SaS M(t)-processes and their canonical representations

Katsuya Kojo (Received January 16, 1992)

Introduction

T. Hida, H. Cramér and many other mathematicians have investigated the theory of canonical representations of Gaussian processes. Especially, T. Hida [3] has proved that any purely non-deterministic separable Gaussian process has a unique generalized canonical representation, which is obtained by applying Hellinger-Hahn's theorem to the reproducing kernel Hilbert space made from the covariance function of the process. This representation is called canonical if the multiplicity of the representation is 1 (T. Hida and N. Ikeda [4]). However, it seems that for non-Gaussian processes (especially without 2nd moments), any general theory of canonical representations has not been established yet.

We know that Gaussian random variables are symmetric stable random variables with index $\alpha = 2$. So in this paper, we deal with canonical representations of symmetric- α -stable (= S α S) processes (0 < $\alpha \le 2$).

In Gaussian case, Lévy-McKean's M(t)-processes are precious examples to study the theory of canonical representations. The M(t)-process is defined as the spherical mean process of the multi-parameter Brownian motion with the spherical harmonic as its weight. N. N. Chentsov [2] found that this Brownian motion can be constructed by integral geometry, and H. P. McKean Jr. [9] used this fact to obtain a causal representation of the M(t)-process. We apply this very fact to extend the notions of the multi-parameter Brownian motions and M(t)-processes to non-Gaussian S α S case (0 < α < 2), and we obtain causal representations of these M(t)-processes in the form of

$$X(t) = \int_0^t F(t, u) dZ(u).$$

We investigate the canonicalities of these representations by the following methods.

i) Similarly to Gaussian case $(\alpha = 2)$, we can consider the closed linear hulls of $\{Z(s); s \le t\}$ and $\{X(s); s \le t\}$ respectively for every t. We find whether the hull of $\{X(s); s \le t\}$ includes the hull of $\{Z(s); s \le t\}$ for all t or not (the inverse inclusion is trivial). In case that the equality holds (this case

we say that the representation is proper), we make the procedure to obtain $\{Z(s); s \le t\}$ from $\{X(s); s \le t\}$.

ii) In case of M(t)-processes, $\{Z(t)\}$ is an S α S process with independent stationary increments (i.e., an S α S motion). For non-Gaussian case $(0 < \alpha < 2)$, we apply the Lévy-Itô's theorem on the decomposition of paths to modify $\{Z(t)\}$ into a process whose paths are right continuous and have left limits (this modification is called D-modification in this paper). Using this modification, we obtain a D-modification of $\{X(t)\}$ (to obtain the modification, we apply the integration by parts). And we consider the regularity of paths and we calculate the jumping times and heights of $\{Z(s); s \leq t\}$ from those of $\{X(s); s \leq t\}$. This idea is found in P. Lévy [8], and T. Hida and N. Ikeda [4], but cannot be applied to Gaussian case because the paths of Brownian motion are continuous.

Through the argument, we can find whether a causal representation in a certain class is canonical or not. We hope it will be a first step to study the theory of canonical representations of $S\alpha S$ processes.

§ 0. Preliminaries

A real-valued random variable X is called a symmetric- α -stable (= $S\alpha S$) random variable if the characteristic function of X is $\exp(-c|z|^{\alpha})$ with some constant $c \ge 0$. The $S\alpha S$ random variable exists if and only if $0 < \alpha \le 2$. When $\alpha = 2$, an $S\alpha S$ random variable is a Gaussian random variable with mean 0.

In this paper, the time domain T is fixed either $[0, \infty)$ or $(-\infty, \infty)$. A stochastic process $\{X(t); t \in T\}$ is called an $S\alpha S$ process if any finite linear combination $\sum a_j X(t_j)$ $(a_j \in \mathbf{R}, t_j \in T)$ is an $S\alpha S$ random variable. We assume that any $S\alpha S$ process in this paper is separable. Especially, an $S\alpha S$ process with independent stationary increments is unique up to a constant and is called an $S\alpha S$ motion.

Let (S, \mathfrak{B}, μ) be a σ -finite measure space.

DEFINITION 0.1. A random field $\{Y^{\alpha}(B); B \in \mathfrak{B}, \mu(B) < \infty\}$ is called an $S\alpha S$ random measure controlled by (S, \mathfrak{B}, μ) if it satisfies the following three conditions:

- i) Any finite linear combination $\sum a_i Y^{\alpha}(B_i)$ is an S\alpha S random variable.
- ii) The characteristic function of $Y^{\alpha}(B)$ is equal to $\exp(-\mu(B)|z|^{\alpha})$.
- iii) If $\{B_j\}_{j=1,2,...}$, $\mu(B_j) < \infty$, is a family of disjoint sets, then $\{Y^{\alpha}(B_j)\}_{j=1,2,...}$ is a family of mutually independent random variables, and if $\mu(\bigcup_j B_j) < \infty$, then $Y^{\alpha}(\bigcup_j B_j) = \sum_j Y^{\alpha}(B_j)$ a.s.

If $\{Y^{\alpha}(B)\}\$ is an S\alphaS random measure controlled by a measure space (T, \mathfrak{B}, v) , $X^{\alpha}(t) \equiv Y^{\alpha}([0, t])$ if $t \geq 0$, $\equiv Y^{\alpha}([t, 0])$ if t < 0 is called an S\alphaS process with independent increments controlled by (T, \mathfrak{B}, v) in this paper.

 $L^{(\alpha)}(S,\,\mathfrak{B},\,\mu) \text{ denotes the family of measurable functions } \left\{f;\,\int_{S}|f|^{\alpha}d\mu<\infty\right\}$ equipped with the metric $d^{(\alpha)}(f,g)=\left(\int_{S}|f-g|^{\alpha}d\mu\right)^{(1/\alpha)\wedge 1}$ Note that $L^{(\alpha)}(S,\,\mathfrak{B},\,\mu)$ is a Banach space only in case $1\leq\alpha\leq 2$.

Now we define the Wiener-type stochastic integral $\int_S f dY^\alpha$ of f in $L^{(\alpha)}(S,\mathfrak{B},\mu)$ with respect to $\{Y^\alpha(B)\}$. If f is a step function $\sum a_j I_{B_j}$, where $\{B_j\}$ is a family of finite disjoint sets and I_B denotes the indicator function of B, then $\int_S f dY^\alpha$ is defined as $\sum a_j Y(B_j)$. For a general f, we take a sequence of step functions $\{f_j\}_{j=1,2,\ldots}$ which converges to f in $L^{(\alpha)}$, then $\left\{\int_S f_j dY^\alpha\right\}_{j=1,2,\ldots}$ converges in p-th order expectation for all $p < \alpha$ (also p=2 when $\alpha=2$). The convergence does not depend on the selection of $\{f_j\}$, thus we define $\int_S f dY^\alpha$ as this limit. (See M. Schilder [13].)

In this paper, for two processes $\{X(t); t \in T\}$ and $\{\tilde{X}(t); t \in T\}$, $\{X(t)\} \stackrel{d}{=} \{\tilde{X}(t)\}$ means that all finite dimensional distributions are equal to each other.

§ 1. Representations of $S\alpha S$ processes by causal stochastic integrals

T. Hida [3], and T. Hida and N. Ikeda [4] gave definitions and obtained some propositions on stochastic integral representations of Gaussian processes. We extend them to $S\alpha S$ case.

Assume that an S α S process $\{X(t); t \in T\}$ $(0 < \alpha \le 2)$ has the following modification written in the form of stochastic integral

$$X(t) = \int_{-t}^{t} F(t, u) dZ(u), \qquad (1.1)$$

where

- i) $\{Z(t); t \in T\}$ is an S α S process with independent increments controlled by a measure space (T, v),
- ii) F(t, u) is a function on $T \times T$ which vanishes on $\{(t, u); u > t\}$ and belongs to $L^{(\alpha)}(T, v)$ as a function of u for every $t \in T$ and $\int_{(-\infty, t] \cap T}^{t}$

DEFINITION 1.1. The formula (1.1)

$$X(t) = \int_{-t}^{t} F(t, u) dZ(u),$$

satisfying the above i) and ii), is called a causal representation of $\{X(t)\}$.

