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Introduction

T. Hida, H. Cramér and many other mathematicians have investigated the
theory of canonical representations of Gaussian processes. Especially, T. Hida
[3] has proved that any purely non-deterministic separable Gaussian process
has a unique generalized canonical representation, which is obtained by
applying Hellinger-Hahn’s theorem to the reproducing kernel Hilbert space
made from the covariance function of the process. This representation is
called canonical if the multiplicity of the representation is 1 (T. Hida and
N. Ikeda [4]). However, it seems that for non-Gaussian processes (especially
without 2nd moments), any general theory of canonical representations has
not been established yet.

We know that Gaussian random variables are symmetric stable random
variables with index a=2. So in this paper, we deal with canonical
representations of symmetric-a-stable (= SaS) processes (0 < a < 2).

In Gaussian case, Lévy-McKean’s M (t)-processes are precious examples
to study the theory of canonical representations. The M (t)-process is defined
as the spherical mean process of the multi-parameter Brownian motion with
the spherical harmonic as its weight. N. N. Chentsov [2] found that this
Brownian motion can be constructed by integral geometry, and H. P. McKean
Jr. [9] used this fact to obtain a causal representation of the M (f)-process.
We apply this very fact to extend the notions of the multi-parameter Brownian
motions and M (t)-processes to non-Gaussian SaS case (0 < a < 2), and we
obtain causal representations of these M (¢)-processes in the form of

t

X(@) = j F(t, uydZ(u).
0

We investigate the canonicalities of these representations by the following

methods.

i) Similarly to Gaussian case (a = 2), we can consider the closed linear
hulls of {Z(s); s <t} and {X(s);s <t} respectively for every r. We find
whether the hull of {X(s); s < ¢} includes the hull of {Z(s); s <t} for all ¢ or
not (the inverse inclusion is trivial). In case that the equality holds (this case
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we say that the representation is proper), we make the procedure to obtain
{Z(s); s <t} from {X(s);s <t}.

ii) In case of M(t)-processes, {Z(t)} is an SaS process with independent
stationary increments (i.e., an SaS motion). For non-Gaussian case (0 < a < 2),
we apply the Lévy-It6’s theorem on the decomposition of paths to modify
{Z(1)} into a process whose paths are right continuous and have left limits
(this modification is called D-modification in this paper). Using this
modification, we obtain a D-modification of {X(t)} (to obtain the modification,
we apply the integration by parts). And we consider the regularity of paths
and we calculate the jumping times and heights of {Z(s); s <t} from those
of {X(s); s <t}. This idea is found in P. Lévy [8], and T. Hida and N. Ikeda
[4], but cannot be applied to Gaussian case because the paths of Brownian
motion are continuous.

Through the argument, we can find whether a causal representation in
a certain class is canonical or not. We hope it will be a first step to study
the theory of canonical representations of SaS processes.

§0. Preliminaries

A real-valued random variable X is called a symmetric-a-stable (= SaS)
random variable if the characteristic function of X is exp(— c|z|*) with some
constant ¢ > 0. The SaS random variable exists if and only if 0 <a < 2.
When « =2, an SaS random variable is a Gaussian random variable with
mean 0.

In this paper, the time domain T is fixed either [0, o0) or (— o0, 00). A
stochastic process {X(t); te T} is called an SaS process if any finite linear
combination Zan (¢;) (a;eR, t;eT) is an SaS random variable. We assume
that any SaS process in this paper is separable. Especially, an SaS process
with independent stationary increments is unique up to a constant and is
called an SaS motion.

Let (S, B, 1) be a o-finite measure space.

DerFINITION 0.1. A random field {Y*(B); Be®, u(B) < oo} is called an
SaS random measure controlled by (S, B, ) if it satisfies the following three
conditions:

i)  Any finite linear combination ) a;Y*(B)) is an SaS random variable.

ii) The characteristic function of Y#(B) is equal to exp(— u(B)|z|%).

i) If {Bj}j=1,2.., M(B)<oo, is a family of disjoint sets, then
{Y*(Bj)}j=1,2,... is a family of mutually independent random variables, and if
u(UB) < oo, then Y*(|B)) =) Y*B) a.s.

J J J
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If {Y*(B)} is an SaS random measure controlled by a measure space (T, B, v),
X*t)=Y*([0,¢t]) if t =0, = Y*([t,0]) if t <O is called an SaS process with
independent increments controlled by (T, B, v) in this paper.

