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Introduction

This paper is concerned with difference approximations for initial value

problems for scalar conservation laws of the form

\u(x,0) = uo(x)9 xeR,

where u = w(x, ί) is an unknown function, the flux function f.R^R is a

function of C1-class and the initial function u0 is a bounded measurable

function of bounded variation. Various types of difference approximations

have been investigated by many authors. We refer the readers to, for instance,

[2, 4, 5, 6, 7, 10, 14, 15, 16, 20, 21, 23, 24, 28, 29].

In this paper we study difference approximations in viscous form, namely,

(0.2) λ

+ ^ K + i W + i - "?) - *" i(κ? - κ?-i)}> n, ieZ, n > 0,
2 I + 2 J 2

where initial values uf are given data and λ = — is a fixed constant, Ax the
Ax

mesh size in space-direction and At in time-direction. Each of 2α" x is called
I + 2

a numerical viscosity coefficient [8,24,29]. For the initial values iι?, we

assume that

(0.3) m<u?<M, ieZ,

for some constants m and M both independent of Jx, and

(0.4) SUpΣluk! - ! ! ? ! < +00.
^ ^ ieZ

On the mesh ratio A, we impose so called CFL condition
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(0.5) λ max |/'(s)| < 1.
m<s<M

It should be mentioned that the difference approximation (0.2) can be rewritten

in a conservative form;

M» + i = H- - λ{/" + 1 - / ; J , n, /eZ, /ι > 0,
I + 2 ' 2

where each numerical flux fn

 k is defined by

The initial value problem (0.1) can not always have a smooth solution

for all time, even if the initial function is smooth. Therefore, weak solutions

should be formulated in such a way that they can admit discontinuities.

Usually, weak solutions to (0.1) are considered in the sense of distributions.

The initial value problem (0.1) may possess infinitely many weak solutions

and so, an additional condition, called entropy condition, is imposed to select

physically relevant solutions. We here employ the entropy condition

formulated by Lax [13]. The entropy condition is a condition which requires

a weak solution u = u(x, t) to satisfy the inequality

(0.6) U(u)t + F(u)x < 0 (in distribution sense)

for any pair (U, F) of functions such that U is convex and F' = U'f. Such

a pair (U, F) is called an entropy pair.

The admissibility of difference approximations is a notion for the difference

approximations whose difference solutions converge to physically relevant

solutions. The convergence is derived from the compactness of the difference

solutions and the compactness problem is reduced to the stability problem as

shown in Oleϊnik [21]. (See also Crandall and Majda [2], Glimm [6] and

Smoller [27].) Therefore, we say that the difference approximation (0.2) is

admissible if it is stable and consistent with entropy condition.

Our main purpose is here to characterize admissible difference approxima-

tions in terms of numerical viscosity coefficients. For this purpose, we

investigate the stability and the consistency with entropy condition. The

stability part is already treated by several authors. Here, we state a stability

result obtained by LeRoux [16]: The difference approximation (0.2) is

L™-stable and TV (total variation)-stable if each of the coefficients an.+L satisfies

(0.7) aMR(ul un

i + ,)<an

i+k
2 A

where aMR{un

i, un

i + ι) is defined by

L
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aMR{u1,u1+ί) = f
Jo

W " 11"

and λaMR{u", un

i+1) is the numerical viscosity coefficient of Murmann-Roe scheme

[18, 26]. However, the main and difficult part is to investigate the consistency

with entropy condition.

In what follows, we mainly focus our consideration on the consistency with

entropy condition. There are a number of results in this direction. Crandall

and Majda [2] proved that solutions to monotone difference approximations

converge to physically relevant solutions. Well-known schemes such as

Lax-Friedrichs scheme, Engquist-Osher scheme and Godunov scheme are

monotone difference approximations. Tadmor [29] discussed a relationship

between the consistency with entropy condition and numerical viscosity

coefficients. He proved that the difference approximation (0.2) is consistent

with entropy condition, provided that each of the coefficients α " + i satisfies the

condition 2

(0.8) aG{u ^

where αG(w", un

i+1) is defined by

max
)(

and λaG(uni, un

i+1) is the numerical viscosity coefficient of Godunov scheme

[7]. His result is a fully discrete version of the previous work of Osher [22]

on semidiscrete approximations.

We deal with the consistency with entropy condition in the case of

arbitrary flux functions and in the particular case of strictly convex flux

functions. The consistency with entropy condition is introduced in the

following way. We say that the difference approximation (0.2) is consistent

with entropy condition if for an entropy pair (I/, F) there exist real numbers

A" λ such that they are bounded by a universal constant depending on I/,

and such that the numerical entropy inequality holds;

l/(iι?+1) - 1/(1*7) + ^{F(«?+i) -
(0.9)

- ίK + i(«? + i - Wί) - An M - uy.J} < 0, n, ieZ, n > 0.
2 I + 2 l 2

If we define a numerical entropy flux Fn

+1 by
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(0.10) F»+1_ = ^

then we can rewrite the numerical entropy inequality (0.9) as follows;

(0.11) I/W + 1) - l/(n?) + λ{F" i - Fn J < 0. n, ΐ e Z , n > 0.
ι + 2 ' 22

It is easily seen that if bounded solutions to difference approximation (0.2)

contain a subsequence converging in L\OC{R x [0, oo)) and the difference

approximation is consistent with entropy condition, then the limit function

satisfies the entropy condition, i.e., it becomes a physically relevant solution

(see Theorem 4.1). For this reason, we say that the difference approximation

(0.2) is strongly admissible if the stability condition (0.7) is satisfied and the

numerical entropy inequality (0.9) is satisfied for every entropy pair.

For general flux functions, we obtain the following result which extends

Tadmor's result [29] and is best possible for the admissibility of difference

approximations in viscous form.

THEOREM 4.3. If the condition

(0.12) aG{un

i,u
n

i+ι)<a\ι<\
ί + 2 λ

holds for all n and /, then the difference approximation (0.2) is strongly admissible.

In order to treat the consistency with entropy condition for small

coefficients an

 l9 we restrict ourselves to strictly convex flux functions. When
1 2

the flux function / is strictly convex, the entropy inequality (0.6) for only one

entropy pair ([/, F) with U strictly convex ensures the physical relevance of

solutions (see Theorem 1.1). Taking this fact into account, we say that the

difference approximation (0.2) is admissible if the stability condition (0.7) is

satisfied and the numerical entropy inequality (0.9) is satisfied for some entropy

pair (U9 F) with U strictly convex. The admissibility of difference approxima-

tions guarantees the convergence of difference solutions to physically relevant

solutions (see Theorem 5.1).

The next main result shows that difference approximations in viscous form

with small coefficients an.+λ can be admissible, provided that the flux function

/ is strictly convex. This fact is remarkable from the theoretical and

computational point of view.

THEOREM 5.2. Suppose that the flux function f is strictly convex. Let

εe(0, 1). If the condition
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(0.13) m a x L M R ( u l «?+,), i • sgn(u?+1 - «?)J < a»+ι_ < 1

holds for all n and i, then the difference approximation (0.2) is admissible.

Note that Murmann-Roe scheme preserves stationary inverse (physically

irrelevant) shocks and hence is not admissible. Condition (0.13) asserts that

ε ε
aMR(uni, un

i+ί) should be replaced by - if w" < u"+ί and aMR(u", un

i+1) < - . Such
A A

replacement may be necessary around nearly stationary inverse shocks.

Theorem 5.2 implies that Murmann-Roe scheme becomes admissible if its defect

of preserving stationary inverse shocks is removed by adding a little amount of

numerical viscosity. In particular, it follows that Harten scheme [8, 9] is

admissible.