In non-Gaussian case $(0 < \alpha < 2)$, it is unknown whether any S α S process has a causal representation or not. But it is known that any S α S process $\{X(t); t \in T\}$ $(0 < \alpha \le 2)$ has a version written in the form of (non-causal) stochastic integral

$$\{X(t)\} \stackrel{d}{=} \left\{ \int_{[0,1]} f(t, u) dZ(u) \right\},\,$$

where $\{Z(t); t \in [0, 1]\}$ is an S α S motion and f(t, u) belongs to $L^{(\alpha)}[0, 1]$ as a function of u for every $t \in T$ (see J. Kuelbs [7]).

Suppose that $\{X(t); t \in T\}$ is an S α S process with a causal representation (1.1). For every $t \in T$, $\mathfrak{B}_t(X)$ denotes the σ -field generated by S α S random variables $\{X(s); s \leq t\}$. It is obvious that

$$\mathfrak{B}_t(X) \subset \mathfrak{B}_t(Z)$$
 for every $t \in T$.

Definition 1.2. A causal representation (1.1) is called *canonical* (in the sense of σ -field) if it satisfies

$$\mathfrak{B}_{t}(X) = \mathfrak{B}_{t}(Z)$$
 for every $t \in T$.

This case we call $\{Z(t)\}$ an innovation process of $\{X(t)\}$.

For a given canonical representation of an $S\alpha S$ process, it is a question whether this canonical representation is unique or not. The following proposition would be an answer.

Proposition 1.3. Suppose that there exist two canonical representations

$$X(t) = \int_{0}^{t} F^{(j)}(t, u) dZ^{(j)}(u) \qquad (j = 1, 2)$$

for an SaS process $\{X(t); t \in T\}$. Then the formula

$$\int_{-s}^{s} F^{(1)}(t, u) dZ^{(1)}(u) = \int_{-s}^{s} F^{(2)}(t, u) dZ^{(2)}(u)$$
 (1.2)

is satisfied for every s and t ($s \le t$). (For Gaussian case ($\alpha = 2$), see T. Hida [3].)

PROOF. Fix s and t $(s \le t)$ arbitrarily. For all $\lambda \in \mathbb{R}$, we have

$$E[\exp(i\lambda X(t))|\mathfrak{B}_s(X)]$$

$$=\exp\left\{i\lambda\int_{s}^{s}F^{(j)}(t,u)dZ^{(j)}(u)\right\}\exp\left\{-|\lambda|^{\alpha}\int_{s}^{t}|F^{(j)}(t,u)|^{\alpha}dv^{(j)}(u)\right\}$$

for each j. Therefore

$$\exp\left\{i\lambda \left[\int_{s}^{s} F^{(1)}(t, u) dZ^{(1)}(u) - \int_{s}^{s} F^{(2)}(t, u) dZ^{(2)}(u)\right]\right\}$$

$$= \exp\left\{|\lambda|^{\alpha} \left[\int_{s}^{t} |F^{(1)}(t, u)|^{\alpha} dv^{(1)}(u) - \int_{s}^{t} |F^{(2)}(t, u)|^{\alpha} dv^{(2)}(u)\right]\right\}$$

for all $\lambda \in \mathbb{R}$. We can see the left hand side is complex random variable of absolute value 1 a.s., while the right hand side is real. This means (1.2). \square

For every $t \in T$, $\mathfrak{M}_t^{\alpha}(X)$ denotes the closed linear hull of $\{X(s); s \leq t\}$ in $L^{(\alpha)}$. It is obvious that for the causal representation (1.1),

$$\mathfrak{M}_{t}^{\alpha}(X) \subset \mathfrak{M}_{t}^{\alpha}(Z)$$
 for every $t \in T$.

DEFINITION 1.4. A causal representation (1.1) is called *proper* if it satisfies

$$\mathfrak{M}_{t}^{\alpha}(X) = \mathfrak{M}_{t}^{\alpha}(Z)$$
 for every $t \in T$.

It is trivial that a proper representation is canonical. For Gaussian case $(\alpha = 2)$, it is well-known that a canonical representation is proper. By contrast, for non-Gaussian case $(0 < \alpha < 2)$, there exist causal representations which are not proper but canonical. We show some examples with such a property in § 3.

For Gaussian case, T. Hida [3] gave a criterion to determine whether a given causal representation is proper canonical or not. For $1 < \alpha < 2$, there exists a similar criterion by virtue of the following theory of the projections in Banach space (see I. Singer [14]).

Assume that M_0 is a closed subspace of Banach space $L^{(\alpha)}(T,\mathfrak{B},v)$ $(1<\alpha\leq 2)$. For any $f\in L^{(\alpha)}(T,\mathfrak{B},v)$, f_0 is called a projection of f on M_0 if it minimizes $\int_T |f-f_0|^\alpha dv$ in M_0 . For any $f\in L^{(\alpha)}(T,\mathfrak{B},v)$, the projection f_0 exists uniquely and satisfies

$$\int_T g(f - f_0)^{\langle \alpha - 1 \rangle} dv = 0 \quad \text{for any } g \in M_0$$

where $x^{(\alpha-1)}=|x|^{\alpha-1}\operatorname{sgn}(x)$. (This case it is said that $f-f_0$ is right-orthogonal to M_0 .)

We have already known that $\mathfrak{M}_t^{\alpha}(Z)$ has the norm induced by $L^{(\alpha)}(T, \mathfrak{B}, v)$, so we can apply the theory of projections to the pair $\mathfrak{M}_t^{\alpha}(Z)$ and its subspace $\mathfrak{M}_t^{\alpha}(X)$. Therefore, we obtain the following proposition.

PROPOSITION 1.5. For $1 < \alpha \le 2$, a causal representation (1.1) is proper if and only if, for any $t_0 \in T$, any function $\varphi \in L^{(\alpha)}(T, \mathfrak{B}, v)$ which satisfies

$$\int_{0}^{t} F(t, \cdot) \varphi^{(\alpha - 1)} dv = 0 \quad \text{for all } t \le t_{0}$$

is equal to 0 on $(-\infty, t_0] \cap T$.

§ 2. SaS M(t)-processes

In T. Hida [3], Lévy's M(t)-processes provided us precious examples of canonical representations of Gaussian processes. Moreover, H. P. McKean Jr. [9] constructed extended (Gaussian) M(t)-processes. He obtained their causal representations and investigated the canonicalities of them. In this section we consider the similar extended M(t)-processes in SaS case, which are constructed in the same procedure.

2-1 The constructions of SaS M(t)-processes

Lévy's multi-parameter Brownian motion can be constructed by integral geometry (N. N. Chentsov [2]). We construct the similar random field, which we would call the multi-parameter $S\alpha S$ motion, as follows (see S. Takenaka [16]).

Let \mathcal{H}^n be the set of all hyperplanes of codimension 1 in the Euclidean space $\mathbb{R}^n (n \ge 1)$. We introduce a parametrization (q, p) in \mathcal{H}^n , $q \in S^{n-1}$, $p \ge 0$, as follows:

$$(q, p) \longleftrightarrow h(q, p) = \{x \in \mathbb{R}^n; -(x \cdot q) + p = 0\}$$

Define a measure μ on \mathcal{H}^n as $d\mu = dq dp$ where dq is the normalized uniform measure on S^{n-1} and dp is the Lebesgue measure on $[0, \infty)$. Note that μ is the invariant measure under rotations and parallel transformations in \mathcal{H}^n .