L@(S, B, ) denotes the family of measurable functions { f; j | f1*du < oo}
N

(1/a)a 1
equipped with the metric d9(f, g)= <f |f— g|°‘dy> Note that
S

L™(S, B, u) is a Banach space only in case 1 < a < 2.

Now we define the Wiener-type stochastic integral j fdY* of f in

S
L™(S, B, p) with respect to {Y*(B)}. If f is a step function ) a;Ip, where
{B;} is a family of finite disjoint sets and I denotes the indicator function
of B, then j fdY® is defined as ) a;Y(B;). For a general f, we take a

N

sequence of step functions {f;};-;, . which converges to f in L®, then

yeor

{f f;d Y“} converges in p-th order expectation for all p < o (also p =2
N j=1,2...
when o = 2). The convergence does not depend on the selection of {f;}, thus

we define f fdY*® as this limit. (See M. Schilder [13].)
S

In this paper, for two processes {X(t); te T} and {X(t); te T}, {X(t)} 4
{X ()} means that all finite dimensional distributions are equal to each other.

§1. Representations of SaS processes by causal stochastic integrals

T. Hida [3], and T. Hida and N. Ikeda [4] gave definitions and obtained
some propositions on stochastic integral representations of Gaussian processes.
We extend them to SaS case.

Assume that an SaS process {X(f);te T} (0 <o <2) has the following
modification written in the form of stochastic integral

X(t) = JIF(t, u)dZ (u), (1.1)

where

i) {Z(t);teT} is an SaS process with independent increments controlled
by a measure space (7, v),

i) F(t, u) is a function on T x T which vanishes on {(t, u); u >t} and

t
belongs to L™ (T, v) as a function of u for every te T and J means j
(—o0,t]nT
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DEerFINITION 1.1. The formula (1.1)
t
X(@t) = J F(t, wdZ(u),

satisfying the above i) and ii), is called a causal representation of {X()}.

In non-Gaussian case (0 < a < 2), it is unknown whether any SaS process
has a causal representation or not. But it is known that any SaS process
{X();teT} (0 <oa<2) has a version written in the form of (non-causal)
stochastic integral

(x@} 4 { e u)dZ(u)},

[0,1]
where {Z(t); te[0, 1]} is an SaS motion and f(t, u) belongs to L®[0, 1] as
a function of u for every te T (see J. Kuelbs [7]).

Suppose that {X(t); te T} is an SaS process with a causal representation
(1.1). For every teT, B,(X) denotes the o-field generated by SaS random
variables {X(s); s <t}. It is obvious that

B,(X) = B,(2) for every teT.

DEerFINITION 1.2. A causal representation (1.1) is called canonical (in the
sense of o-field) if it satisfies

B,(X) =B,(Z2) for every teT.
This case we call {Z(t)} an innovation process of {X()}.

For a given canonical representation of an SaS process, it is a question
whether this canonical representation is unique or not. The following
proposition would be an answer.

ProproOSITION 1.3.  Suppose that there exist two canonical representations
X(@) = JIF‘j)(t, u)dZ9 (u) (=12
Sor an SaS process {X(t);teT}. Then the formula
JSF“)(t, u)dZM(u) = JSF‘Z)(t, uw)ydZ® (u) (1.2)

is satisfied for every s and t (s <t). (For Gaussian case (x = 2), see T. Hida

(31)
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Proor. Fix s and t (s <) arbitrarily. For all Ae R, we have

Elexp (iAX (1))|B,(X)]

= exp {il JSF(j’(t, u)dZ‘j’(u)} exp {— [A]* jt |FY(t, u)|“dv‘j’(u)}

s

for each j. Therefore

exp{ii[rF‘“(t, u)dZW(u) — st‘Z)(t, u) dZ‘Z)(u)]}

= exp{lil“[ftlF“)(t, u)|* dv'™(u) — ft|F‘2’(t, u)l“dvm(u)jl}

for all Ae R. We can see the left hand side is complex random variable of
absolute value 1 a.s., while the right hand side is real. This means (1.2). OJ

For every te T, M (X) denotes the closed linear hull of {X(s); s <t} in
L®. 1t is obvious that for the causal representation (1.1),

M(X) <« MA(Z) for every teT.
DErINITION 1.4. A causal representation (1.1) is called proper if it satisfies
P(X) = MH(Z) for every teT.