It should be emphasized that in the proof of Theorem 5.2 a particular

entropy pair ((/, F) is constructed according to the flux function /, the constants

m, M, λ and ε. Hence our approach is essentially different from usual

approach in which the numerical entropy condition is investigated for an

entropy pair fixed in advance (see e.g. Majda and Osher [17], Osher and

Tadmor [24]).

Finally, we illustrate our method for obtaining the main results mentioned

above. In our discussion, a set of modified flux functions plays an important

role. The use of modified flux functions enables us to clarify the role of each

coefficient an

 1 geometrically and to recover some information which has been
ι + 2

lost in the process of discretization. In other words, by using appropriate

modified flux functions, we can draw out useful information concerning the

consistency with entropy condition. It should be remarked that modified flux

functions were used in Osher and Tadmor's work [24].

This paper is organized as follows:

Section 1. Solutions of conservation laws.

Section 2. Difference approximations in viscous form.

Section 3. Relationships between numerical viscosity coefficients and modified flux functions.

Section 4. Strong admissibility of difference approximations.

Section 5. Admissibility of difference approximations with small viscosity coefficients.

Section 6. The construction of a particular entropy function.

1. Solutions of conservation laws

In this section we review some properties of solutions to the initial value

problem for scalar conservation laws of the form
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U+/(w)x = 0, xeR,t>0,

where u = u(x, ί) is an unknown function, f.R-+R is a function of C1-class

and the initial function u0 is a bounded measurable function. The function

/ is called the flux function.

It is well known that the initial value problem (1.1) can not always have

smooth solutions for all time, even if the initial function u0 is smooth. In

order to allow discontinuities in solutions, the notion of weak solutions is

usually employed.

DEFINITION 1.1. A bounded measurable function u(x, t) (xeR, t > 0) is

called a weak solution to the initial value problem (1.1), if it satisfies the equality

{φt(x, t)u(x, t) + φx(x, t)f(x, t)} dxdt

*U) J° J -

+ φ(x,0)uo(x)dx = 0
J - oo

for any function 0eC°°(/? X [0, oo)) vanishing for |x| + ί large enough.

The initial value problem (1.1) may possess infinitely many weak solutions

[16]. Accordingly, so called entropy condition is imposed on weak solutions

to select physically relevant solutions to the initial value problem (1.1)

[11,13,21,30].

By BV(Ω) we mean the space of bounded measurable functions defined

on Ω cz Rn whose generalized derivatives are finite measures. See VoΓpert

[30, 31]. In what follows, we restrict ourselves to initial functions belonging

to BV(R) and employ the notion of admissible solutions (cf. [3]).

Let (I/, F) be a pair of real-valued functions defined on R. The pair

(U, F) is called an entropy pair if

(1) U is a convex function and

(2) F' = U'f.

The functions U and F are called an entropy function and an entropy flux

function, respectively.

DEFINITION 1.2. Let uoeBV(R). A weak solution u = u(x9 t) is said to

be an admissible solution if it satisfies the following conditions:

(i) ueBV(R x [0, T ] ) for all T > 0 .

(ii) For any entropy pair (U9 F) and any non-negative function φeCo(Rx

(0, oo)),
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ZΌo ί*<X>

Jθ J -c
(1.3) {φ,{x, t)U(u(x, ή) + φx(x, t)F(u(x, t))}dxdt>0.

J o J -oo

Condition (ii) is called the entropy condition. Inequality (1.3) is called

the entropy inequality and is equivalent to the inequality

(1.4) U(u)t + F(u)x < 0

in the sense of Radon measure. The existence and uniqueness of admissible

solutions are guaranteed by well-known results [11,21,30]. Note that by

(1.2) and condition (i), u( , t) -> uo( ) in L\oc as t -• 0 + .

REMARK 1.1. Let u be a weak solution such that ueBV(R x [0, T]) for

any T> 0. Let Γ(u) be the set of jump points of u in the sense of VoΓpert

[30, 31], (x0, to)eΓ(u) and let v = (vx, vt) be a defining vector at (x0, t0) such

that vx > 0. Moreover, let u+ and w_ be the approximate limits of u with

respect to half-spaces {(x, t); (x — x 0, t — to) v > 0} and {(x, ί); (x — x0, t — ί0)

v < 0}, respectively. The entropy inequality (1.3) is equivalent to the inequality

σ{U(u+) — 1/(M_)} — {F(w+) — F(w_)} > 0

for almost every (x0, to)eΓ(u) with respect to 1-dimensional Hausdorff measure,

where σ = is the shock speed at (x0, ί0). For details, see [30, 31].

For each Zee/?, set

{U(s;k) = (s-k) +

\F(s',k) = χ + (s-k){f(s)-f(k)}, seR.

Here s+ and χ+(s) are respectively defined by

+ ί s for s > 0

~ [O for s < 0 ,

(1.6)

for s > 0

^0 for 5

It is easy to see that (ί/(s; k), F{s; k)) is an entropy pair for all ksR.

Since any convex function U is generated by linear functions and functions

of the form (s - k)+, we have the following result.

PROPOSIΊ^DN 1.1 (cfi [11]). Let UOGBV(R) and u be a weak solution to

the initial value problem (1.1). If the entropy inequality (1.3) is satisfied for

the family {(U(s; /c), F(s; k)); keR}, then u is an admissible solution.
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It should be noted that the uniqueness of weak solutions is not in general

guaranteed by the entropy inequality (1.3) or (1.4) for a single entropy pair,

as the following example shows.

EXAMPLE 1.1. Let f(s) = (s - l)2(s + I) 2 for seR. Define

- - if x > 0

"oW = {
if x < 0

5

and

Then the function u = w(x, t) gives a weak solution to the initial value problem

(1.1) and the entropy inequality (1.4) is satisfied for an entropy pair

But the weak solution u is not an admissible solution, because inequality (1.4)

is not satisfied for another entropy pair

(U2(s), F2(s))

In fact, noting that the shock speed σ — 0, we have the following inequalities

However, in case that the flux function / is strictly convex, the uniqueness of

weak solutions is guaranteed by the entropy condition for a single entropy

pair with its entropy function strictly convex. More precisely, we have the

following theorem.

THEOREM 1.1. Suppose that the flux function f is strictly convex. Let

uoeBV(R) and u be a weak solution to the initial value problem (1.1) such that
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ueBV(R x [0, Γ]) for any T>0. If the entropy inequality (1.3) is satisfied

for some entropy pair ([/, F) with U strictly convex, then u is an admissible

solution.

PROOF. We use the notations in Remark 1.1. Let (x0, to)eΓ(u), σ be

the shock speed at (x0, ίo)> and let u+ and u_ be the approximate limits of

u at (x0, ί0). Suppose that

(1.7) σ{U(u+) - !/(«-)} - {F(u+) - F(u.)} > 0

for some entropy pair (I/, F) with U strictly convex. In view of the strict

convexity of/, it suffices to show that u+ < u_. To this end, define a linear

function g by

— M_

Note that '̂(s) = ^ ^ ! — ^ — = σ by Rankin-Hugoniot's relation. Since V
u+ — U-

is increasing and /, g are locally Lipschitz continuous, we obtain

= Γ+σl/'(5)ds- I *f'(s)U'(s)ds
J U- J U-

= ΓV(s)-/'(s)}l/'(s)ds
JuJ u-

Γ
Ju-where the last integral is taken in the sense of Stieltjes. This together with

(1.7) yields

Γ
Ju

{g(s)-f(s)}dU'(s)<0.

Since #(s) > f(s) for all s between u+ and M_, we conclude that u+ < w_. This

completes the proof.

2. Difference approximations in viscous form

In this section we formulate difference approximations for the initial value

problem (1.1) and give some remarks on the difference approximations.