For fixed α (0 < $\alpha \le 2$), we have an S α S random measure $\{Y_n^{\alpha}(B)\}$ with control measure space (\mathcal{H}^n, μ) . For $t \in \mathbb{R}^n$, set

$$S_t = \{h \in \mathcal{H}^n; h \text{ separates the origin } \mathbf{0} \text{ and } t\}$$

and define

$$X_n^{\alpha}(t) \equiv Y_n^{\alpha}(S_t) = \int_{0 \le p \le t(\xi \cdot q)} Y_n^{\alpha}(dq dp)$$
 (2.1)

where $t = t\xi$; $t \ge 0$, $\xi \in S^{n-1}$.

Then the SaS random field $\{X_n^{\alpha}(t); t \in \mathbb{R}^n\}$ has the following properties:

- $X_n^{\alpha}(\mathbf{0}) = 0.$
- ii) For any $g \in SO(n)$ and $a \in \mathbb{R}^n$, we have the formula

$$\{X_n^{\alpha}(gt+a)-X_n^{\alpha}(a); t\in \mathbb{R}^n\} \stackrel{d}{=} \{X_n^{\alpha}(t); t\in \mathbb{R}^n\}.$$

iii) The characteristic function of $X_n^{\alpha}(t) - X_n^{\alpha}(s)$ is equal to

$$\exp(-C(n)d(t, s)|z|^{\alpha}),$$

where C(1) = 1/2, $C(n) = \Gamma(n/2) \{(n-1)\pi^{1/2}\Gamma((n-1)/2)\}^{-1}$ for $n \ge 2$ and $d(\cdot, \cdot)$ denotes the Euclid distance of \mathbf{R}^n . This property derives the linear additive property which means that $X_n^{\alpha}(\mathbf{a} + \lambda \mathbf{b})$ is an S α S process with independent increments with respect to $\lambda \in \mathbf{R}$ for any \mathbf{a} and $\mathbf{b} \in \mathbf{R}^n$.

Especially in Gaussian case ($\alpha = 2$), the Gaussian random field $\{X_n^2(t); t \in \mathbb{R}^n\}$ is equal to Lévy's Brownian motion with parameter \mathbb{R}^n up to a constant. Furthermore, the uniqueness of the S α S random field with properties i) and iii) is recently proved in T. Mori [10]. So we would call this random field the S α S motion with parameter \mathbb{R}^n .

In Gaussian case ($\alpha = 2$), Lévy-McKean's M(t)-process is defined as the spherical mean process of the multi-parameter Brownian motion with the spherical harmonic as its weight. We can extend M(t)-processes to S α S case (0 < α < 2) by integral geometry as McKean used in [9].

For each $n \ge 1$, let $v_{l,m}^n(\xi)$ be the spherical harmonic on S^{n-1} , where $l(=0,1,\cdots)$ is the degree of harmonic and m is the associated multi-suffix. If n=1, l runs only 0 or 1. $v_{l,0}^n$ is called the zonal spherical function which depends only on the colatitude. (For details, see N. J. Vilenkin [18].)

Now we consider that

$$M_{n,l,m}^{\alpha}(t) \equiv \int_{\xi \in S^{n-1}} X_n^{\alpha}(t\,\xi) v_{l,m}^n(\xi) \, d\,\xi, \qquad t \ge 0, \tag{2.2}$$

where $d\xi$ is the normalized uniform measure on S^{n-1} . The right hand side can be defined as the limit of Riemannian sum in $L^{(\alpha)}$, explained later. We call the SaS process $\{M_{n,l,m}^{\alpha}(t); t \ge 0\}$ the SaS M(t)-process. Of course, $\{M_{n,0,0}^2(t)\}$ is Lévy's M(t)-process and $\{M_{n,l,m}^2(t)\}$ is McKean's M(t)-process up to a constant.

Let us calculate the right hand side of (2.2). Using (2.1),

$$M_{n,l,m}^{\alpha}(t) = \int_{\xi \in S^{n-1}} \left(\int_{0 \le p \le t(\xi \cdot q)} Y_n^{\alpha}(dq \, dp) \right) v_{l,m}^n(\xi) \, d\xi.$$

We can select an appropriate sequence of Riemannian sums

$$\sum_{i=1}^{k} I_{\{(q,p); 0 \le p \le t(\xi_{k,j},q)\}}(q,p) v_{l,m}^{n}(\xi_{k,j}) A(B_{k,j})$$

(where $\{B_{k,j}\}_{1 \le j \le k}$ is a partition of S^{n-1} , $\xi_{k,j}$ is an element in $B_{k,j}$ and $A(B_{k,j})$ is the area of $B_{k,j}$), which converges to

$$\int_{(\xi \cdot q) \ge p/t} v_{l,m}^n(\xi) \, d\xi$$

uniformly in $(q, p) \in S^{n-1} \times [0, t]$ as the mesh converges to 0 (so that the sequence converges in $L^{(\alpha)}$). Therefore we can exchange the order of the integrations and we have

$$M_{n,l,m}^{\alpha}(t) = \int_{S^{n-1} \times [0,t]} \left(\int_{(\xi \cdot q) \ge p/t} v_{l,m}^n(\xi) d\xi \right) Y_n^{\alpha}(dq dp).$$

According to McKean [9], for $n \ge 2$,

$$\int_{(\xi \cdot q) \ge p/t} v_{l,m}^n(\xi) d\xi$$

$$= v_{l,m}^n(q) \left(\int_0^{\pi} \sin^{n-2}\theta d\theta \right)^{-1} \int_0^{\cos^{-1}(p/t)} P_l^n(\cos\theta) \sin^{n-2}\theta d\theta,$$

where $P_l^n(x) = C_l^{(n-2)/2}(x)/C_l^{(n-2)/2}(1)$ ($C_b^a(x)$ is the Gegenbauer polynomial). Thus we obtain the following formula which is a causal representation of SaS process $\{M_{n,l,m}^{\alpha}(t); t \geq 0\}$:

$$M_{n,l,m}^{\alpha}(t) = \int_{0}^{t} F_{n,l}(t, p) dZ_{n,l,m}^{\alpha}(p), \qquad (*)$$

where

$$Z_{n,l,m}^{\alpha}(p) \equiv \int_{S^{n-1}} v_{l,m}^{n}(q) Y_{n}^{\alpha}(dq \times [0, p])$$

and

$$\begin{split} F_{1,l}(t, \, p) &\equiv 1/2, \\ F_{n,l}(t, \, p) &\equiv \left(\int_0^\pi \sin^{n-2}\theta d\theta \right)^{-1} \int_0^{\cos^{-1}(p/t)} P_l^n(\cos\theta) \sin^{n-2}\theta d\theta \\ &= (-1)^l C(n, \, l) \bigg[\int_x^1 \frac{d^l}{dx^l} (1 - x^2)^{l + (n-3)/2} dx \bigg] \bigg|_{x = p/t}, \end{split}$$

with a constant $C(n, l) = \Gamma(n/2) \{ 2^l \pi^{1/2} \Gamma(l + (n-1)/2) \}^{-1}$ for $n \ge 2$. Note that the process $\{ Z_{n,l,m}^{\alpha}(p); p \ge 0 \}$ is a 1-parameter SaS process with independent stationary increments, i.e., an SaS motion and that the kernel $F_{n,l}(t, u)$ depends on neither α nor m.

2-2 The canonicalities of the representations (I)

Here we consider the question whether the causal representations (*) are canonical or not. For n = 1, it is easy to see that both (l = 0, 1) of the representations (*) are proper canonical. Firstly, we find whether the representations (*) are proper or not for $n \ge 2$.