It is trivial that a proper representation is canonical. For Gaussian case
(o« = 2), it is well-known that a canonical representation is proper. By contrast,
for non-Gaussian case (0 < « < 2), there exist causal representations which are
not proper but canonical. We show some examples with such a property in
§3.

For Gaussian case, T. Hida [3] gave a criterion to determine whether a
given causal representation is proper canonical or not. For 1 <a < 2, there
exists a similar criterion by virtue of the following theory of the projections
in Banach space (see I. Singer [14]).

Assume that M, is a closed subspace of Banach space L®(T, B, v)
(1<a<?2). For any feL®(T, B, v), f, is called a projection of f on M, if

it minimizes J |f— fol*dv in M,. For any fe L“(T, B, v), the projection f,

T
exists uniquely and satisfies

J g(f —fo)* " Pdv=0  for any geM,
T

where x¢*"1> = |x|*"!sgn(x). (This case it is said that f—f, is right-
orthogonal to M,.)
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We have already known that 9I*(Z) has the norm induced by L™ (T, B, v),
so we can apply the theory of projections to the pair M?(Z) and its subspace
M*(X). Therefore, we obtain the following proposition.

PropoSITION 1.5. For 1 <a <2, a causal representation (1.1) is proper if
and only if, for any tye T, any function ¢ € L®(T, B, v) which satisfies

t
j F(t, )o* Vdv=0  for all t<t,

is equal to 0 on (— o0, ty,]NT.

§2. SaS M(r)-processes

In T. Hida [3], Lévy’s M(t)-processes provided us precious examples of
canonical representations of Gaussian processes. Moreover, H. P. McKean Jr.
[9] constructed extended (Gaussian) M (t)-processes. He obtained their causal
representations and investigated the canonicalities of them. In this section we
consider the similar extended M (t)-processes in SaS case, which are constructed
in the same procedure.

2-1 The constructions of SaS M (¢)-processes

Lévy’s multi-parameter Brownian motion can be constructed by integral
geometry (N. N. Chentsov [2]). We construct the similar random field, which
we would call the multi-parameter SaS motion, as follows (see S. Takenaka
[16]).

Let s#" be the set of all hyperplanes of codimension 1 in the Euclidean
space R"(n > 1). We introduce a parametrization (g, p) in #", geS"~ !, p > 0,
as follows:

(¢, p) <— h(g, p) = {xeR"; — (x-q) + p =0}

Define a measure u on #" as du = dqdp where dq is the normalized uniform
measure on S" ! and dp is the Lebesgue measure on [0, c0). Note that u
is the invariant measure under rotations and parallel transformations in #".

For fixed a (0 <o <2), we have an SaS random measure {Y,*(B)} with
control measure space (#", u). For teR", set

S, = {he #™"; h separates the origin 0 and t}

and define

Xa(0) = Y5(S) = J Y (dqdp) 2.1)

0<p=t(¢q
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where t =t&;t >0, EeS" L.
Then the SaS random field {X;(¢); e R"} has the following properties:
i) X%0)=0.
i) For any geSO(n) and aeR", we have the formula

(X*(gt + a) — X*(a); te R} L {X%(1); te R").
ili) The characteristic function of XZ(f) — X(s) is equal to
exp (— C(n)d(, 5)|z]),

where C(1)=1/2, C(n)=I(n/2){(n — D)=''>I'((n — 1)/2)}~* for n>2 and
d(-, -) denotes the Euclid distance of R". This property derives the linear
additive property which means that X*@a + Ab) is an SaS process with
independent increments with respect to Ae R for any a and beR".

Especially in Gaussian case («=2), the Gaussian random field {X X(f); te R"}
is equal to Lévy’s Brownian motion with parameter R" up to a constant.
Furthermore, the uniqueness of the SaS random field with properties i) and
iii) is recently proved in T. Mori [10]. So we would call this random field
the SaS motion with parameter R".

In Gaussian case (x = 2), Lévy-McKean’s M (t)-process is defined as the
spherical mean process of the multi-parameter Brownian motion with the
spherical harmonic as its weight. We can extend M (t)-processes to SaS case
(0 < a < 2) by integral geometry as McKean used in [9].

For each n>1, let v},(£) be the spherical harmonic on S"”', where
(=0, 1,---) is the degree of harmonic and m is the associated multi-suffix. If
n=1, 1 runs only O or 1. v}, is called the zonal spherical function which
depends only on the colatitude. (For details, see N. J. Vilenkin [18].)

