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Abstract. The parabolic index of a locally finite connected graph of bounded degree

is shown to be invariant with respect to rough isomertries. We shall give an elementary

proof of the fact that the parabolic index of the graph of the d-dimensional Euclidean

lattice Zd is equal to d.

1. Introduction

Let G = [X, Y, K} be an infinite locally finite connected graph, where X
is the countable set of points (= nodes, vertices), Y is the countable set of
edges (= arcs) and K is the node-arc incidence function (= matrix). The pair
N = {G, r} of the graph G and a strictly positive real function r (resistance)
on Y i s called an infinite network in [13]. Since we always consider the case

where r = 1 in this paper, we identify the graph G with the network N.
Parabolic and hyperbolic networks (graphs) were studied in the paper

[13], to which we refer for all basic notions. We only recall that the parabolic
index of the graph G is defined as

ind G = inf {p > 1 G is parabolic of order p}.

A neighbour z e J f o f x e J f i s a point such that there exists ye Y which satisfies

K(x, y)K(z, y) = — 1. We say that G is of bounded degree if

sup{deg(x); xεX} <M

for some constant M, where deg(x) is the number of neighbours of x.

The geodesic distance between two vertices x, z e X is the number of edges

of the shortest path joining x to z and is denoted by dG(x, z). In particular,
we write x ~ z if x and z are neighbours, i.e., dG(x, z) = 1. Clearly {X9 dG}
is a metric space.

For a real valued function / on X9 the Dirichlet sum of / of order p
(1 < p < oo) is given by

D p ( f } = Dp(f G) = £
x~r
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If D p ( f ) is finite, we say that / is p-Dirichlet finite. We choose a reference

vertex oeX and define a norm for p-Dirichlet finite functions by

Let D(P)(G) denote the Banach space of all real valued, p-Dirichlet finite
functions equipped with the norm above. Let /0(G) denote the linear space
of all real valued finitely supported functions on X. We denote by D(

0

P)(G)

the closure of /0(G) in D(P)(G).
Let G! = {X19 y l 5 KI} and G2 = {X2, Y2, K2} be graphs as above. We

say that G1 is roughly isometric to G2 if there exists a map (called a rough
isometry) φ from Xl to X2 which satisfies the following two conditions:

(RI-1) There exist constants a > 0 and b > 0 such that

a'1 dGl(x9 t)-b< dG2(φ(x), φ(t)) < adGί(x9 t) + b

for all x,

(RI-2) There exists a constant c > 0 such that, for every zeX2, there
exists xeX^ which satisfies dG2(z, φ(x)) < c.

It is not difficult to see that if G1 is roughly isometric to G2, then G2

is roughly isometric to G: cf. [5, p. 392]. Therefore we say that G1 and
G2 are roughly isometric. Notice that to be roughly isometric is an
equivalence relation.

The notion of a rough isometry was introduced by Kanai [5] and is

essentially the same as Gromov's notion of a quasi-isometry [2]. Kanai

[6] proved that, for roughly isometric Riemannian manifolds Rί9'R2 °f
bounded geometry, R2 is parabolic if so is R1. The discrete counterpart of
Kanai's theorem was proved, among other results, in [10, Theorem 3.2] : for
roughly isometric connected graphs GA and G2 of bounded degree, G2 is

recurrent if so is G1. Remember that a graph G is called recurrent (transient)
if the simple random walk on G, which assigns equal probability of passing
from a vertex to any of its neighbours, is recurrent (transient). Moreover G is
recurrent (transient) if and only if it is parabolic of order 2 (hyperbolic of
order 2); see [12], [4] or [11].

As a generalization of the result [10, Theorem 3.2], we shall show that

two roughly isometric graphs of bounded degree have the same parabolic
index. It was proved in [9] that the parabolic index of the graph of the
d-dimensional Euclidean lattice Zd is equal to d. We shall give a more
elementary proof of this fact with the aid of the product of flows due to
Lyons [8].

In this paper we always assume that a graph has no multiple edges nor
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self-loops. Thus, for every pair {x, z} of nodes, there exists at most one edge
y such that K(x9 y) = 1 and K(z, y) = — 1. We call x (resp. z) the initial (resp.
terminal) point of y and put y = [x, z].