Lemma 2.1. Let $n \ge 2$. For any fixed t > 0, we can apply a differential operator

$$t^{-(n+l-1)}\frac{d}{dt}t^{n+l}$$

to $M_{n+2,l,m}^{\alpha}(t)$ at t in the sense of $L^{(\alpha)}(0 < \alpha \le 2)$ and we obtain

$$\left\{t^{-(n+l-1)}\frac{d}{dt}t^{n+l}M_{n+2,l,m}^{\alpha}(t)\right\} \stackrel{d}{=} \left\{KM_{n,l,m'}^{\alpha}(t)\right\}$$

with a positive constant $K = K(\alpha, n, l, m, m')$. (Especially, K = n if $\alpha = 2$ or l = 0. For Lévy's M(t)-process ($\alpha = 2$ and l = 0), see T. Hida [3].)

PROOF. Note that the kernel $F_{n,l}(t, u)$ is homogeneous, i.e., it is a function of u/t, therefore

$$\begin{split} t^{n+l} M_{n+2,l,m}^{\alpha}(t) \\ &= (-1)^l C(n+2, l) \int_0^t \left(\int_u^t \frac{d^l}{dx^l} (t^2 - x^2)^{l+(n-1)/2} \, dx \right) dZ_{n+2,l,m}^{\alpha}(u). \end{split}$$

Let us consider the right differentiability of $t^{n+l}M_{n+2,l,m}^{\alpha}(t)$. Fix any t>0 and let h>0.

$$\frac{1}{h} \left\{ (t+h)^{n+l} M_{n+2,l,m}^{\alpha}(t+h) - t^{n+l} M_{n+2,l,m}^{\alpha}(t) \right\}$$

$$= (-1)^{l} C(n+2, l) \times \frac{1}{h} \left\{ \int_{t}^{t+h} \left(\int_{u}^{t+h} \frac{d^{l}}{dx^{l}} \left[(t+h)^{2} - x^{2} \right]^{l+(n-1)/2} dx \right) dZ_{n+2,l,m}^{\alpha}(u) + \int_{0}^{t} \left(\int_{u}^{t+h} \frac{d^{l}}{dx^{l}} \left[(t+h)^{2} - x^{2} \right]^{l+(n-1)/2} dx \right) dZ_{n+2,l,m}^{\alpha}(u) \right\}. \tag{2.3}$$

The first term converges to 0 in $L^{(\alpha)}$ as $h \downarrow 0$ because

$$\begin{aligned} & \frac{d^{l}}{dx^{l}} [(t+h)^{2} - x^{2}]^{l+(n-1)/2} dx \\ & = (a \text{ polynomial in } x, h \text{ and } t) \times [(t+h)^{2} - x^{2}]^{(n-1)/2} \end{aligned}$$

and

$$\left\{ \frac{1}{h^{\alpha}} \int_{t}^{t+h} \left| \int_{u}^{t+h} \frac{d^{l}}{dx^{l}} \left[(t+h)^{2} - x^{2} \right]^{l+(n-1)/2} dx \right|^{\alpha} du \right\}^{(1/\alpha) \wedge 1} \\
\leq const. \times \left\{ h^{-\alpha} \int_{t}^{t+h} h^{\alpha \cdot \left[(n-1)/2 + 1 \right]} du \right\}^{(1/\alpha) \wedge 1} \\
\leq const. \times \left\{ h^{\alpha(n-1)/2 + 1} \right\}^{(1/\alpha) \wedge 1}.$$

The integrand of the second term of (2.3) converges to

$$\begin{split} &\frac{\partial}{\partial t} \left\{ (-1)^{l} C(n+2, l) \int_{u}^{t} \frac{d^{l}}{dx^{l}} (t^{2} - x^{2})^{l+(n-1)/2} dx \right\} \\ &= (-1)^{l} C(n+2, l) \int_{u}^{t} \frac{d^{l}}{dx^{l}} \left(\frac{\partial}{\partial t} (t^{2} - x^{2})^{l+(n-1)/2} \right) dx \\ &= (-1)^{l} n C(n, l) \int_{u}^{t} \frac{d^{l}}{dx^{l}} (t^{2} - x^{2})^{l+(n-3)/2} dx \\ &= n t^{n+l-1} F_{n,l}(t, u) \end{split}$$

as $h \downarrow 0$ for every point $u \in [0, t]$. The function $F_{n,l}(t, u)$ is right continuous in t uniformly on $u \in [0, t]$, so we find the second term of (2.3) converges to

$$\int_0^t nt^{n+l-1} F_{n,l}(t, u) dZ_{n+2,l,m}^{\alpha}(u)$$

in $L^{(\alpha)}$. Hence we complete the proof of the right differentiability. For any t > 0 and h > 0, we have the formula

$$\begin{split} &-\frac{1}{h}\left\{(t-h)^{n+l}M_{n+2,l,m}^{\alpha}(t-h)-t^{n+l}M_{n+2,l,m}^{\alpha}(t)\right\} \\ &=(-1)^{l}C(n+2,l)\times\left(-\frac{1}{h}\right)\left\{\int_{t-h}^{t}\left(\int_{u}^{t}\frac{d^{l}}{dx^{l}}(t^{2}-x^{2})^{l+(n-1)/2}dx\right)dZ_{n+2,l,m}^{\alpha}(u)\right. \\ &+\int_{0}^{t-h}\left(\int_{u}^{t-h}\frac{d^{l}}{dx^{l}}\left[(t-h)^{2}-x^{2}\right]^{l+(n-1)/2}dx\right) dx \end{split}$$

$$-\int_{u}^{t}\frac{d^{l}}{dx^{l}}(t^{2}-x^{2})^{l+(n-1)/2}dx\right)dZ_{n+2,l,m}^{\alpha}(u).$$

Thus to prove the left differentiability, we have only to show similarly that the first and the second term converge to 0 and $\int_0^t nt^{n+l-1} F_{n,l}(t, u) dZ_{n+2,l,m}^{\alpha}(u)$ in $L^{(\alpha)}$ respectively. We complete the proof.

By this lemma, we can reduce the problem of canonicalities to the case n = 3 or n = 2 according as n is odd or even respectively.

LEMMA 2.2. In case n = 3.

- i) If l = 0, 1, 2, the causal representation (*) is proper for $0 < \alpha \le 2$.
- ii) If $l \ge 3$, the causal representation (*) is not proper for $1 < \alpha \le 2$.
- iii) For any fixed t > 0, $M_{3,l,m}^{\alpha}(t)$ is differentiable at t in $L^{(\alpha)}$ $(0 < \alpha \le 2)$. (Hida [3] and H. P. McKean Jr. [9] for $\alpha = 2$)

Conjecture. The causal representation (*) is not proper for $\alpha = 1$ and (*) is proper for $0 < \alpha < 1$.