Let Δx and At be mesh sizes in space and time, respectively, and let the
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mesh ratio λ = — be fixed. We are concerned with difference approximations
Ax

in viscous form

(2.1)

+ - { < + i M + i - H?) - <_i(«ϊ " «7-i)}, «, ieZ> n > 0,

where the initial values uf are given data and each u" is understood to be
defined at a grid point (iAx,nAt). λan.+λ is called a numerical viscosity

coefficient. Let m and M be constants such that m < M. In the arguments
developed below, we assume that

(2.2) m<uf<M, ieZ,

and

(2.3) s u p Σ l « ? + i - κ ? l < + α > .
Δx ieZ

On the mesh ratio λ, we impose so called CFL condition

(2.4) λ max \f'(s)\ < 1.
m<s<M

We can rewrite the difference approximation (2.1) in a conservative form;

(2.5) ii?+ 1 = M? - λ{fr+1 -fn

 1 } 9 n, ieZ, n > 0,
i + 2 i 2

where each numerical flux fn

 1 is defined by

(2-6) /,"+i = ̂  { / ( « ^

If each numerical flux /."+ i is determined by a function Ay of 2/-variables,

called a numerical flux function, i.e., if

then the coefficient α" + i is also determined by a function af of 2/-variables;



Admissibility of difference approximations 25

We do not assume that the numerical fluxes / ." + i in (2.6) are determined by

a numerical flux function. 2

We recall the following results on L00-stability and TV (total variation-

stability. For the proofs, see e.g. [8, 9, 16].

LEMMA 2.1. If each of the coefficients a" λ satisfies the condition

(2.7) J / w
-ιίl)θ)dθ

1

then

(2.8) inf uf < inf u? < inf u?+ x < sup u? + x < sup w? < sup uf

for all n>0.

LEMMA 2.2. If each of the coefficients an

 k satisfies condition (2.7) in

Lemma 2.1, then the difference approximation (2.1) is TVD [total variation

diminishing), i.e., the inequality

(2.9) Σ l w ?+/ ~~ u"i + 1\ ^ Σ l w ?+i ~~ W7I ^ Σ l ^ ? + i " " w ?l
ieZ ieZ ieZ

holds for all n>0.

In the rest of this section, we give some examples of difference

approximations in viscous form.

1) Lax-Friedrichs scheme.

Lax-Friedrichs scheme is defined by

The coefficients an

 x = aLE[u", un

i+1) corresponding to Lax-Friedrichs scheme

does not depend on u" and un

i+1;

This difference scheme first appeared in Lax's paper [12]. With the aid

of Lax-Friedrichs scheme, Oleϊnik [21] proved the existence and uniqueness

of solutions to scalar conservation laws. It should be mentioned that

Lax-Friedrichs scheme is essentially defined on a staggered mesh. In other

words, there is no relation between w" and uj if n + i ψ m +j (mod 2).
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2) Engquist-Osher scheme.
Engquist-Osher [5] scheme is the difference approximation (2.5) with

the numericl fluxes

(2.10) /;+ 1 = 1 {/(«?) + /(«?+,)} - U ' + ' |/'(s)| is.
2 λ L J un

Hence each of the coefficients a" x = aE0(u", un

i + i) is given by
l + 2

(2.11) α £ > ? , w?+ J = f * |/'(ttf + (iι?+, - ιί)fl)| dft
Jo

3) Godunov scheme.
Let w = w(x, ί; ML, UR) be the exact solution to the Riemann problem:

(2.12) \ fMjL f o r x < 0

1 uR for x > 0.

Then, Godunov scheme [7] is defined by

1

(2.13)

w(x, At; ul un

i + 1)dx \.

It is known that Godunov scheme can be rewritten in a conservative
form. The numerical flux / " x is given by

l + 2

min f(s) if w" < un

i+

(2.14) / ; + r

and hence each of the coefficients α" + i = aG(u", u"+1) is written as

max
(2.15) J κ

if «? = «?+i

It should be noted that
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provided that / is convex and w? < un

i+1 (resp. / is concave and u"+l < u").

4) Murmann-Roe {or generalized Courant-Isaacson-Rees) scheme.

The coefficients α " + i = aMR(u", un

i+ι) corresponding to Murmann-Roe

scheme are given by 2

(2.16) aMR(ulu»+ι) = Γ
Jo

/'(«?

Murmann-Roe scheme was proposed by Murmann [18] in the scalar case and

was extended by Roe [25, 26] to hyperbolic systems of conservation laws. See

also Courant, Isaacson and Rees [1]. It should be noted that the above

coefficient aMR(un

i, un

i + 1) is the least one satisfying condition (2.7) and

Murmann-Roe scheme admits stationary inverse (physically irrelevant) shocks.

5) Harten scheme.

The coefficients α " + i corresponding to Harten scheme are given by

(2.17) α«+i = I

where β is a function defined on [ - 1, 1] such that β(0) φ 0 and |α | < β(α) < 1

for αe[0, 1]. It is clear that Harten scheme satisfies condition (2.7) and hence

is TVD (See Harten [8, 9]). For εe(0, 1), Harten gave two examples of such

function β ;

(2.18) β(α) = max{|α|,ε}, α e [ - 1, 1],

and

( |α| for ε < | α | < 1

(2.19) β(α) = < ^

I ?- + - for | α | < ε .
2ε 2

Since β(0) φ 0, Harten scheme does not admit stationary inverse shocks.

However, it has remained to show whether solutions to Harten scheme

converge to physically relevant solutions.

6) Lax-Wendroff scheme.

The coefficients a" x = aLW(u% un

i+ι) corresponding to Lax-Wendroff
l + 2

scheme [14] are defined by
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The coefficients aLW(un

i9 un

i+1) do not satisfy condition (2.7) in general. By this

fact, Lax-Wendroff scheme may produce overshoots and undershoots near

shocks, although it is second order accurate.

REMARK 2.1. As is easily seen, the following inequality holds:

(2.20) aLW < aMR < aG < aEO <aLF = -.
A

This simple fact is useful for the analysis of difference approximations in

viscous form.

3. Relationships between numerical viscosity coefficients and modified flux

functions

As mentioned in the previous section, coefficients an

 λ give us important
ι + 2

information on the stability of difference approximations. In order to get

more information from the coefficients an

 L, we here introduce a general class

of modified flux functions and investigate relationships between numerical

viscosity coefficients and modified flux functions. Modified flux functions give

a geometrical interpretation of numerical viscosity produced by difference

approximations. In particular, a certain set of modified flux functions plays

an important role in later arguments and provides us with a unified approach

to difference approximations.

It is convenient to use the following notations. Let uL and uR be real

numbers, and let g be a locally Lipschitz continuous function defined on

R. We define aE0(uL, uR; g) by

g'(uL + (uR - uL)θ) dθ(3.1) aEO(uL,uR;g) =

and aG(uL, uR; g) by

aG{uL,uR;g)

c max it uΊ φ uR

(3.2) _ ί (s-uO(s-uR)<0 UR-UL

X \g'(uL)\ if uL = uR.

Now, we give the definition of modified flux functions. Throughout the

rest of this paper, we denote by {u"} the solution to the difference

approximation (2.1).

DEFINITION 3.1. A locally Lipschitz continuous function g defined on R
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is called a modified flux function associated with /(w"), f{un

i+1) and an.+L, if it

satisfies the following conditions:

( i ) g{ufj = f{uΊ) and g{un

i+ x) = f(un

i+ ί).
(ii) g(s) = /(s) if s lies outside the interval between u\ and u"+ί.

(iii) aE0(ulu1+i;g) = aG(ulu1+i;g) = an

i+L.