2. Parabolic index and rough isometries

For every graph G = {X, 7, K} and every positive integer k, the /c-fuzz
Gfc = [X\ 7k, K*} of G is the graph such that Xk = X, and dGk(x, t) = 1
if and only if 1 < dG(x, t) < k.

It was proved in [l](see also [10]) that G is parabolic of order 2 if and
only if Gk is parabolic of order 2. As a generalization of this, we have the
following result.

THEOREM 2.1. Suppose thai G is of bounded degree. Then ind G = ind Gk.

PROOF. We first prove that the norms in D(P)(G) and in Ό(p)(Gk) are
equivalent. On one hand it is clear that, for every function / on X = Xk,

D p (/;G)<D p (/;G f c ), so that ||/||D(ί,)(G) < ||/||D(p,(Gk).

On the other hand, set for every y = [zl5 z2]e Yk

V ( y 9 k ) = U ( ί z l 9 z 2 ] , k ) : = { l x l 9 X 2 ] e Y ' 9 d G ( x J , z i ) < Z k 9 for ij =1,2}.

Clearly, every edge in G belongs to less than M2(k+1} sets U(y, k). Now, if
dGk(x, t) = 1, i.e., 1 < dG(x, ί) = n < /c, then there is a path in G with vertices
x = x0 ~ xί ~ ••• ~ xn = t. Then we have, with l/p + l/q = 1,

7=1

z Σ
[s,ιι]6l/([x,ί],k)

It follows

Hence

Therefore D(P)(G) contains the same functions as D(p)(Gk) and D(

0

P)(G) the same
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functions as Ό(

0

p)(Gk). Hence by [13, Theorem 3.2], G is parabolic of order p
if and only if Gk is parabolic of order p.

Let Gl = {Xί9 y l9 K!} and G2 = {X2, Y29 K2} be graphs as above. We
say that a map ψ from Xί to X2 is a morphism from G1 to G2 if dGl(x, t) = 1

implies dG2(ψ(x), ψ(t)) < 1.
For a morphism ψ from G: to G2, we define the image G\ = {X'ί9 Y'ί9 K\}

of G! in G2 with respect to ψ as follows:

X\ =ψ(Xί), and / = [x', ί']e yj if there exists j; = [x, f]e yt such that
^(x) = x' and

It is clear that G\ is a connected subgraph of G2 and has no self-loops nor
multiple edges.

LEMMA 2.2. Let G^ and G2 be graphs of bounded degree, let ψ be a
morphism from G± to G2 and let G\ be the image of Gl with respect to

ι//. Suppose that there is a constant m such that, for every x, teX, ψ(x) = ψ(t)

implies dGί(x, t) < m. Then mάG1 < indG^.

PROOF. For every function/' on X\, we define a function / on X± by

f(x)=f'({//(x)) for all xeX.

For every x\t'eX\ with x'~t', there exist x, teX such that x ~ ί and
= t f . We have

Σ Σ I/M-/W
[x',t']eY{ ψ(x) = x'

'

= Σ ι/'(^)-/'(or Σ i-
[x',t']eY{ xeψ-l(x'),

teψ-l(t')

Let z'eX\ and zeX^ satisfy ψ(z) = z'. Then

\l/~1(z') c {xEXί; dG(x9 z) < m}

by our assumption. Therefore Card φ~1(z') < Mm+i . Here, Card stands for

the cardinality. By choosing o' = ψ(o)9 we get

and hence

^ I I J HD<P>(GO
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Suppose now that G\ is parabolic of order p. Then, by [13, Theorem 3.2],

there is a sequence { f ' n } of real finitely supported functions on X\ such that

I I 1 -f'n L(p)(Gί) - » 0 as n - > oo.

Let /„ and f'n be related as above. Then/,, is finitely supported on X±. By

the above norm estimation, we see that || 1 — /Π | |D<P>(GI) ~~>0. It follows that
I eD(

0

p)(G), so that G1 is parabolic of order p by [13, Theorem 3.2] again.

LEMMA 2.3. Let G' = {X', Y', K'} be a subgraph of G. Then indG' <

ind G.

PROOF. Assume that G is parabolic of order p. Then, there exists a

sequence {/„} of real finitely supported functions on X such that

I I 1 — /nl lD<p>(G) ~^ 0 as n ~* °° Denote by gn the restriction of/M to X' . Then,
gn is finitely supported and

as n-> oo. Hence G' is parabolic of order p by [13, Theorem 3.2].

Now we shall prove our main result.