PROOF. i). We already know that

$$F_{3,0}(t, u) = C(3, 0) \left(1 - \frac{u}{t}\right), \quad F_{3,1}(t, u) = C(3, 1) \left(1 - \frac{u^2}{t^2}\right) \quad \text{and} \quad F_{3,2}(t, u) = 4C(3, 2) \left(\frac{u}{t} - \frac{u^3}{t^3}\right).$$

So we can easily show that

$$\frac{d}{dt}tM_{3,0,0}^{\alpha}(t) = C(3,0)Z_{3,0,0}^{\alpha}(t),$$

$$t^{-1}\frac{d}{dt}t^{2}M_{3,1,m}^{\alpha}(t) = 2C(3,1)Z_{3,1,m}^{\alpha}(t) \quad \text{and}$$

$$t^{-1}\frac{d}{dt}t^{3}M_{3,2,m}^{\alpha}(t) = 2C(3,2)\int_{0}^{t}u\,dZ_{3,2,m}^{\alpha}(u)$$

for every t > 0 in $L^{(\alpha)}$ $(0 < \alpha \le 2)$. Now it is clear that (*) is proper if l = 0, 1. If l = 2, using the equation

$$\int_0^t s^{-2} \left(\int_0^s u du \right) ds = \int_0^t \left(1 - \frac{u}{t} \right) du,$$

we have

$$\int_{0}^{t} s^{-2} \left(\int_{0}^{s} u dZ_{3,2,m}^{\alpha}(u) \right) ds = \int_{0}^{t} \left(1 - \frac{u}{t} \right) dZ_{3,2,m}^{\alpha}(u)$$

for every t > 0, where the integration in ds means the limit of Riemannian sum in $L^{(\alpha)}$. The right hand side belongs to $\mathfrak{M}_t^{\alpha}(M_{3,2,m}^{\alpha})$ for every t > 0 and the kernel is equal to $F_{3,0}(t,u)$ up to a constant. Hence we show that (*) is proper for l = 2.

ii). For a fixed $t_0 > 0$, let us compute the inner product between $F_{3,l}(t, u)$ $(0 < t \le t_0)$ and u^j $(0 \le j \le l - 2)$ on [0, t].

$$\int_{0}^{t} F_{3,l}(t, u) u^{j} du = (-1)^{l+1} C(3, l) \int_{0}^{t} \left[\frac{d^{l-1}}{dx^{l-1}} (1 - x^{2})^{l} \right]_{x = u/t} u^{j} du \qquad (l \ge 3)$$

$$= const. \times t^{j-1} \left[\frac{d^{l-j-2}}{dx^{l-j-2}} (1 - x^{2})^{l} \right]_{x = 0}.$$

Using a recurrence property, it can be showed that the value is 0 for all $0 < t \le t_0$ if j is even or odd, according as l is odd or even respectively. This implies that $u^{j/(\alpha-1)}$ is right-orthogonal to $F_{3,l}(t, u)$ in $L^{(\alpha)}[0, t]$ $(1 < \alpha \le 2)$. We apply Proposition 1.5 and complete the proof of ii).

LEMMA 2.3. In case n=2, then the statements i) and ii) of Lemma 2.2 also hold. (McKean [9] for $\alpha=2$)

Proof. i). We already know that

$$F_{2,0}(t, u) = C(2, 0) \cos^{-1} \frac{u}{t}, \ F_{2,1}(t, u) = C(2, 1) \left\{ 1 - \left(\frac{u}{t}\right)^2 \right\}^{1/2} \text{ and}$$

$$F_{2,2}(t, u) = 3C(2, 2) \frac{u}{t} \left\{ 1 - \left(\frac{u}{t}\right)^2 \right\}^{1/2}.$$

And we can show that

$$\int_{0}^{t} \frac{s}{t(t^{2} - s^{2})^{1/2}} ds \int_{0}^{s} \cos^{-1} \frac{u}{s} du = \frac{\pi}{2} \int_{0}^{t} \left(1 - \frac{u}{t}\right) du,$$

$$\int_{0}^{t} \frac{1}{(t^{2} - s^{2})^{1/2}} ds \int_{0}^{s} \left\{1 - \left(\frac{u}{s}\right)^{2}\right\}^{1/2} du = \frac{\pi}{2} \int_{0}^{t} \left(1 - \frac{u}{t}\right) du \quad \text{and}$$

$$\int_{0}^{t} \frac{t}{s(t^{2} - s^{2})^{1/2}} ds \int_{0}^{s} \frac{u}{s} \left\{1 - \left(\frac{u}{s}\right)^{2}\right\}^{1/2} du = \frac{\pi}{4} \int_{0}^{t} \left\{1 - \left(\frac{u}{t}\right)^{2}\right\} du.$$

Put $dZ_{2,l,m}^{\alpha}(u)$ (l=0, 1, 2) in place of du in these three formulas, where the

above integral operators in ds act in $L^{(\alpha)}$. Thus we know that

$$\int_0^t \left(1 - \frac{u}{t}\right) dZ_{2,0,0}^{\alpha}(u) \in \mathfrak{M}_t^{\alpha}(M_{2,0,0}^{\alpha}),$$

$$\int_0^t \left(1 - \frac{u}{t}\right) dZ_{2,1,m}^{\alpha}(u) \in \mathfrak{M}_t^{\alpha}(M_{2,1,m}^{\alpha}) \quad \text{and}$$

$$\int_0^t \left\{1 - \left(\frac{u}{t}\right)^2\right\} dZ_{2,2,m}^{\alpha}(u) \in \mathfrak{M}_t^{\alpha}(M_{2,2,m}^{\alpha})$$

for every t > 0. Now we can easily obtain the innovations $\{Z_{2,l,m}^{\alpha}(t)\}$ (l = 0, 1, 2), similarly to i) of Lemma 2.2.

ii). It is easily proved that $u^{j/(\alpha-1)}$ $(0 \le j \le l-2)$ is right-orthogonal to $F_{2,l}(t, u)$ in $L^{(\alpha)}[0, t]$ $(1 < \alpha \le 2)$ for any t > 0 if j is even or odd, according as l is odd or even respectively, in the same way as the proof of ii) of Lemma 2.2. This implies ii).

Lemmas $2.1 \sim 2.3$ imply the following theorem.

THEOREM 2.4. Let $n \ge 2$.

i) If l = 0, 1, 2, the causal representation (*)

$$M_{n,l,m}^{\alpha}(t) = \int_{0}^{t} F_{n,l}(t, u) dZ_{n,l,m}^{\alpha}(u)$$

is proper for $0 < \alpha \le 2$.

- ii) If $l \ge 3$, the causal representation (*) is not proper for $1 < \alpha \le 2$.
- iii) If n is odd (=2d+1), then $M_{n,l,m}^{\alpha}(t)$ is d-times differentiable at t in $L^{(\alpha)}$ $(0 < \alpha \le 2)$ for any fixed t > 0. If n is even (=2d), then $M_{n,l,m}^{\alpha}(t)$ is (d-1)-times differentiable at t in $L^{(\alpha)}$ $(0 < \alpha \le 2)$ for any fixed t > 0. (Hida [3] and McKean [9] for $\alpha = 2$)

§ 3. Regularities of paths and canonicalities of representations

In Gaussian case ($\alpha = 2$), to know whether a causal representation is canonical or not, we have only to apply Proposition 1.5 to check whether it is proper or not. On the other hand for non-Gaussian case ($0 < \alpha < 2$), by observing the regularity of paths of the process, we can prove that a causal representation which belongs to a certain class is canonical even if it is not proper (see P. Lévy [8] and T. Hida and N. Ikeda [4]).

3-1 Regularities of paths of certain SaS processes

Firstly, we apply the Lévy-Itô's theorem on the decomposition of paths

to an SaS motion.

Let T' be a subinterval in $[0, \infty)$, then D(T') denotes the set of functions which are right continuous and have left limits at all points in T'. If T' is compact, D(T') has a norm of uniformly convergence on T', i.e., $||f||_{\infty} = \sup_{t \in T'} |f(t)|$ for $f \in D(T')$. A stochastic process on T' is called a D(T')-process if its almost all paths belong to D(T').

It is well-known that any S α S motion $\{Z_0(t); t \in [0, \infty)\}$ $(0 < \alpha < 2)$ has a $D([0, \infty))$ -modification $\{Z_0^D(t, \omega); t \in [0, \infty)\}$ represented by

$$Z_0^D(t, \omega) = \lim_{l \to \infty} \int_{\{0,t\}} \int_{|y| > 1/l} y N(dudy, \omega)$$

where $N(dudy, \omega)$ is a Poisson random measure with control measure $n(dudy) \propto |y|^{-(\alpha+1)} dudy$ on $[0, \infty) \times (R \setminus \{0\})$ and $\lim_{l \to \infty}$ means that almost all

 $D[0, \infty)$ -paths converge on any compact interval. Note that the random variable $N((s, s'] \times E, \omega)$ is equal to the number of jumps with height in E on time interval (s, s'] of path $Z_0^D(\cdot, \omega)$ for any s and s' $(s \le s')$ and any Borel set E of $R \setminus \{0\}$. (For details, see K. Itô [5] and K. Sato [12].)