Now we consider that

:‘,z,m(t)zj X (t&)vp (8 dE, t >0, (2.2)
CES"_‘

where d¢ is the normalized uniform measure on §"~!. The right hand side
can be defined as the limit of Riemannian sum in L®, explained later. We
call the SaS process {Mg,,(t);t >0} the SaS M(t)-process. Of course,
{M2o,(t)} is Lévy’s M(t)-process and {MZ, .(¢)} is McKean’s M/(t)-process
up to a constant.

Let us calculate the right hand side of (2.2). Using (2.1),

Mg m(t) = J ( J Y..“(dqdp)> Vi m(§)dE.
gesn-t \Jos<p<tq
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We can select an appropriate sequence of Riemannian sums
k
21 Lig.pi0 <psiie ;a1 (@ P)Vim(Ci ) A (B, )
i=

(where {B, ;}i<;<x is a partition of "7, & ; is an element in B, ; and A(B, ))
is the area of B, ;), which converges to

J vim(&)dE
EDzpit

uniformly in (g, p)eS"~*! x [0, t] as the mesh converges to 0 (so that the
sequence converges in L@®). Therefore we can exchange the order of the
integrations and we have

nim() = J <j vim(&)d é) Y,*(dqdp).
Sn=1x[0,1] (&-q)=p/t

According to McKean [9], for n > 2,

f Uim(&)dE
&-q)=2p/t

n —1 (fcos™ I(p/t)
=vi',m(q)< j sin”‘20d9> J P}(cos 6)sin” =2 646,

0 0

. where P!x) = C{" 2/%(x)/C"~2/2(1) (Cf(x) is the Gegenbauer polynomial).
Thus we obtain the following formula which is a causal representation of SaS
process {Mj, .(t); t > 0}:

nim(t) = f F,.(t, p)dZ;,, . (p), (*)

0

where

Zf:,l,m(p) = J\

vi.m(@) ¥2*(dq x [0, p])
sn-1

and

Fyat p)=1/2,

" —1 ffeos™!(p/1)
F, .t p) = (f sin"'20d0> J P}(cos 0)sin" "2 6d6

0 0

b
x=plt

1 dl
- (_ l)'C(n, D':J‘ _(1 _ x2)l+(n—3)/2 dx}
dx!

x
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with a constant C(n, )= I'(n/2){2'z*>I'(1 + (n — 1)/2)} ! for n>2. Note
that the process {Z;,,.(p);p >0} is a 1-parameter SaS process with
independent stationary increments, i.e., an SaS motion and that the kernel
F,,(t, u) depends on neither a nor m.

2-2 The canonicalities of the representations (I)

Here we consider the question whether the causal representations (x) are
canonical or not. For n=1, it is easy to see that both (I =0, 1) of the
representations (x) are proper canonical. Firstly, we find whether the
representations () are proper or not for n > 2.

LEMMA 2.1. Let n>2. For any fixed t >0, we can apply a differential
operator

t-—(n+l—1)itn+l

dt

to My, , . m(t) at t in the sense of L' (0 < a < 2) and we obtain

—(n - d n a d
{t (n+l l)at +1Mn+2,l,m(t)} = {KM;'l’l,mi(t)}

with a positive constant K = K(a, n, I, m, m’). (Especially, K =n if « =2 or
I=0. For Lévy’s M(t)-process (« =2 and | = 0), see T. Hida [3].)

ProoF. Note that the kernel F, ,(t, u) is homogeneous, i.e., it is a function
of u/t, therefore

"My ()
t t dl

=(=1)'Cn + 2, I)J (J E(tz — xz)”‘"'”/zdx> Az} o1 m(u).
0 u

Let us consider the right differentiability of ¢"*'MZ,,, . (t). Fix any t >0
and let h > 0.