We sometimes use an abbreviated terminology, a modified flux function

associated with an

 v if there is no ambiguity. Modified flux functions

associated with an

+L do not exist in general. In fact, we have the following

proposition, which characterizes the existence of modified flux functions (see

also [24]). However, it should be noted that a modified flux function

associated with an

 λ is not uniquely determined.

PROPOSITION 3.1. Let u" φun

i + 1. There exists a modified flux function g

associated with /(wj1), f{un

i+ι) and an

 l9 if and only if
l + 2

(3.3) wϊ> ui+ί)

where aMR(u", un

i+1) is the coefficient defined by (2.16).

PROOF. If there exists a modified flux function g associated with

f{un

i + ι) and an

 1 ? then we obtain
l + 2

ί= \g'(u"i+(ui+ι-u1)θ)\dθ

g'{u1 + (u"i+ι-u1
Jo

uΐ)θ)dθ

i

ui + 1

Γ 1

Jo

Conversely, suppose that aMR(u1, un

i+i) < an

 x and w" <u"+1. Then we obtain
ι + 2
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= \

= min { / ( ? }

Hence we can find a number soe(u1, u"+ 1) and a continuous function g such

that

(i) ;+

(2) <7(u?) = /(«?) and g(u%,) = /(u?+,),

(3) g(s) is nonincreasing on [u", s0] and nondecreasing on [s 0, M " + 1 ] , and

(4) g(s) =f(s) for

Then, the function ^ is a modified flux function associated with f(u"), /(u" + 1 )

and α" !• In fact, we have
1 + 2

α £ 0 ( u ? , u " i + ϊ ; g ) = [ \g'{u1 + ( « ? + , - u1)θ)\θ
Jo

J {-0'(s)}ds+ l+'β'(s)ds

Since #(s0) = min gf(s), this means

Similarly, we can prove the existence of modified flux functions associated

with an i in the case that w" > un

i+1. Thus the proof is completed.

The next proposition is useful in later arguments.

PROPOSITION 3.2. Let u" φu"+ί. There exists a modified flux function g
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associated with /(w?),/(w?+1) and an

 λ satisfying the condition

1

λ
for (s-u?)(s-(3.4) IffΌ

if and only if

(3.5)

PROOF. Let uL and uΛ be real numbers such that uLφ uR9 and set

1 λ

M ^ L R 2

Note that uM lies between κL and uR. We define two functions gMR(s; ul9 uR)

and gLF(s; wL, uR) by

5; w L , w R )

(3.6)

f(s)

gLF{s\ uL, uR)

1

for (s-uL)(s-uR)<0

otherwise,

(3.7)

- T (s - uL) + /(wL) for (s - uL) (s -uM)<0
A

~(s - uR) + f(uR) for (s-uM)(s-uR)<0

f(s) otherwise.

Now, suppose that (3.5) is satisfied. We easily see that gMR(s; w", un

i+ί) and

gLF(s; u", un

i+ί) are modified flux functions associated with aMR(un

i9 un

i+1) and

aLF = -, respectively.
A

For each αe[0, 1], we define a function ga(s; u", M"+ 1) by

0α(s; w?, w?+1) = αόfLf(s; w?, M?+ 1) + (1 - (ήgMR(s; un

i9 w?+1),

Then it is clear that every ga satisfies

\(g*)'(s; ul iι?+1)| < \ for (5 - w?)(5 - ιι?+1) < 0

and
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a [ui9ui + ί9 g ) — a ( u i 9 u i + l 9 g ) .

Also, it is evident that the value aG(u", un

i+1; g") = aEO(u", u"+1; ga) varies

continuously from aMR (w", u"i + 1) to aLF = - as α varies from 0 to 1. Therefore,

it follows that

a G ( u » , u U ί;g") = a E O ( u l u% 1;g") = ^

for some αe[0, 1], and hence the 'if part is proved. To prove the 'only if

part, let g be a modified flux function associated with an

+λ satisfying (3.4). It

is clear that 2

an

+1 = aE0(ul iι?+1 0) = P |^(fi? + (iι?
1 2 Jo

Since the first inequality in (3.5) is already proved in Proposition 3.1, this

completes the proof.

REMARK 3.1. It is interesting to observe that condition (3.5) is the same

as the sufficient condition (2.7) for L00-stability and ΓF-stability of difference

approximation (2.1).

Next we introduce special modified flux functions which play an important

role in our arguments. To this end, we assume condition (3.5);

flMK(w?,^+1)<fl;+i<|
2 Λ

The special modified flux function gn

 L is defined in the following way

(see [24]): If w" < w"+1, we define 2

<+l(5)

(3.8)

max<{ — ( s — u")
A

f(s)

If unι > un

i +!, we define

if un

i<s<un

i+ι

otherwise.

(3.9)

f(s)

?+1)

if u"i+ί<s<

otherwise.
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Here /." k is the numerical flux defined by (2.6).
1 T 2 ' r • - ' • •

It is clear that the function gn

 λ is a modified flux function associated

with /(w?), f(u1+ί) and ^ + i , provided that w? φuΐ+1. Note that gn

i+ι=f if

uni=u1+1. As is easily seen, the function gn

+k is minimal in the sense that

(3.10) sgn(u? + 1 -u?).{^ + 1 (s)-gf(s)}^0, seR,

for any modified flux function g satisfying (3.4) in Proposition 3.2.

We have an interesting result on the relation between the minimal modified

flux function gn

+λ and the original flux function /.

PROPOSITION 3.3. Let u" φ un

i+1 and let g"+L be the minimal modified flux

function associated with /(w"), f{un

i+1) and an

 k. The inequality
l + 2

(3.11) sgn[un

i +, - til) {g»+k(s) - f(s)} < 0

holds for all seR if and only if

(3.12) aG(u1, un

i+1) <an

i+λ.

PROOF. For similarity, we only consider the case that u" <uιι

i+1. Noting

that w", w"+ 1G[m,M], we see from the CFL condition (2.4) that

and

for M " < S < M " + 1 . Therefore, by the definition of.gf"+i, we easily see that

inequality (3.11) holds if and only if

(3.13) / M

+ 1 < Mminn /(s).

On the other hand, the relation

/ ; + i = \ {/(«?)+/(«?+1)} - ^ + i

shows that inequality (3.13) holds if and only if

aG(ul uΊ+ί)<a".+±.

This completes the proof.
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4. Strong admissibility of difference approximations

In this section we discuss the admissibility of difference approximations

in the case of arbitrary flux functions. The notion of admissibility is

introduced so that it guarantees the convergence of difference solutions to

admissible solutions to the initial value problem (1.1). The main purpose in

this section is to characterize strongly admissible difference approximations in

terms of numerical viscosity coefficient (Theorem 4.3).

We begin with the definition of strong admissibility.

DEFINITION 4.1. The difference approximation (2.1) is said to be strongly

admissible if the following conditions are satisfied:

(Al) aMR(u1, un

i + 1) < an

i+L < - for all n and I
2 A

(A2) For any entropy pair (U, F), there exist real numbers Λ" + i such that

they are uniformly bounded by a universal constant depending on C/, and

such that the numerical entropy inequality

(4.1)

- - μ ; + ± ( u ? + 1 - u?) - A _^ύi - «?_!)} <: 0

holds for all n and i.

Condition (Al) is nothing but the stability condition (2.7). Condition

(A2) is called the numerical entropy condition. We can rewrite the numerical

entropy inequality (4.1) in the following form;

(4.2) l/(iι? + x) - l/(iιjJ) + λ{F*+^ - F W _J < 0,

where each numerical entropy flux Fn

 x is defined by
l + 2

(4.3) F i ^

Let Δ — (Ax, At) and define a function uΔ(x, t) (xe/?, t > 0) by

iAx < x < (i 4- \)Ax
(4.4) uΔ(x9t) = ul for ,

>Jί < ί < (n + 1) Jί.