With the help of this theory, let us consider the regularity of paths of S α S process $\{X(t); t \in [0, \infty)\}$ which is represented by

$$X(t) = \int_0^t F(t, u) dZ_0(u).$$
 (3.1)

Now we regard that the kernel F(t, u) is a function restricted on $\mathbf{D}_0 = \{(t, u); t \ge u \ge 0\} \setminus \{(0, 0)\}$. We use the following notations which mean conditions on the kernel.

- k1) F(t, u) is continuous on D_0 .
- k2) For any fixed t > 0, F(t, u) is differentiable in u on [0, t] and $\frac{\partial}{\partial u}F(t, u)$ is continuous on \mathbf{D}_0 .
 - k3) F(t, t) is bounded in the neighborhood of t = 0.
 - k4) $\sup_{u \in [0,t]} \left| \frac{\partial}{\partial u} F(t, u) \right| \le const. \times t^{-1}$ in the neighborhood of t = 0.
 - k5) F(t, u) belongs to C^2 on D_0 .
 - k6) $\frac{\partial}{\partial u} F(t, u)$ is bounded in the neighborhood of (t, u) = (0, 0).

To the next lemma, we apply the integration by parts. The idea is borrowed from K. Takashima [15].

LEMMA 3.1. Assume that the kernel F(t, u) satisfies k1) and k2). For almost all $D[0, \infty)$ -paths $Z_0^D(\cdot, \omega)$, we define a process $\{X^D(t, \omega); t > 0\}$ as

$$X^{D}(t, \omega) \equiv F(t, t)Z_{0}^{D}(t, \omega) - \int_{[0, t]} Z_{0}^{D}(u, \omega) \left(\frac{\partial}{\partial u} F(t, u)\right) du.$$
 (3.2)

Then $\{X^D(t,\omega)\}$ is a $D(0,\infty)$ -modification of $\{X(t)\}$ given by (3.1). And there exists a relation of jumping times and heights between paths $X^D(\cdot,\omega)$ and $Z_0^D(\cdot,\omega)$ expressed as

$$X^{D}(t, \omega) - X^{D}(t - \omega) = F(t, t) \{Z_{0}^{D}(t, \omega) - Z_{0}^{D}(t - \omega)\}$$
 a.s. (3.3)

Moreover, if F(t, u) satisfies k3) and k4), then $X^{D}(\cdot, \omega)$ is right continuous at t = 0 and $X^{D}(0, \omega) = 0$.

PROOF. By the conditions k1) and k2), we can regard that the right hand side of (3.2) is defined in the sense of $L^{(\alpha)}$ for every t>0 and we find that the right hand side is a modification of $\{X(t)\}$. The condition k1) implies that $F(t,t)Z_0^D(t,\omega)$ is a $D(0,\infty)$ -process. By k2), $\int_{[0,t]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t,u)\right) du$ is well-defined and has finite value for all t>0 for almost all $D[0,\infty)$ -paths $Z_0^D(\cdot,\omega)$. Let us show that this term is continuous on $(0,\infty)$ as paths. Fix ω , consider the right continuity at t>0. Let h>0.

$$\int_{[0,t+h]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t+h,u) \right) du - \int_{[0,t]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t,u) \right) du$$

$$= \int_{[0,t]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t+h,u) - \frac{\partial}{\partial u} F(t,u) \right) du$$

$$+ \int_{(t,t+h]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t+h,u) \right) du$$

converges to 0 as $h\downarrow 0$ by k2). This term is left continuous at t>0 because

$$\int_{[0,t-h]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t-h,u) \right) du - \int_{[0,t]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t,u) \right) du$$

$$= \int_{[0,t-h]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t-h,u) - \frac{\partial}{\partial u} F(t,u) \right) du$$

$$- \int_{(t-h,t]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t,u) \right) du$$

converges to 0 as $h \downarrow 0$ by k2). Hence we prove that $\{X^D(t, \omega)\}$ is a $D(0, \infty)$ -modification of $\{X(t)\}$.

Assume k3) and k4). Then $F(t, t)Z_0^D(t, \omega)$ is right continuous at t = 0 by k3). And

$$\left| \int_{\{0,h\}} Z_0^D(u,\,\omega) \left(\frac{\partial}{\partial u} F(h,\,u) \right) du \right| \le h \sup_{u \in [0,h]} |Z_0^D(u,\,\omega)| \sup_{u \in [0,h]} \left| \frac{\partial}{\partial u} F(h,\,u) \right|$$

converges to 0 as $h\downarrow 0$ by k4). Thus we prove the right continuity of $\{X^D(t,\omega)\}$ at t=0.

Now we consider these two special cases.

- 1°) $F(t, t) \equiv 0$ on $t \in (0, \infty)$,
- 2°) $F(t, t) \neq 0$ on $t \in (0, \infty)$.

The case 1°). We have the following corollary by the relation (3.3).

COROLLARY 3.2. If F(t, u) satisfies k1), k2) and 1°), almost all paths $X^{D}(\cdot, \omega)$ are continuous on $(0, \infty)$.

Furthermore, we can consider the differentiability of paths.

LEMMA 3.3. If F(t, u) satisfies k5) and 1°), then the paths $X^{D}(\cdot, \omega)$ have right and left derivatives at all t > 0 and they satisfy

$$\frac{d}{dt_{+}}X^{D}(t, \omega) = \frac{\partial}{\partial t'}F(t', u)\bigg|_{t'=t, u=t}Z_{0}^{D}(t, \omega) - \int_{[0,t]}Z_{0}^{D}(u, \omega)\bigg(\frac{\partial}{\partial u}\frac{\partial}{\partial t}F(t, u)\bigg)du$$
(3.4)

$$\frac{d}{dt_{-}}X^{D}(t,\omega) = \frac{\partial}{\partial t'}F(t',u)\bigg|_{t'=t,u=t}Z^{D}_{0}(t-,\omega) - \int_{[0,t]}Z^{D}_{0}(u,\omega)\bigg(\frac{\partial}{\partial u}\frac{\partial}{\partial t}F(t,u)\bigg)du$$
(3.5)

Moreover, if F(t, u) satisfies k6), the paths $X^{D}(\cdot, \omega)$ are right differentiable at t = 0 and $\frac{d}{dt_{+}}X^{D}(t, \omega)\Big|_{t=0} = 0$.

PROOF. The right differentiability at t > 0; Let h > 0, then by k5),

$$\frac{1}{h} \int_{[0,t]} Z_0^D(u, \omega) \left(\frac{\partial}{\partial u} F(t+h, u) - \frac{\partial}{\partial u} F(t, u) \right) du$$

$$= \int_{[0,t]} Z_0^D(u, \omega) \frac{\partial}{\partial u} \frac{\partial}{\partial t} F(t+\theta h, u) du \qquad \text{(where } 0 < \theta = \theta(h, t, u) < 1)$$

$$\longrightarrow \int_{[0,t]} Z_0^D(u, \omega) \frac{\partial}{\partial u} \frac{\partial}{\partial t} F(t, u) du \qquad (h \downarrow 0).$$

On the other hand

$$\frac{1}{h} \int_{(t,t+h]} Z_0^D(u,\omega) \frac{\partial}{\partial u} F(t+h,u) du$$

$$\longrightarrow Z_0^D(t,\omega) \frac{\partial}{\partial u'} F(t',u') \Big|_{t' \perp t,u' \perp t} \qquad (h \downarrow 0).$$

By 1°) and k5), we have

$$0 = \frac{d}{dt}F(t, t) = \frac{\partial}{\partial t'}F(t', u')\bigg|_{t' = t, u' = t} + \frac{\partial}{\partial u'}F(t', u')\bigg|_{t' = t, u' = t}$$

so we obtain (3.4).