1
Z{(t + B TEMY L m(t + h) — tn+lM:+2,z,m(t)}

t+h t+h gl
=(—-1'Cn+2,1) x %{j (J i[(t + h)? — x?]i*- /2 dx)dZ;‘,‘”‘,,m(u)

1
. . dx

t t+h dl
+ J <J‘ —[(t + h)z _ x2]l+(n—1)/2dx
o dx'

u

t dl
— J (tz _ x2)l+(n— 1)/2 dx> dzz+2,1,m(u)}~ (23)

e
»dx
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The first term converges to 0 in L™ as h |0 because

1
%[(t + h)z _ x2]l+(n—-1)/2 dx
X

= (a polynomial in x, h and t) x [(t + h)* — x2]®~ /2
and
1 (t*h| [r+n gt .
_ LTt + h)? — x2]te-I2 gy
{haf, J:, dx’[( ) ]
t+h (1/@) a1
< const. X {h‘“f h“'[‘”_”/“”du}
t

< const. x {2+ A/OAL

a (1/a)a 1
du}

The integrand of the second term of (2.3) converges to

0 td
7{(— 1)'C(n + 2, l)f al7e xz)’”"_“/zdx}
ot Lax!

t gl
=(-1'Cn+ 21 4 E(t2 — x%)+e=DIZ ) g
dx'\ ot

t gl
=(—1)'nC(n, l)f %(12 — X2)H=3)2 gy
. dx

=nt"*'"1F, (¢, u)

as h|0 for every point ue[0, t]. The function F, (¢, u) is right continuous
in ¢t uniformly on ue [0, t], so we find the second term of (2.3) converges to

t
J‘ n[n+l_an,l(ta u)dZ:+2,l,m(u)

0

in L®. Hence we complete the proof of the right differentiability.
For any t >0 and h > 0, we have the formula

1
- E{(t - h)"+’Mz+2,1,m(f —h) — t"+’M:+2,l,m(t)}

t t l
=(—1)'Cn+21) x (—— %){f <f %(t2 — xz)”("—1’/2dx>dZ;‘,‘+2,,,m(u)
t—h u

t—h t—h dl
+ J‘ <J‘ —[(t _ h)2 _ x2]l+(n—1)/2dx
0 u dxl
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t dl
- f — (2 = x?) ez dx) dzﬁ+2,l,m(u)}'
» dx
Thus to prove the left differentiability, we have only to show similarly that
p y y y

t
the first and the second term converge to 0 and J nt"t'LF, (8 wdZE o g (1)

in L™ respectively. We complete the proof. 0 ad

By this lemma, we can reduce the problem of canonicalities to the case
n=23 or n=2 according as n is odd or even respectively.

LEmMA 2.2. In case n=3.

i) If1=0,1,2, the causal representation () is proper for 0 < a < 2.

il) If 1 >3, the causal representation (x) is not proper for 1 <a < 2.

itiy For any fixed t > 0, M%, ,,(¢) is differentiable at t in L (0 < o < 2).
(Hida [3] and H. P. McKean Jr. [9] for a = 2)

CoNJECTURE. The causal representation () is not proper for « =1 and
(x) is proper for 0 < a < 1.

Proor. i). We already know that

2
Fyolt, u) = C(3, 0)(1 _ -‘tf> Fyy(t, u)=C(3, 1)(1 - %) and
u ud
Fs,(t, u) = 4C(3, 2)(- - —3>.
t t
So we can easily show that

d
EttMg.o,o(t) = C(3,0)Z35,0,0(),

d
t—ld—ttZMg’l’"'(t) =2C(3, )25, ,(t) and

d t
! atsMg,z,m(t) =2C@3, 2)_[ udZs ;5 (1)
0

for every t>0 in L™ (0 <o <2). Now it is clear that (x) is proper if
I=0,1. If I =2, using the equation

[ o Lo

we have
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J\ts—2<J‘sudZ§,2,m(u)>dS = jt (1 - g>dZ§,2,m(u)
0 0 0 !

for every t > 0, where the integration in ds means the limit of Riemannian
sum in L®. The right hand side belongs to M*(M3 , ) for every t >0 and
the kernel is equal to Fj 4(t, u) up to a constant. Hence we show that ()
is proper for | =2.

ii). For a fixed t, > 0, let us compute the inner product between F; (¢, u)
O<t<ty) and v (0<j<I—2) on [0,¢r].

ol dx

0

w du (1=3)

x=uft

[ di
= const. x t"l[dxl_j_z (1- xz)’]

x=0

Using a recurrence property, it can be showed that the value is O for all
0<t<t,ifjis even or odd, according as [ is odd or even respectively. This
implies that u//®~Y is right-orthogonal to Fy,(t, u) in L®[0,¢] (1 <a <2).
We apply Proposition 1.5 and complete the proof of ii).

iii) can be proved similarly to Lemma 2.1. O

LEMMA 2.3. In case n =2, then the statements i) and ii) of Lemma 2.2
also hold. (McKean [9] for o = 2)

Proor. i). We already know that

2)1/2
Fao(t, u) = C(2, 0) cos“lg, Fy it u)=C(2, 1){1 —<%> } and

23)1/2
Faot, W) =3C2, 2)':{1 —(':> } .