We have the following convergence theorem which justify the use of

terminology 'admissible'.
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THEOREM 4.1. Let uoeBV(R) and suppose that

M , 0) > n o ( ) in L]0C(R) as Ax > 0.

If the difference approximation (2.1) is strongly admissible, then uΔ converges

in L]0C(R x [0, oo)) as A ->(0, 0) to the unique admissible solution to the initial

value problem (1.1).

PROOF. From our assumptions, it follows that approximate solutions uΔ

are both L00-bounded and TK-bounded. Hence it is shown by a standard

argument (see [2, 6, 19, 21]) that {uΔ} contains a subsequence converging in

L\OC(R x [0, oo)). Since the coefficients an

 x are uniformly bounded, it is seen
l + 2

that the limit function of the subsequence is a weak solution to the initial value

problem (1.1) (cf [14]). It is also seen from condition (A2) that the limit

function satisfies the entropy condition. Therefore, the limit function is an

admissible solution to the initial value problem (1.1). Since the admissible

solution is unique, the convergence of {uΔ} is proved.

REMARK 4.1. In view of Proposition 1.1, it is sufficient to assume the

numerical entropy inequality for the family {(17( /c), F( fe)); keR} of

entropy pairs defined by (1.5) for the conclusion in Theorem 4.1. In any case,

condition (A2) seems somewhat strong. In fact, it might be expected that

condition (Al) is derived from (A2) (see Theorem 4.2 and Remark 4.2 for this

point). This is the reason for the terminology, 'strongly admissible'.

Now, we discuss the necessity and sufficiency of a certain condition for

the strong admissibility of difference approximations. We first prepare a

proposition.

P R O P O S I T I O N 4 . 1 . Let (17, F) be an entropy pair and let u"{ ) be a function

defined by

u?(0) = i i ? - θ λ { / ; + i - / ^}, θe[0, l].

If the numerical entropy inequality (4.2);

ι/(iι?+1) - ι/(iι?) + λ{Fn

i+1_ - F ; _ J < o

holds, then the inequality

I/(iι?(0)) - U(ttϊ) + θλ {Fn

 x - Fn_λ} < 0
I + 2 • ι 2

holds for all 0e[O, 1].

PROOF. For each 0e[O, 1], define

Gt{θ) = U(u1(θ)) ~ U(u») + θλ {Fl± - Fl£.
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We easily check that G^ ) is convex on [0, 1] and hence

Gt(θ) < max{G;(0), G£(l)}, for 0e[O, 1].

Since Gt(0) = 0 and Gf(l) < 0 (note that w?(l) = κ?+1), this means that

G;(0)<O, for 0e[O,Ί] .

This completes the proof.

By using Proposition 4.1, we obtain a necessity condition for the strong

admissibility of difference approximations.

THEOREM 4.2. Suppose that the initial value {uf} is given by

uo = \uL for i < 0

1 uR for i > 1,

where uL and uR are arbitrary distinct real numbers. If the difference

approximation (2.1) is strongly admissible, then the coefficient a\ satisfies the

inequality

αc(ug, u?) = aG(uL, uR) < α? < -
2 λ

PROOF. Let (U, F) be an entropy pair. For each ieZ and # e [ 0 , 1],

define

GAΘ) = υ{Ui{θ)) - c/W)

and set

G(Θ) = GO(Θ)

Noting that

f-0 = ί / K )f/K) if i < - l
if i > 1

and

F(uL) if i < - 1

if i > l ,

we see that

= U(uo(θ)) + U(Uι(θ)) - {U(uL) + U(uR)} + θλ{F(uR) - F(uL)}
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and hence

G'(θ) = - λu'(uo(θ)){fl -/°i} - λυ\uM){fl -fl)

+ λ{F(uR)-F(uL)}

for 0e[O, 1]. Therefore, we have

G'(0)

= - λU'(uL){fξ -f(uL)} - λU'(uR){f(uR)-φ

+ λ{F(uR) - F{uL)}

= λfξ{U'(uR)-U'(uL)}

- λ{f(uR)U'{uR)-f(uL)U'(uL)} + λ {"" f'(s)U'(s)ds

{fl-f(s)}dU'(s).

On the other hand, we see from Proposition 4.1 that

for θe[0, 1]. Since G(0) = 0, this inequality implies that

G'(0) = λ Γ R {Λ° - /(s)} dU'(s) < 0.

By arbitrariness of L/, this yields

7 ° < min f(s) if wL < wR
2 UL<S<UR

/ i 0 > max f(s) if wL > wΛ

or equivalently

αG(wL, uR) < α?.
2

By Definition 4.1, it is clear that α? < -. This completes the proof.
2 λ

REMARK 4.2. Let α( , •) be a real-valued function defined on R x R

and consider a difference approximation in viscous form with an

 1 replaced

by a(uΊ, un

i+1). If the difference approximation is strongly admissible for every

initial value consisting of two real numbers, then it follows from Theorem 4.2

that
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aG{u1, u? + 1 )<α(«?, « ? + 1 ) < -
A

for all n and i.

We are now in a position to state the first main result in this paper.

THEOREM 4.3. If the condition

(4.5) aG{uluU,)<an

i+±<-λ

holds for all n and i, then the difference approximation (2.1) is strongly admissible.

Before proceeding the proof of this theorem, we give a remark.

REMARK 4.3. Theorem 4.2 and Theorem 4.3 are summarized as

follows: Condition (4.5) is almost necessary and sufficient for the strong

admissibility of difference approximation (2.1). We mention some related

results. Osher [22] proved that semidiscrete approximations having more

numerical viscosity than that of Godunov's is consistent with entropy condition.

The result of Osher was extended by Tadmor [29] to the case of difference

approximations (see also Osher and Tadmor [24]). Our results give

extensions of their results and seem to be best possible for the strong

admissibility of difference approximations in viscous form.

The remaining part of this section is devoted to the proof of Theorem

4.3. What is key to the proof is to find numerical entropy fluxes Fn.+1 with

which the numerical entropy inequality (4.2) is satisfied. In the following, we

assume condition (4.5). It should be noted that w?E[m, M ] for all n and i.

Now, let g*+λ be the minimal modified flux function defined by (3.8) or (3.9).

Let keR and (U( k), F( k)) be the entropy pair defined by (1.5). Moreover,

set

(4.6)

and

(4.7) An Ak) = χ + (un

i + (iιj+1 - i<J )0 - fc)|(0w ^(u? + (u?+1 - uΊ)θ)\dθ.
1 2 Jo I +2

It is evident that
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{pM; k) + F(«?+1 k)} - ii4;+i(fc)(«?+1 - «?)
and

Note that Fn

+ί(k) and An

+1{k) are locally Lipschitz continuous with respect to
keR. 2 2

By preparing two lemmas, we first prove the numerical entropy inequality
for the entropy pair (l/( k), F( • k));

(4.8) C/(«Γ+1 k) - !/(«?; k) + λ{F".^(k) - F»^k)} < 0.

In order to deal with the left-hand side of (4.8), we use auxiliary functions
R+(k;z, uΊ, u?+ 1,g"+ 1) and R_(fe; z, u?, M?+ 1, ^ + i ) which are respectively
defined by 2 2

Γ""

f λ . f l }
+ {χ ( z - k ) - χ {u"i+1 - k)} \ < - - \{g" x ) ' ( s ) | ><

+ {χ + (z - fc) - χ + («? - /c)} {glΛk)-f(k)}

and

= { χ + ( z - fc) - χ + (w?+1 - *)} {|(^+ i) '(5)| - (gn.+i)'(s)}ds
J k 2 2

( 4 - 1 0 )

+ {χ+{z-k)-χ+(un

i-k)} Ί --\{g» ,)'(s)\\ds

- { x + ( z - k) - χ+(u1+ί ~ k)} {gn Λk)-_
1 ~ i

for fce/?, where zeR is a parameter. The following result is elementary but
useful in our arguments.