THEOREM 2.4. Suppose that G^ and G2 are two roughly isometric infinite

connected graphs of bounded degree. Then indG x = indG 2.

PROOF. Since G1 is roughly isometric to G2, there exists a rough isometry

φ from X1 to X2. For an integer k such that k > a + b, it is easily seen by

(RI-1) that φ is a morphism from G: to the /c-fuzz G\ of G2. Let G\ be

the image of G1 with respect to φ. For every x, ίeAΊ such that φ(x) = φ(t\

we have by (RI-1)

so that dGl(x, ί) < ab. Thus we may apply Lemma 2.2 with m = ab. Hence

indGi <indGΊ. Since G\ is a subgraph of G2, it follows from Lemma 2.3

that indGi <indG 2 . Finally, by Theorem 2.1, indG : <indG 2 . The reverse

inequality follows by exchanging the roles of G^ and G2, since G2 is roughly

isometric to G!.

3. Parabolic index of the Euclidean lattice domains

Let G = {X9 Y, K} be a connected graph with no self-loops and no multiple

edges. For a real valued function u on X x X which satisfies condition

(F) u(x, z) = — u(z, x) for all x, zeX,
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the boundary du of u is defined as the function on X given by

du(x) = Σ u(x9 z) for all xεX.
Z~ X

Notice that for the function W on Y defined by

W(y) = u(x,z) if y = lx9zί

we have

du(x)= ^K(x,y}W(y}.
yeY

Choose any reference vertex o e X. A function u on X x X satisfying condition
(F) and such that w(x, z) = 0 if x and z are not neighbours is called a flow
of value m from o to the ideal boundary of G if

du(x) = 0 if x / o,

du(o) = m.

Now we recall the notion of the product of flows due to Lyons [8]. Let
G={X9Y9 K} and G' = {X'9 Y', K'} be graphs. Define G x G' as the graph
whose vertex set is the Cartesian product X x X' and let two vertices (x, x')
and (z, z'} be connected by an edge if and only if x = z and x' ~ z' or if
x' = z' and x ~ z.

Denote by Z = G(1) be the Euclidean 1-dimensional lattice graph, whose
vertices are the integers and whose edges are line segments joining consecutive
integers. Let u and u' be functions on (X x Z) x (X x Z) and on (X1 x Z) x
(Xf x Z) respectively, satisying the condition (F). In particular they might
be flows from from (o, 0) to the ideal boundary of G x Z and from (o', 0) to
the ideal boundary of G' x Z respectively. Lyons [8] defined the product
w = u * u' of u and u' as a function on (X x X' x Z) x (Jf x X' x Z) in the
following way

w((x, x', w), (x, x', w ± 1)) = ± 2w((x, n), (x, n ± l)K((x', π), (x', n ± 1)),

w((x, x', n), (z, x', π)) - w((x, n), (z, rc))w'((x', w), (x', n + 1)) -

w((x, n), (z, n))u'((x', n), (x', w - 1)),

w((x, x', n\ (x, z', π)) = ι/((xr, n), (z', w))κ((x, π), (x, n + 1)) -

w'((x', n), (zr, rc))w((x, n), (x, n - 1))

whenever x ~ z or x' ~ zr. Set w = 0 otherwise. Note that w satisfies (F).
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The following lemma is an immediate consequence of the definition.

LEMMA 3.1. Let u and u' be two functions as above and let w = u*u' be
their Lyons product. Then, for every (x, x', n)e X x X' x Z

dw(x, x', n) = du(x, n)(u'((x'9 n\ (x', n + 1)) - u'((x, n\ (x', n - 1))) +

du'(x'9 n)(u((x9 n), (x, n + 1)) - u((x, n\ (x, n - 1))).

If u and u' are flows from (o, 0) to the ideal boundary of G x Z and from
(o', 0) to the ideal boundary of G' x Z respectively, then <3w(x, x', n) = 0 for
all n / 0 and all (x, x')eX x X'. In the cases of interest it turns out that w
is actually a flow from (o, o', 0) to the ideal boundary of G x G' x Z.