And we can show that

0
t s 23)1/2 3
;dsj {1 —<3) } du=" (1 —E>du and
0 (t* — 5?2 0 S 2Jo t
t s 23)1/2 ft 2
v dsf 3{1 —(E> } du = {1 —<_'f> }du.
OS(tZ_SZ)l/Z OS S 4.)0 t

Put dZ5,,.u) (I1=0,1,2) in place of du in these three formulas, where the

(|
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above integral operators in ds act in L®. Thus we know that

' u
j (1 - ?>dZ§,0‘o(u) € M (M3,0,0)s

0

t

(o]

t u 2
f {1 _ (-) }dzs.z.m(u) e M(M3 ,
N t

for every t>0. Now we can easily obtain the innovations {Z3, (1)}
(I=0, 1, 2), similarly to i) of Lemma 2.2.

if). It is easily proved that u/@~V (0 <j <[ -—2) is right-orthogonal to
Fy,(t,u) in L®[0,¢] (1 <a<?2) for any ¢t >0 if j is even or odd, according
as | is odd or even respectively, in the same way as the proof of ii) of Lemma
2.2. This implies ii). O

Lemmas 2.1 ~ 2.3 imply the following theorem.

THEOREM 2.4. Let n > 2.
1) If 1=0,1, 2, the causal representation (%)

t
nm(t) = J F, . (t, wdZg, ,.(u)
0
is proper for 0 <o < 2.
i) If 1> 3, the causal representation () is not proper for 1 < a < 2.
i) If nis odd (=2d+ 1), then M, ,.(t) is d-times differentiable at t in
L® (0<a<?2) for any fixed t >0. If n is even (=2d), then M2, (t) is
(d — 1)-times differentiable at t in L (0 < a <2) for any fixed t > 0.
(Hida [3] and McKean [9] for a = 2)

§3. Regularities of paths and canonicalities of representations

In Gaussian case (¢ = 2), to know whether a causal representation is
canonical or not, we have only to apply Proposition 1.5 to check whether it
is proper or not. On the other hand for non-Gaussian case (0 < a < 2), by
observing the regularity of paths of the process, we can prove that a causal
representation which belongs to a certain class is canonical even if it is not
proper (see P. Lévy [8] and T. Hida and N. Ikeda [4]).

3-1 Regularities of paths of certain SaS processes

Firstly, we apply the Lévy-Itd’s theorem on the decomposition of paths
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to an SaS motion.

Let T’ be a subinterval in [0, o), then D(T’) denotes the set of functions
which are right continuous and have left limits at all points in T’'. If T’ is

compact, D(T’) has a norm of uniformly convergence on T’, i.e., ||f], =
sup|f(¢)| for feD(T’). A stochastic process on T' is called a D(T")-process if
teT’

its almost all paths belong to D(T").
It is well-known that any SaS motion {Z,(¢); te[0, o0)} (0 < a < 2) has
a D([0, co))-modification {Z2(t, w); te[0, o)} represented by

Zot, ) = Ilim J

f yN(dudy, o)
.0J =1/

where N(dudy, w) is a Poisson random measure with control measure
n(dudy) oc |y|~@*Ydudy on [0, o) x (R\ {0}) and llim means that almost all

D[O0, oo)-paths converge on any compact interval. Note that the random
variable N((s, s'] x E, w) is equal to the number of jumps with height in E
on time interval (s, s] of path Zg(-, w) for any s and s’ (s <s) and any
Borel set E of R\ {0}. (For details, see K. Ito [5] and K. Sato [12].)

With the help of this theory, let us consider the regularity of paths of
SaS process {X(t); te[0, co)} which is represented by

X(@t) = IIF(t, wdZy(u). (3.1)

0

Now we regard that the kernel F(t,u) is a function restricted on
Dy = {(t,u); t >u>0}\{(0,0)}. We use the following notations which mean
conditions on the kernel.

k1) F(t, u) is continuous on D,.

k2) For any fixed t >0, F(t, u) is differentiable in u on [0, t] and

0 . .
B_F (t, u) is continuous on D,.
u

k3) F(t, t) is bounded in the neighborhood of ¢t = 0.