(4.11)

LEMMA 4.1. We have the equality

[\k)-U{un

i\k)
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PROOF. By the definition of gn

i+λ, it is clear that

n Γ 1

i + i ι + 1 ι + 1 I J o i + i

i+ 1

Therefore, we have

- /c)Γ«? - /c - -2

L Jun 2 L J Mrι 2

(s)\ -(gn

i+j(s)}ds

Here we have used the fact that gn

iX(u1^x) = /(M?_ J and g".+ί(u"+ x) = /(M" +

On the other hand, we have 2 2

1
1Z+(«?+i - k)\(ft+g(s)\ds - J " χ+{u1 - k)\(g1+1)'{s)\dS\

= ^Z+(«" ~ k) Γ" {|(0;+J(s)| +/'(s)}ds
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{\(gn.+J(s)\ -f'(s)}ds.

Hence we obtain

lJisM +f'(s)}ds
2

k) ["' \l - ~\(gn Jίs)! - ^\(gn.+1Y
Jk I 2 ' 2 2 I + 2

-fc) Γ i + ̂ {l(<+1)'(s)|-/'(s)}rfs
Jfc ^ 2

- -k) J"1 | i - ^κ^_i)'(s)i - ^κβ;+ i)

- fe)

2

Consequently, we obtain

"2 * 2

= {χ + (w? + 1 — k) — χ + (u"_1 — k)} -{\{Qn_iϊ(s)\ + (gn J'i
Jk 2 '""2 ' " 2

+ {χ + (MΓ1-fe)-χ+(w?-,

fu?+ l λ
+ {%+(w?+1 - *) - Z+(W?+1 - fe)} I + - { l ( ^ + i ) ' ( s ) | - (fif"+i)'(5)}ώ

+ -z+W+ 1 - *) - z+W-i - k)}{gn._Λk)-f(k)}

(k)-f(k)}
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This completes the proof.

LEMMA 4.2. Le/ ze[m, M ] . T/' condition (4.5) w satisfied, then

(4.12) «±(fe;^tt?,«7 + i , f f; + i )^o

/or a// Zee/?.

PROOF. We only treat R + (fe z, u", M"+ X , #"+ J, because Λ _ (k z, w",

u"+1, gf? i_) can be treated in a similar manner. If kφ[m, Λf], then

χ + (z - fe) - χ + (w? - fe) = χ + (z - k) - χ + (iι?+1 - fc) = 0

and hence

Λ±(fc;z,tt7,tt?+i,flf» ) = 0.

Next, let fce[m, Af]. By the CFL condition (2.4) and the definition (3.8) (or

(3.9)) of gn

i+v it is clear that

-λ-\(gn

i+J(s)\>0 forse[m,Λf].

Therefore, noting that un

i+1 e [m, M ] , we obtain

{χ+(z - k ) - χ+(W!+, - k)} \Ui+l[\ ~ \Wi+±ns)\}ds < 0.

We also see that

{χ+(z - *) - χ+(ui - *)}£' {1(^^(5)1 + (gn.+J(s)}ds < 0.

Consequently, it follows from (4.9) that

< {χ+(z - fc) - χ > ? - k)} {gn.+ϊ(k)-f(k)}.

It remains to show that

{χ+(z - k) - χ > ? - k)} {g°+±(k)-f(k)} < 0.

If (fc-«?)(fc-«?+1)>0, then
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which yields

{χ+(z -k)- χ+(u? - *)} {g^k) -f(k)} = 0.

If {k - uΊ)(k - M?+ 1) < 0, We easily see that

χ + ( z - / c ) - χ + ( u ? - f c ) = 0 or sgn(«?+1 - «?)•

Since sgn(u"+1 — «"){g"+1(fc) — f(k)} < 0 by Proposition 3.3, this yields

{χ+(z - k) - x+(ul - k)} (β;+ i(k) -/(*;)} < 0.

This completes the proof.

The following proposition is a direct consequence of Lemma 4.1 and

Lemma 4.2.

PROPOSITION 4.2. Let keR. If condition (4.5) is satisfied, then the

numerical entropy inequality

l/(ιι?+1 k) - l/(ιι7 fe) + A{FM^(/c) - F-^(fc)} < 0

/or α// n α«rf i.

PROOF of THEOREM 4.3. In order to obtain the conclusion in Theorem

4.3, it suffices to prove that condition (A2) is satisfied. To this end, let (U, F)

be an arbitrary entropy pair. Without loss of generality, we assume that

U(m) = F(m) = 0 and 17'(s) is continuous at s = m. We first note that

U(s)= U(m)+ U'{k)dk

(4.13)

= ί(k-s)U'(k)T=s

m+ Γ ( s -
Jm

Γ M +m J m

ί= (s - m) t/'(m) + I l/(s A:) dl/'(A;)

and

F(s) = F(m) + Γf'
Jm
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(4.14) = ί{f(k)-f(s)}U'(k)fkz°m + ίS{f(s)-f(k)}dU'(k)
Jm

= {f(s) -f(m)}U'(m) + Γχ+(s - k){f(s) - f(k)}dU'(k)
J m

= {/(s) -/(m)} U'(m) + ΓF(S; k)dU'(k)
J m

for 5 e [m, M], where the integral is taken in the sense of Stieltjes.
Now, set

(4.15) Fn

i+λ = UFM) + F ( H ? + 1 ) } - \ Γ i + 1 U'(s)\(gn

i+J(s)\ds
2 Z Z Jun 2

and

(4.16) An

i + 1_

Noting that w", w"+1e[m, M], we can easily check that

1 2

where each of An.+1(k) is the number defined by (4.7). It is clear that

(4.17) Fn

i+λ = -{F(u1) + F(u"i + 1)} - -Λn

i+k(un

i+ι - u")

and

(4.18) \An

 x | < - sup | t / ' ( s ) | .

Therefore, we have

;) + {/;+i -/(m)} I/'(m).

Combining above relations, we obtain
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= Γ
Jm

?+1(fc)-FΓ Λk)}ldU'(k)
2 ' 2

- u? + A{/;+1 - / ; J ] l/'(m)
2 2

= Γ[i/("7 + 1 ; *) - t/(«7; fc) + *{F" f̂c) - F? i
Jm 2 ' 2

Since the integrand is nonpositive by Proposition 4.2, this shows that

U(utx) - l/(iι?) + A{F"^ - F"_p < 0

for all n and L This completes the proof of Theorem 4.3.

5. Admissibility of difference approximations with small viscosity coeffi-

cients

In this section and the next section, we discuss the admissibility of

difference approximations in case of strictly convex flux functions.

From the theoretical and computational point of view, it is important to

study the admissibility of difference approximations with small numerical

viscosity coefficients. As was shown in the previous section, if no additional

restriction is imposed on the flux function / and some of coefficients an

 ί are
t + 2

less than those of Godunov scheme, then the strong admissibility of the

difference approximation may be violated. Accordingly, we restrict ourselves

to strictly convex flux functions in order to allow small α" + i . When the flux

function/is strictly convex, Theorem 1.1 enables us to discuss the admissibility

of difference approximations by a weaker condition than (A2) in Definition 4.1.

We begin with the definition of the admissibility of difference approxima-

tions.

DEFINITION 5.1. Let / be strictly convex. The difference approximation

(2.1) is said to be admissible if the following conditions are satisfied:

(Al) aMR(ul ιι?+1) < α ^ i < - for all n and /.
2 A

(A2)' For some entropy pair (U, F) with U strictly convex, there exist real

numbers An

i+λ such that they are uniformly bounded by a universal

constant depending on (7, and such that the numerical entropy inequality
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U(u»+*) - ^

(5.D
- - μ w

+ x ( M f + ! - « ? ) - Λ ; i W - a?.!>} < o
2 I + 2 2

holds for all H and i.