We will apply Lyon's method to prove that the parabolic index of the

d-dimensional Euclidean lattice is exactly d.
We will denote by G(d) = {X(d\ Y(d\ K(d)} the graph of the d-dimensional

Euclidean lattice Zd. More precisely, let e(l\... ,e(d} be the standard base of
the d-dimensional Euclidean space Rd, i.e., the /c-th component of e(j) is 1 for
k = j and 0 for k φ j. For α, b e Rd, let [α, b~] denote the directed line segment

from a to b. If x is a vector in Rd we will write x = (x1? x2,...,xίί), i.e. we
will denote by x7 the -th coordinate of x. For each j = l,...,d, set

, x, < 0},

With these notation, we take

THEOREM 3.2. ind G(d) = J.

PROOF. The inequality ind G(d) < d was proved in [9] by using a
geometric criterion in [13]. Here we give an elementary proof of the reverse
inequality.

Let o be the origin of the axes. In order to construct a flow from o to
the ideal boundary of G(d\ let us put for d > 2

Ω(d) = {(v l s . . . , v d _ l 9 n)eZd; |V | | < n (i = 1, ...,d - 1)}.

Let u2 be the real valued function on 7(2) which satisfies condition (F) and
takes the values for n > 0

u2((μ, n\ (μ, n + 1)) = l/(2π + 1) for |μ| < π;
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, n), (μ, w + 1)) = 0 for \μ\>n\

2u + 1
u2((μ, fi), (μ + 1, n)) - - - *-— - - for 0 < μ < n - 1

(In - l)(2n + 1)

w2((μ, n\ (μ - 1, n)) - ~ f + - - for - n + 1 < μ < 0;
(2n - l)(2n + 1)

M2((μ, n\ (μ ± 1, n)) = 0 for \μ\>n.

For n < 0, let

) , ( A i ± l , n ) ) = 0 for all μ.

It is easily seen that du2(a) = 0 for all aeX(2\ a + o and du2(o) = 1. Then
w2 is a flow of value 1 from o to the ideal boundary of G(2).

Now we define recursively a flow on G(d} for all d > 3 by setting

wd = w d _ ! * w 2 , d = 3, 4,...

We have

wd(x, x + β(d)) = 2d~2(2n + l)"d + 1 if xeί2(d) and xd = w.

If xd = zd = n, x, z e ί2(d) and x ^ z,

IM^zJI^B^π+l)-^ 1

for some constant Bd independent of n. Moreover, if x ~ z,

ud(x,z) = Q unless x,zeΩ(d}.

By Lemma 3.1 and induction one checks easily that

dud(x) = 0 if x / o,

Therefore ud is a flow of value 2d~2 from the origin to the ideal boundary

of G(d\ Set, for every n = 0, 1, ...

E,(n) = {[x, z]e y(d); x, zeΩ(d\ χd = zd-l= n},

E2(n) = {[x, z]e 7(d); x, zeί2(d), xd = zd = n}.

Then CardE^n) = (2n + I)1*"1 and Card£2(rc) = 2n(2n + \)d~2. Let 1 < p <
d and l/p + 1/g = 1. Then, remembering that for every [x, z] e Y(d\ wd(x, z)
= 0 unless {x, z} c Ω(d\ we have
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- Σ ( Σ i"<*(*»01*+ Σ \ud(χ>oi9}

< {2(d-2)« + (Bdγ} Σ (2n + lf-1)(1-^ < oo,

since p < d implies (d - 1)(1 - q) < -1. Therefore G(d) is hyperboic of order
p, (1 < p < d) by [13, Theorem 4.3]. Thus indG(d) > d.

4. An application

A tiling T of the Euclidean plane R2 is a collection of closed topological

disks T, having pairwise disjoint interiors, such that (JTeΎT= R2. We assume
that the tiling is normal in the sense [3]. The edges and the vertices of the

tiling are the edges and vertices of a plane graph G = {X, Y, K} which is
locally finite connected and of bounded degree: this graph is called the edge
graph of the tiling. See the book [3] for hundreds of figures and examples.

It was proved in [11, Theorem 4] that for every normal tiling T there
is a combinatorially equivalent tiling T' whose edge graph G' — {X', Y', K'} is
uniformly imbedded in R2, i.e. there is a constant k such that for every p, q e X'

where \p — q\ denotes the Euclidean distance between p and q.

Therefore the inclusion map is a rough isometry of G' into R2. Namely

G' is roughly isometric to G(2). On the other hand G and G' are isometric
graphs. Since rough isometry is an equivalence relation, G is roughly isometric
to G(2). Then our Theorems 2.4 and 3.2 imply that ind G = 2.
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