0
k4) sup [—F(t, u)| < const. x t~! in the neighborhood of ¢t = 0.
uel[0,1] | OU

k5) F(t, u) belongs to C? on D,.

k6) aiF (t, u) is bounded in the neighborhood of (t, u) = (0, 0).
u

To the next lemma, we apply the integration by parts. The idea is
borrowed from K. Takashima [15].
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LEMMA 3.1. Assume that the kernel F(t,u) satisfies k1) and k2). For
almost all D[0, co)-paths Z(-, w), we define a process {XP(t, w); t > 0} as

XP(t, w) = F(t, ) ZE(t, w) — f
[0,1]

Z8(u, w) < a—au F(t, u)) du. (3.2)

Then {XP(t, w)} is a D(0, co)-modification of {X(t)} given by (3.1). And
there exists a relation of jumping times and heights between paths XP(-, w)
and Z8(-, w) expressed as

XP(t, ) — XP(t —, w)=F(t, ) {Z8(t, 0) — ZQ(t —, w)} a.s. (3.3)

Moreover, if F(t, u) satisfies k3) and k4), then XP°(-, w) is right continuous at
t=0 and XP(0, w) = 0.

Proor. By the conditions k1) and k2), we can regard that the right
hand side of (3.2) is defined in the sense of L™ for every t > 0 and we find
that the right hand side is a modification of {X(¢)}. The condition k1) implies

that F(t, t)Z2(t, w) is a D(0, oo)-process. By k2), J Z2(u, w)(aiF(t, u)> du
[0,1] u

is well-defined and has finite value for all ¢t > 0 for almost all D[0, oo)-paths
Z2(-, w). Let us show that this term is continuous on (0, o) as paths. Fix
w, consider the right continuity at ¢t > 0. Let h > 0.

»

Z2(u, w)(;%F(t + h, u))du - f

[0.1]

Z¥(u, ) < 9 F(t, u)) du
J10,t+H] ou
r

= Z3(u, w)<~a—F(t+h, u)—iF(t, u))du
Jio,n ou ou

~

+ Z2(u, w)(f—F(t+h, u)>du
u

J(t,t+h]

converges to 0 as h |0 by k2). This term is left continuous at ¢t > 0 because

"

Z2(u, w)(iF(t — h, u))du — J Z¥(u, w)(iF(t, u))du
J10,t=h] ou [0,1] ou

R
= Z2(u, w)(—a—F(t—h, u)—iF(t, u))du
Jio.t-h) Ou Ou

r

— Z2(u, w)((%F(t, u)) du

J(t—h,t]

converges to 0 as h|0 by k2). Hence we prove that {XP(t, w)} is a
D(0, oo)-modification of {X(t)}.
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Assume k3) and k4). Then F(t, t)ZJ(t, w) is right continuous at t =0
by k3). And

f Z(u, w)< g F(h, u)>du
[0,h)

converges to O as h|0 by kd4). Thus we prove the right continuity of
{XP(t, )} at t =0. O

<h sup |Z2(u, w)| sup g F(h u)

ue[0,h]

Now we consider these two special cases.
1°) F(t,t)=0 on te(0, ),
2°) F(t,t)#0 on te(0, o).

The case 1°). We have the following corollary by the relation (3.3).

COROLLARY 3.2. If F(t, u) satisfies k1), k2) and 1°), almost all paths
XP(., w) are continuous on (0, o).

Furthermore, we can consider the differentiability of paths.
LemMA 3.3. If F(t, u) satisfies k5) and 1°), then the paths XP(-, w) have
right and left derivatives at all t > 0 and they satisfy

d—d—XD(t w) = iF(t u)

ZD ZD a a F >i
(0] (t’ (D) J;o_,] 0 (u, CU)< 314 3t (t’ ll) u

t'=t,u=t

d _, 0
ZX (t, w)——a—F(t , U

Z{,’(t—,w)—J‘ Z8(u, w)<££F(t, u))du
[0.1] Ou ot
(3.5)

t'=t,u=t

Moreover, if F(t, u) satisfies k6), the paths XP(-, w) are right differentiable at
=0.