We immediately obtain the following convergence theorem. In the

statement we denote by uΔ(x9 t) the approximate solution defined by (4.4).

THEOREM 5.1. Let f be strictly convex. Let uoeB V(R) and suppose that

« 4 ( ,0) m o ( ) in L\0C{R) as Ax—>0.

If the difference approximation (2.1) is admissible, then uΔ converges in

L\0C(R x [0, oo)) as z/->(0, 0) to the unique admissible solution to the initial

value problem (1.1).

The proof is similar to that of Theorem 4.1. What is different is that

the uniqueness of a limit function is derived from Theorem 1.1.

The next main result gives a sufficiency condition for the admissibility of

difference approximations with small numerical viscosity coefficients.

THEOREM 5.2. Suppose that the flux function f is strictly convex. Let

εe(0, 1). If the condition

(5.2) max

holds for all n and i, then the difference approximation (2.1) is admissible.

Note that Murmann-Roe scheme preserves stationary inverse (physically

irrelevant) shocks and hence is not admissible. Condition (5.2) asserts that

aMR{uni, u"+ J should be replaced by - if u" < u% λ and aMR(un

i9 un

i+ι)<-. Such
A A

replacement may be necessary around nearly stationary inverse shocks. From

Theorem 5.2, we see that Murmann-Roe scheme becomes admissible if its efect

of preserving stationary inverse shocks is removed by adding a small amount

of numerical viscosity. In particular, we see that Harten scheme [8, 9] is

admissible.

COROLLARY 5.1. Suppose that the flux function f is strictly convex. Then

Harten scheme with coefficients a"+λ defined by (2.17) and (2.18) {or (2.19)) is

admissible. 2
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REMARK 5.1. As is easily seen, it follows from the strict convexity of/

that aMR(uΊ, w"+1) = aG(u1, w"+1) in either case of the following;

(a) un

i>un

i+u

\O) SQ ^ Wj < Wj + j ,

where s0 is a real number such that f'(s0) = 0.

In order to prove Theorem 5.2, it is necessary to construct a particular

entropy pair (U, F) and numerical entropy fluxes F w

+ i with which the

numerical entropy inequality (5.1) is satisfied. The approach is essentially

different from a usual approach, in which the numerical entropy condition is

investigated for an entropy pair fixed in advance (see e.g. [17, 24]). Since

the argument is complicated, we construct a particular entropy pair in the

next section.

In the remaining part of this section, we give key estimates of

R±{k;z, u?, un

i + ug
n

i+1) in the case that u? < s0 < u ? + 1 , where R±(k;z9ifi9

M?+i> 0Λ

+i) a r e the auxiliary functions defined by (4.9) and (4.10), and s 0 is a

real number such that /'(s 0) = 0. As is seen from Remark 5.1, the other case

is reduced to the case treated in Section 4.

Now, let / be strictly convex and s0 be a real number such that

f'(s0) = 0. In the following, we assume that

(5.3) m<uΊ <s0 <un

i+i <M

and

(5.4) aMR(u", u"+1) < an

 x < αG(w", u? + 1 ) .

It is convenient to employ the following notation. We write

(5.5)

Note that w" < v? < v"+ x < un

i+x by (5.4) and the minimal modified flux function

gn i is written as

— (s — u") + /(w") for se[u", {%"]
A

(5.6) 0 ^ ( s ) =

-(s-uUi)+/("?+i) for se[ό?+1,
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Next, let wf and w"+1 be real numbers such that

( 5 7) ί/«)=/(w?+1)=/;4

Note that the existence of w" and w?+1 is ensured by (5.3) and (5.4). By the

strict convexity, there is no real number satisfying (5.7), except for w" and

w"+1. It is clear that

(5.8) u ? < ϋ ? < w ? < w ? + 1 < i ; ? + 1 < u ? + 1 .

LEMMA 5.1. We have the inequality

(5.9)

^(ί? - k), j(k - υUi)j </ ;

n

+i -fik)

P R O O F . For notational simplicity, we write I =

Set

and

for /CG7! Here 7 denotes the closure of /. By the CFL condition (2.4), we

easily see that p( ) is nonincreasing on T. Since f{w") = /." 1 ? we also see that

^ 7 + w? - 2/c)

for < k < w", and hence

Therefore, it is shown that p(k) < 0 for /ce/. Similarly, we see that q( ) is

nondecreasing on T and
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This shows that q(k) < 0 for kel. Thus the proof is completed.

The following result plays an essential role in the proof of Theorem 5.2.

PROPOSITION 5.1. Let ze[m,M~\. Suppose that

m < u" < s0 < un

i+1 < M

and

a [Ui, Ui+ι) S a

i + l < " \ui >ui+l)

Then we have

(5.10)

0 for k<

PROOF. We write I =

Lemma 4.2, we obtain

for
v? + w"

for k> —

vi+\

I. As in the proof of

for kφl. To prove the remaining inequalities, let fee/. Since χ + (u" - fe) = 0,

χ + ( u ? + 1 - k) = 1 and gn

 t(fc) = / " i 5 it follows from (4.9) that

- k) -
1 -/(/c)}

On the other hand, it follows from (5.6) and Lemma 5.1 that

Γ"Γ+1 f 1 ) 1 PΓ+i 1
- { T - l(^+i)'(s)l U^ = - ds = -(k~ v"i + 1) < / ;

Therefore, we obtain
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Similarly, we see that

f - Γ"Γ f 1

This completes the proof.

6. The construction of a particular entropy function

In this section we give the proof of Theorem 5.2. Under the assumption

in Theorem 5.2, we first construct a nonnegative function P satisfying

Γ
J m

and then prove the entropy inequality (5.1) for an entropy pair (U, F) such

that U" — P. It should be emphasized that the entropy pair (U, F) is

constructed according to the strictly convex flux function /, the constants

m, M, λ and εe(0, 1).

Without loss of generality, we assume that

By the strict convexity of /, this implies that

f(s) > 0

for all SER.

We introduce some notations which are used in this section. Let h + ( )

and A_( ) be respectively the inverse functions o f / restricted to [0, oo) and

restricted to (— oo, 0 ] . By the definition, it is clear that

/(Λ + (τ))=/(fc_(τ)) = τ, τ > 0

and

= 5, 5 > 0

: S, 5 < 0.

Set

(6.1) A(τ) = A+(τ)-A_(τ)
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for τ > 0. Note that the following hold:

(1) h + (-) is monotone increasing and strictly concave on [0, oo).

(2) /i_( ) is monotone decreasing and strictly convex on [0, oo).

(3) h( ) is monotone increasing and strictly conave on [0, oo).

Next let εe(0, 1). We define positive numbers μ+ and μ_ by

f / / ε \\l Π
(6.2) μ + = s u p ^ τ e [ 0 , oo); / ' l h + ( τ + —h(τ) < - \

I \ \ 2Λ //I λ)

and

(6.3) μ_ =sup<τe[0, oo);

We also write

κ ^h + (μ+ +;fe/ϊ(μ+))-Mμ + ) e

and

κ

h(μ_) 2

We have a lemma.

LEMMA 6.1. Set

(6.4) K = mm{K + ,K_}.