The left differentiability at t > 0; By k5),

$$\frac{1}{-h} \int_{[0,t-h]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F(t-h,u) - \frac{\partial}{\partial u} F(t,u) \right) du$$

$$= \int_{[0,t-h]} Z_0^D(u,\omega) \frac{\partial}{\partial u} \frac{\partial}{\partial t} F(t-\theta h,u) du$$

$$\longrightarrow \int_{[0,t)} Z_0^D(u,\omega) \frac{\partial}{\partial u} \frac{\partial}{\partial t} F(t,u) du \qquad (h \downarrow 0).$$

Now the interval [0, t) can be replaced by [0, t]. And

$$-\frac{1}{-h}\int_{(t-h,t]} Z_0^D(u,\,\omega) \frac{\partial}{\partial u} F(t,\,u) \, du$$

$$\longrightarrow Z_0^D(t-,\,\omega) \frac{\partial}{\partial u'} F(t,\,u') \bigg|_{u \in L} \qquad (h \downarrow 0).$$

So we obtain (3.5).

Especially, the paths belong to $C^1(0, \infty)$ if

$$\frac{\partial}{\partial t}F(t, u)\Big|_{u=t}\equiv 0$$
 on $(0, \infty)$.

The case 2°). For simplicity, we assume $F(t, t) \equiv 1$. Then by (3.3), for any fixed t > 0, $N((s, s'] \times E, \omega)$ can be obtained from $\{X^D(r, \omega); r \in Q \cap [0, t]\}$ for any $s, s' \in Q$, $0 < s < s' \le t$) and any Borel set E of $R \setminus \{0\}$. For example, if $E = (y_0, \infty)$ $(y_0 > 0)$,

$$\{\omega; N((s, s'] \times (y_0, \infty), \omega) \ge 1\}$$

$$= \bigcup_{\substack{m \\ r,r' \in Q; \\ s < r < r' \leq s', \\ r'-r \leq 1/n}} \bigcup_{\substack{s,r' \in Q; \\ s' < r' \leq s', \\ r'-r \leq 1/n}} \{\omega; X^{D}(r',\omega) - X^{D}(r,\omega) > y_0 + 1/m\}.$$

So, for every $t' \in \mathbf{Q}$ $(0 < t' \le t)$ and $l \in \mathbf{N}$, we calculate

$$\sum_{k=1}^{n} \left\{ X^{D}(s_{n,k}, \omega) - X^{D}(s_{n,k-1}, \omega) \right\} N\left((s_{n,k-1}, s_{n,k}] \times \left(-\frac{1}{l}, \frac{1}{l} \right)^{c}, \omega \right),$$

where $\{s_{n,k} \in \mathbb{Q}; 0 \le k \le n\}$ is a partition of [0, t'] and the mesh tends to 0 as $n \to \infty$. As the above random variable converges a.s. as $n \to \infty$ for every t', we regard the limit of variables as a stochastic process whose paths belong to D([0, t]) a.s. Taking the limit as $l \to \infty$, we obtain the D-modification $\{Z_0^D(s, \omega); s \in [0, t]\}$ of $\{Z_0(s); s \in [0, t]\}$ (see K. Itô [5] for reference). Thus we have

PROPOSITION 3.4. If the kernel satisfies k1), k2) and 2°), then the causal representation (3.1) is canonical (see P. Lévy [8] and T. Hida and N. Ikeda [4]).

3-2 The canonicalities of the representations (II)

For Gaussian case ($\alpha=2$), as we saw in Theorem 2.4 of subsection 2-2, the representation (*) is not canonical if $n \ge 2$ and $l \ge 3$ (H. P. McKean Jr. [9]). McKean obtained the proper canonical representations of $\{M_{n,l,m}^2(t)\}$ in these cases. For non-Gaussian case ($0 < \alpha < 2$), we apply the argument of the previous subsection to SaS M(t)-processes and their representations (*).

LEMMA 3.5. In case n = 3.

- i) For all l, $\{M_{3,l,m}^{\alpha}(t)\}$ $(0 < \alpha < 2)$ has a modification whose paths are continuous on $[0, \infty)$ and differentiable in both sides at all t > 0. (The derivatives are not equal to each other. And $\{tM_{3,l,m}^{\alpha}(t)\}$ has a modification whose paths are right differentiable at t = 0.)
- ii) For all l, the causal representation (*) of $\{M_{3,l,m}^{\alpha}(t)\}\ (0 < \alpha < 2)$ is canonical.

PROOF. i) is proved bacause

$$F_{3,l}(t, u) = (-1)^l C(3, l) \int_x^1 \frac{d^l}{dx^l} (1 - x^2)^l dx \bigg|_{x = u/t}$$

satisfies the conditions $k1 \sim k5$ and 1°). And

$$\frac{\partial}{\partial t} F_{3,l}(t, u) \Big|_{u=t} \neq 0$$
 on $(0, \infty)$,

so the right and left derivatives are not equal.

ii). Let us consider the right derivative of the C-modification of $\{M_{3,l,m}^{\alpha}(t)\}$ as a process, then the process satisfies 2°). So we apply Proposition 3.4 to obtain $\{Z_{3,l,m}^{\alpha}(t)\}$.

LEMMA 3.6. In case n = 2.

- i) For all l, $\{M_{2,l,m}^{\alpha}(t)\}$ has a modification whose paths are continuous on $[0, \infty)$.
 - ii) For all l, the causal representation (*) of $\{M_{2,l,m}^{\alpha}(t)\}$ is canonical.

PROOF. i). Let us prove $\{M_{2,l,m}^{\alpha}(t)\}$ has a modification in the form of (3.2). The kernel

$$F_{2,l}(t, u) = (-1)^l C(2, l) \int_x^1 \frac{d^l}{dx^l} (1 - x^2)^{l-1/2} dx \bigg|_{x = u/t}$$

satisfies k1) and 1°) (thus the first term of (3.2) vanishes), and is differentiable in u on [0, t) for every t > 0. Note that

$$\frac{\partial}{\partial u}F_{2,l}(t, u) = \left(a \text{ polynomial in } \frac{u}{t}\right) \times \left\{1 - \left(\frac{u}{t}\right)^2\right\}^{-1/2} \frac{1}{t}.$$

So, according as $\frac{\partial}{\partial u} F_{2,l}(t, u) \to \infty$ or $-\infty$ as $u \uparrow t$ (whether the limit is ∞ or $-\infty$ depends only on l.), we have some $\varepsilon = \varepsilon(t, l) > 0$ such that $\frac{\partial}{\partial u} F_{2,l}(t', u)$ increases or decreases monotonously in u and decreases or increases monotonously in t' on $\{(t', u); t - \varepsilon \le u < t' \le t + \varepsilon\}$ respectively. Hence the second term of (3.2)

$$\int_{[0,t]} Z_0^{D}(u,\,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t,\,u)\right) du,\tag{3.6}$$

where $\{Z_0^D(t, \omega)\}$ is a *D*-modification of $\{Z_{2,l,m}^{\alpha}(t)\}$, is well-defined for all t > 0 because

$$\left| \int_{[t-\varepsilon,t]} Z_0^D(u,\,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t,\,u) \right) du \right|$$

$$\leq \sup_{u \in [t-\varepsilon,t]} |Z_0^D(u,\,\omega)| \left| \int_{t-\varepsilon}^t \frac{\partial}{\partial u} F_{2,l}(t,\,u) du \right| < \infty.$$

