s} \sum_{\beta \neq \alpha}^{p} \lambda_{\alpha \beta} \lambda_{\alpha}\right.\right. \\
& \left.\left.+\frac{1}{4}(\delta(t)-1)\left(3 s+2 \sum \sum_{\alpha \neq \beta}^{s} \lambda_{\alpha \beta} \lambda_{\alpha}\right)+\frac{n s}{2 N_{j}}\right\}\right] \tag{4.3}\\
& +O\left(n^{-2}\right)
\end{align*}
$$

This gives the following result.
Theorem 4.1. Under Assumptions A1 and A 2 it holds that

$$
\begin{aligned}
& P\left(\boldsymbol{w}_{j}^{\prime} \boldsymbol{w}_{j} \leq x\right)=P\left(\chi_{s}^{2} \leq x\right)-\frac{1}{n} g_{s}(x) \\
& {\left[\left\{\frac{1}{2} s+\left(\sum_{\alpha=1}^{s} \sum_{\beta \neq \alpha}^{p}+\sum_{\alpha=1}^{s} \sum_{\beta=s+1}^{p}\right) \lambda_{\alpha \beta} \lambda_{\alpha}+\frac{n s}{N_{j}}\right\} \frac{x}{s}\right.} \\
& \left.\quad+\left(\frac{3}{2} s+\sum_{\alpha \neq \beta}^{s} \lambda_{\alpha \beta} \lambda_{\alpha}\right) \frac{x^{2}}{s(s+2)}\right]+O\left(n^{-2}\right)
\end{aligned}
$$

where $g_{s}(x)$ is the density function of a χ^{2}-variate with s degrees of freedom and $\lambda_{\alpha \beta}=\left(\lambda_{\alpha}-\lambda_{\beta}\right)^{-1}$.

Theorem 4.1 implies that the $\chi_{s, \alpha}^{2}$ in (3.2) can be expanded as

$$
\begin{align*}
& \chi_{s, \alpha}^{2}\left[1+\frac{1}{n}\left\{\frac{1}{2}+\frac{1}{s}\left(\sum_{\alpha=1}^{s} \sum_{\beta \neq \alpha}^{p}+\sum_{\alpha=1}^{s} \sum_{\beta=s+1}^{p}\right) \lambda_{\alpha \beta} \lambda_{\alpha}\right.\right. \tag{4.4}\\
& \left.\left.\quad+\frac{n}{N_{j}}+\left(\frac{3}{2}+\frac{1}{s} \sum_{\alpha \neq \beta}^{s} \lambda_{\alpha \beta} \lambda_{\alpha}\right) \frac{\chi_{s, \alpha}^{2}}{s+2}\right\}\right]+O\left(n^{-2}\right) .
\end{align*}
$$

For a practical use, we need to replace λ_{j} by its estimate ℓ_{j}.
In a special case $q=2, \lambda_{1}>\lambda_{2}=\cdots=\lambda_{p}=0$ and

$$
\begin{align*}
& P\left(\boldsymbol{w}_{j}^{\prime} \boldsymbol{w}_{j} \leq x\right)=P\left(\chi_{1}^{2} \leq x\right) \tag{4.5}\\
& \quad-\frac{1}{n} g_{1}(x)\left[\left(2 p-\frac{3}{2}+\frac{n}{N_{j}}\right) x+\frac{1}{2} x^{2}\right]+O\left(n^{-2}\right) .
\end{align*}
$$

The upper α point of $\boldsymbol{w}_{\boldsymbol{j}}^{\prime} \boldsymbol{\omega}_{j}$ can be expanded as

$$
\begin{equation*}
\chi_{1, \alpha}^{2}\left[1+\frac{1}{n}\left\{2 p-\frac{1}{2}+\frac{N_{2}}{N_{1}}+\frac{1}{2} \chi_{1, \alpha}^{2}\right\}\right]+O\left(n^{-2}\right) . \tag{4.6}
\end{equation*}
$$

These special results (4.5) and (4.6) can be also obtained from the result of Anderson
[1]. In order to see this, first note that the coefficient vector of the canonical or linear discriminant function is

$$
c=\frac{1}{D}\left(\frac{1}{n} S\right)^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right),
$$

where $D=\left\{\left(\bar{x}_{1}-\bar{x}_{2}\right)^{\prime} S^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right)\right\}^{1 / 2}$. Anderson [1] has shown that

$$
\begin{align*}
& P\left(c^{\prime}(x-\bar{x})-c^{\prime}\left(\bar{x}_{1}-\bar{x}\right) \leq u \mid x \in \Pi_{1}\right) \\
& \quad=P\left(\left.\frac{1}{D}\left(\bar{x}_{1}-\bar{x}_{2}\right)^{\prime}\left(\frac{1}{n} S\right)^{-1}\left(x-\bar{x}_{1}\right) \leq u \right\rvert\, x \in \Pi_{1}\right) \\
& \quad=\Phi(u)+\frac{1}{n} \phi(x)\left[\frac{(p-1)}{\lambda}\left(1+\frac{N_{2}}{N_{1}}\right)\right. \tag{4.7}
\end{align*}
$$

$$
\left.-\left(p-\frac{1}{4}+\frac{1}{2} \frac{N_{2}}{N_{1}}\right) u-\frac{1}{4} u^{3}\right]+O\left(n^{-2}\right)
$$

where $\lambda=\left\{\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)\right\}^{1 / 2}$, and $\Phi(x)$ and $\phi(x)$ are the distribution and the density functions of $\mathrm{N}(0,1)$, respectively. This implies that

$$
\begin{aligned}
& P\left(\left\{c^{\prime}\left(x_{1}-\bar{x}_{1}\right)\right\}^{2} \leq v \mid x_{1} \in \Pi_{1}\right) \\
& \quad=P\left(\chi_{1}^{2} \leq v\right)-\frac{2}{n} \phi(\sqrt{v})\left\{\left(p-\frac{1}{4}+\frac{N_{2}}{2 N_{1}}\right) \sqrt{v}+\frac{1}{4}(\sqrt{v})^{3}\right\}+O\left(n^{-2}\right)
\end{aligned}
$$

which is coincident with (4.5).

References

[1] T. W. Anderson, The asymptotic distribution of certain characteristic roots and vectors, Proc. 2nd. Berkeley Symp. Math. Statist. Prob., Univ. of California Press, Berkeley, 1951, 103-130.
[2] T. W. Anderson, An asymptotic expansion of the distribution of the studentized classification statistic W, Ann. Statist. 1 (1973), 964-972.
[3] R. A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugen. 7 (1936), 179-184.
[4] W. J. Krzanowski, On confidence regions in canonical variate analysis, Biometrika 76 (1989), 107-116.
[5] C. R. Rao, The utilization of multiple measurements in problems of biological classification (with discussion), J. R. Statist. Soc. B 10 (1948), 159-203.
[6] C. R. Rao, Advanced Statistical Methods in Biometric Research, Wiley, New York, 1952.
[7] C. R. Rao, Linear Statistical Inference and Its Applications, 2nd ed., Wiley, New York, 1973.
[8] M. Siotani, T. Hayakawa, and Y. Fujikoshi, Modern Multivariate Statistical Analysis: A Graduate Course and Handbook, American Science Press, INC., Ohio, 1985.

Department of Mathematics,
 Faculty of Science,
 Hiroshima University