Then K > 0 and the following inequalities hold:
hjτ + ±-h(τ)) - &-h(τ) - h + (τ) > Kh(τ) for 0 < τ <

(6.5) ) 2 1 ; 2

J ί ^ J ^ ^ far 0<τ<μ

( ε

P R O O F . S i n c e / t ' + l μ + H Λ(μ+) I = A by (6.2), it follows from the

concavity of h+ that

h(μ+))h + (β+)

> —h+\ μ+ + —h(μ + ) ) = -.
2/1 V 22 / 2
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This means that K + > 0. Similarly, it is shown that K _ > 0. Thus it is

proved that K > 0.

Next, we prove (6.5). By the strict concavity of h+, we obtain

—Λ(τ) ) - Λ +

[
2Λ Jo

2λ

for 0 < τ < μ + . By the strict convexity of /J_, we similarly obtain

- h_(τ) h

h(τ)

for 0 < τ < μ_. Thus we obtain (6.5). This completes the proof.

Now, we are in a position to define the nonnegative function P. For

seR, set

(6.6) P(s) = {h(f(s))}y,

1
where γ = -K2 and K is the constant in Lemma 6.1.

8

Before proceeding the proof of Theorem 5.2, we prepare several lemmas.

For notational simplicity, we write

(6.7)

J+ (τ) = P(k) {τ - f(k)}dk for 0 < τ < μ+

Λ > W = P(k){τ-f(k)}dk for τ > 0
/o(r)

•LJ_(τ)= P(k){τ-f(k)}dk f o r O < τ < μ _ ,
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where the intervals of integration are defined by

/

53

(6.8)

+(τ) = ΓΛ+(T), 1 |A+(T) + hjτ + ±

/oW =[Λ-(τ),M

LEMMA 6.2. The inequality

Γ Λ + (τ)

JΛ-(τ)

P(k)dk-yτ{h(τ)}
i + I

/or τ > 0.

PROOF. For each τ > 0, set

H(τ)
JΛ-(T)

i + I
} 7

Since iί(0) = 0, it suffices to show that H( ) is nonincreasing on [0, oo). In
fact it follows that

+ (τ)) - Λ'.(τ)P(Λ.(τ)) - (1 + y) {h(τ)}h*(τ)

= {h + (τ) - h.(τ)Y(h(τ)}y -

< 0

for τ > 0. This completes the proof.

LEMMA 6.3. The following inequalities hold:

(6.9) J+(τ) + J o ( τ ) < 0 for 0<τ<μ+.

(6.10) J_(τ) + J o ( τ ) < 0 for 0 < τ < μ _ .

PROOF. We prove inequality (6.9). Inequality (6.10) can be proved
similarly. Let 0 < τ < μ+. In view of Lemma 6.2, it suffices to show that

J+(τ)<-yτ{h(τ)}

and
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J0(τ)<τ\ P(k)dk.

Regarding

k
h(τ)

as a linear function of k e R9 we see that its graph intersects the graph of f(k)
at k = 0 and k = h+(τ). By the convexity of /, we have

and hence

τ -f(k) < --r^-{k - h+(τ)} < -^~{k - h + (τ)} < 0,
h () h(τ)

It is clear that

Therefore, taking Lemma 6.1 into account, we obtain

{τ-f(k)}dk

Since f(k) > 0 for k e /?, it is clear that

This completes the proof.
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LEMMA 6.4. Suppose that m < u" < 0 < un

i + 1 < M and

(6.11) max\a M R (u l ιι?+1), ^sgn(u?+ 1

Ψe have the following:

(i) If f(uΐ)<f(u%y), then

0 </.B

+i < μ+ and IΛf'^ύ <=

(ii) Iff(uϊ+ύ<fM), then

PROOF. For similarity, we only prove (i). Suppose that /(u") < / ( u " + 1 ) .

Then it follows from (5.7), (6.1) and (6.11) that

" i + — {Ί+(/"
2 2/1 '

Here we used the fact t h a t / " , > min f(s) = 0 by the second inequality in

(6.11). Therefore, we see that

and hence
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Thus it is proved that

We next show that

Since /i +(/("?+1)) > λ, it follows from the strict convexity of h+ that

which yields

Since w?+1 = Ί + ( / . " + i ) , it follows that

and hence it is proved that

This completes the proof.

LEMMA 6.5. Let ze[m, M ] . If condition (5.2);

max \aMR(ul ιι?+1), ^sgn(«?+ 1 - ιι?) 1 < an.^ < -

holds for all n and i, then

(6.12) Γ P(fc)Λ±(k; z, ιι?, u?+ 1, ^ + i ) d k < 0

Jm 2

/or α// n απrf i.
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PROOF. We assume that u" <0 <un

i+1 and

max jαM*(w?, iι?+1), -sgn(un

i + i - "

Notice that by Remark 5.1, the other case is reduced to Lemma 4.2. We
remark that w"e[m, M] for all n and Ϊ by Lemma 2.1. Now suppose that
/(w?) </(w?+1). Then it is clear that

m < -(vΊ + w?) < w? < w?+1 < -(ΰi+ι + w?+1) < M

(see (5.5) and (5.7)), and it follows from Lemma 6.3 that 0 < / " 1 < μ + and

Γ ' l Ί ι+2

I + (f"+i) c w"+i? -(tf+i + w"+i) Accordingly, we see from Proposition 5.1

and Lemma 6.3 that

J
Γp(k)R±(k; z, iι?, ιι?+1, g

n

i+1)dk < J 0 (/; + i ) + J+(/""+i) < 0.
2 2 2

Here we have used the fact w? = M / / ! ^ ) , w?+i = h+ ύ a n d / ^ i

for fc£[w?, w?+i]. Similarly, if/(u?) >/(ίι?+1), we see that

Γ
Jm

; z, ιι7, iι?+1, ^+ i)d/c < J-(/""+i) + Jo(/;+l) ^ °

This completes the proof.

We can now prove Theorem 5.2.

PROOF of THEOREM 5.2. It is trivial that condition (Al) is satisfied.
This ensures that m <u" < M for all n and ί. To prove (A2)', let ((7, F) be
an entropy pair such that

r u"(s) = P(s)
( 6 1 3 ) \F'(S)=U'(S)Γ(S)9 SER,

and

(6.14) U(m) = U'{m) = F{m) = 0.

It is obvious that U is strictly convex. Noting U(m) = U'(m) = F(m) = 0, we
easily see that
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'(k)dk= Γ U'(
Jm

P(k)(s-k)+dk
Jm

•Γ
•/m

P{k)U(s;k)dk
J m

and

(k)dk= \ U'(k)f'
Jm

= Γp(/c)χ+(s-
Jm

= Γ
Jm

p(k)F(s;k)dk

for 56[m, Λf] (see (4.13) and (4.14)).
Now set

( i ι ? + 1 ) } - J Γ < + 1 l/ '
2 J un

and

Γ 1

An

 x = UΊui + (u?+i - 1^)0)1(0" i)'(w? + (w?+i - M?)β)|dft
2 Jo 2

Then it is seen that

and

\An

i+ι\ <- maxj[/'(s)|.

It remains to show the numerical entropy inequality (5.1). By an elementary
calculation, we have
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n

i+M+ι - ui) = \ Γ l + 1 [/'(s)|(9;+i)'
2 Z J un 2

2Ju;, U m J I + 2

= 1 fMP(k) I Γ ί + ' χ + (s - fe)|(g;+i)'(s)| ds jdk

and hence

P(k)F(ul+ x ; k ) d k_ ! Γ n. 1 Γ
2 I ι ' 2 1

l fM r u ? + ,

^ Jm Ju*}

P(/c)FM ! (fc) dfc.

Therefore, we see from Lemma 4.1 that

By Lemma 6.5, this means that

' 2 ' 2

= Γp(fc)[U(ιι?+1;k)-l/(«?; k) + λ{F?+1(fc)-F? !(*)}] dfc
J 2 ' 2
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for all n and i. This completes the proof of Theorem 5.2.
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