Let us prove the right continuity of (3.6) at t > 0. Let h be $0 < h < \varepsilon$ then

$$\int_{[0,t-\varepsilon]} Z_0^D(u,\,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t+h,\,u) - \frac{\partial}{\partial u} F_{2,l}(t,\,u) \right) du \longrightarrow 0 \qquad (h\downarrow 0).$$

By k1),

$$\left| \int_{(t-\varepsilon,t]} Z_0^D(u,\,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t+h,\,u) - \frac{\partial}{\partial u} F_{2,l}(t,\,u) \right) du \right|$$

$$\leq \sup_{u \in (t-\varepsilon,t]} |Z_0^D(u,\,\omega)| \left| \int_{t-\varepsilon}^t \left(\frac{\partial}{\partial u} F_{2,l}(t+h,\,u) - \frac{\partial}{\partial u} F_{2,l}(t,\,u) \right) du \right| \longrightarrow 0 \qquad (h \downarrow 0),$$

and

$$\left| \int_{(t,t+h)} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t+h,u) \right) du \right|$$

$$\leq \sup_{u \in [t,t+h]} |Z_0^D(u,\omega)| \left| \int_t^{t+h} \frac{\partial}{\partial u} F_{2,l}(t+h,u) du \right| \longrightarrow 0 \qquad (h \downarrow 0).$$

To prove the left continuity of (3.6) at t > 0, we have only to let h be $0 < h < \varepsilon$ and prove similarly that

$$\int_{[0,t-\varepsilon]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t-h,u) - \frac{\partial}{\partial u} F_{2,l}(t,u) \right) du,$$

$$\int_{(t-\varepsilon,t-h]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t-h,u) - \frac{\partial}{\partial u} F_{2,l}(t,u) \right) du \quad \text{and}$$

$$\int_{(t-h,t]} Z_0^D(u,\omega) \left(\frac{\partial}{\partial u} F_{2,l}(t,u) \right) du$$

converge to 0 as $h \downarrow 0$.

Using the fact that $\int_0^t \left| \frac{\partial}{\partial u} F_{2,t}(t, u) \right| du$ is bounded (constant in fact) in the neighborhood of t = 0, we show the right continuity at t = 0. Hence i) is proved.

ii). The proof is similar to i) of Lemma 2.3. We apply an integral operator $t^{-(l-1)}\int_0^t \frac{s^{l-1}}{(t^2-s^2)^{1/2}}ds$ to $\{M_{2,l,m}^{\alpha}(s); 0 < s \le t\}$ $(l \ge 1)$ and we obtain a new process with a causal representation whose kernel is a polynomial in u/t (like the odd dimensional cases). The kernel of the new process satisfies either 1°) or 2°). In the case 2°), we apply Theorem 3.4 to finish the proof. In the case 1°), we have only to differentiate the process a certain times until 2°) is satisfied.

If $n \ge 4$, the kernel $F_{n,l}(t, u)$ satisfies k 5) and the reduction formula below (see the proof of Lemma 2.1).

$$\frac{\partial}{\partial t} F_{n+2,l}(t, u) = 2n F_{n,l+1}(t, u) \frac{u}{t^2} \quad \text{for } n \ge 2.$$

Finally, we have the following theorem.

Theorem 3.7. For $0 < \alpha < 2$.

i) For all n and l, the causal representation (*)

$$M_{n,l,m}^{\alpha}(t) = \int_{0}^{t} F_{n,l}(t, u) dZ_{n,l,m}^{\alpha}(u)$$

is canonical.

ii) If n is odd $(=2d+1, d \ge 1)$, then $\{M_{n,l,m}^{\alpha}(t)\}$ has a modification whose paths belong to $C^{d-1}(0,\infty)$ and d-times differentiable in both sides at all t>0. $(\{t^dM_{n,l,m}^{\alpha}(t)\}\$ has a modification whose paths belong to $C^{d-1}[0,\infty)$ and d-times differentiable in both sides at all $t\ge 0$.) If n is even (=2d), then $\{M_{n,l,m}^{\alpha}(t)\}$ has a modification whose paths belong to $C^{d-1}(0,\infty)$. $(\{t^{d-1}M_{n,l,m}^{\alpha}(t)\}\$ has a modification whose paths belong to $C^{d-1}[0,\infty)$.)

Let us sum up the results of the path properties of $\{M_{n,l,m}^{\alpha}(t); t \geq 0\}$ and the canonicalities of their causal representations (*) as the following list.

		l = 0, 1, 2		1 ≥ 3		
n	α	$0 < \alpha < 2$	$\alpha = 2$	$0 < \alpha \le 1$	1 < α < 2	$\alpha = 2$
n = 1 $(l = 0, 1)$	paths	D	C			
	(*)	proper				
		canonical				
n: even (= 2d)	paths	C^{d-1}	C^{d-1}	C^{d-1}		C^{d-1}
	(*)	proper		unknown	not proper	
		canonical		canonical		not canonical
$n: odd \\ (= 2d + 1)$	paths	C^{d-1}	C^d	C^{d-1}		C^d
	(*)	proper		unknown	not proper	
		canonical		canonical		not canonical

References

- [1] S. Cambanis, C. D. Hardin Jr. and A. Weron, Innovations and Wold Decompositions of Stable Sequences, Probab. Theory Related Fields, 79 (1988), 1-27.
- [2] N. N. Chentsov, Lévy's Brownian motion of several parameters and generalized white noise, Theory Probab. Appl., 2 (1957), 265-266.
- [3] T. Hida, Canonical representations of Gaussian processes and their applications, Mem. Coll. Sci. Univ. Kyoto, Ser. A. Math., 33 (1960), 109-155.
- [4] T. Hida and N. Ikeda, Note on linear processes, J. Math. Kyoto Univ., 1 No.1 (1961), 75–86.
- [5] K. Itô, Probability Theory (in Japanese), Iwanami, Tokyo, 1978.
- [6] K. Kojo and S. Takenaka, On Canonical Representations of Stable M(t)-processes, to appear in Probab. Math. Statist., 13 fasc. 2.
- [7] J. Kuelbs, A Representation Theorem for Symmetric Stable Processes and Stable Measures on H, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 26 (1973), 259-271.
- [8] P. Lévy, Fonctions aléatoires à corrélation lineaire, Illinois J. Math., 1 (1957), 217-258.
- [9] H. P. McKean Jr., Brownian Motion with a Several-Dimensional Time, Theory Probab. Appl., 8 (1963), 335-354.
- [10] T. Mori, Representation of linearly additive random fields, Probab. Theory Related Fields, 92 (1992), 91-115.
- [11] J. Rosinski, On path properties of certain infinitely divisible processes, Stochastic Process. Appl., 33 (1989), 73–87.
- [12] K. Sato, Infinitely divisible distributions (in Japanese), Seminar on Probab., 52 (1981).
- [13] M. Schilder, Some Structure Theorems for the Symmetric Stable Laws, Ann. Math. Statist., 41 No.2 (1970), 412-421.
- [14] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, 1970.
- [15] K. Takashima, Sample path properties of ergodic self-similar processes, Osaka J. Math., 26 (1989), 159-189.
- [16] S. Takenaka, Integral-geometric construction of self-similar stable processes, Nagoya Math. J., 123 (1991), 1-12.
- [17] S. Takenaka, I. Kubo and H. Urakawa, Brownian motion parametrized with metric space of constant curvature, Nagoya Math. J., 82 (1981), 131-140.
- [18] N. J. Vilenkin, Special Functions and the Theory of Group Representations, Trans. Math. Monographs, 22 (1968).
- [19] A. Weron, Stable processes and measures; a survey, Probab. Theory on Vector Spaces III, Lecture Notes in Math., Springer-Verlag, 1080 (1983), 306-364.

Department of Mathematics Faculty of Science Hiroshima University Higashi-Hiroshima 724, Japan