t=0

t=0 and iX”(t, )
dt

+

PrOOF. The right differentiability at t >0; Let h> 0, then by k5),

1

0 0
— Z3(u, —F({t+h u——F(tu|d
hj[o.a ol(u w)<au ( u) P ( u)> u

= J Z2(u, w)iiF(t + 0h,u)ydu  (where 0 <8 =0(h t,u)<1)
(0.1 Ou Ot

— Zou, w)-—qg F(t, u)du (h]0).
(0.1 Ou ot
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On the other hand

1 0
‘J Z8u, w)—F(t + h, u) du
h (t,t+h] au
D a ’ ’
— Zo(t, w)— F(t', v) (h10).
6” t'ltu' |t
By 1°) and kS5), we have
d 0 0
O0=—F(t t)y=—F(', u) + —F(', u) ,
dt at, t'=t,u' =t aul t'=t,u' =t

so we obtain (3.4).
The left differentiability at t > 0; By k5),

1
Z2(u, w)(aF(t —h, u) — gF(t, u)>du
du du

—h [0,t—h]

00 -
=J Z8u, w)— —F(t — 6h, u)du
[0,t—h] au at

0 0
— Z2u, w)——F(t, uydu (h]0).
[0.0) Ou 0t

Now the interval [0, t) can be replaced by [0, t]. And

1 0
- Z2(u, w)—F(t, u)du
- h (t—h,t] au

—»Zg(t—,w);—lF(t, u') (h10).
u

u'ft

So we obtain (3.5). O

Especially, the paths belong to C'(0, oo) if

=0 on (0, c0).

u=t

0
—F(t,
Py (t, u)

The case 2°). For simplicity, we assume F(t,t) = 1. Then by (3.3), for
any fixed ¢t > 0, N((s, s'] x E, w) can be obtained from {X°(r, w); re @n[0, ]}
for any s, s'(€Q, 0 < s < s’ <1t) and any Borel set E of R\ {0}. For example,
if E=(yo, ) (yo>0),

{w; N((s, 8] X (yg, 00), w) > 1}
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=UN U Ao; X°(r, 0) — XP(r, ) > yo + 1/m}.

So, for every t'eQ (0 <t' <t) and [e N, we calculate

1 1)\
{XD(S"J(’ w) - XD(sn,k—I’ w)}N<(Sn,k—1’ Sn,k] X <_ "I—a 7) > (I)>,

M=

k

]

1

where {s,,€Q;0 <k <n} is a partition of [0,t] and the mesh tends to 0
as n— oo. As the above random variable converges a.s. as n — oo for every
t', we regard the limit of variables as a stochastic process whose paths belong
to D([O, t]) a.s. Taking the limit as [ — oo, we obtain the D-modification
{Z8(s, w); se[0, ]} of {Z,(s); se[0, ]} (see K. 1td [5] for reference). Thus
we have

PROPOSITION 3.4. [If the kernel satisfies k1), k2) and 2°), then the causal
representation (3.1) is canonical (see P. Lévy [8] and T. Hida and N. Ikeda [4]).

3-2 The canonicalities of the representations (II)

For Gaussian case (¢ = 2), as we saw in Theorem 2.4 of subsection 2-2,
the representation () is not canonical if n>2 and [ > 3 (H. P. McKean Jr.
[9]). McKean obtained the proper canonical representations of {M?, .(t)}

in these cases. For non-Gaussian case (0 < o < 2), we apply the argument of
the previous subsection to SaS M(t)-processes and their representations (x).

LEMMA 3.5. In case n = 3.

i) For all I, {M5,,,(0)} (0<oa<2) has a modification whose paths are
continuous on [0, co) and differentiable in both sides at all t>0. (The
derivatives are not equal to each other. And {tM3 ()} has a modification
whose paths are right differentiable at t = 0.)

ii) For all 1, the causal representation (x) of {M3,.(t)} 0 <a<2) is
canonical.

ProoF. i) is proved bacause

1 1

Fy,(t, u)=(—1)'C(3, l)f ;1{%(1 — x?)dx

b

x=uft

satisfies the conditions k1) ~ k5) and 1°). And

TFbw| #0  on (0,00),

ot

u=t

so the right and left derivatives are not equal.
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ii). Let us consider the right derivative of the C-modification of
{M3%, .(t)} as a process, then the process satisfies 2°). So we apply Proposition
3.4 to obtain {Z§,,(t)}. O

LEmMMA 3.6. In case n=2.

i) For all I, (M5, ,.(t)} has a modification whose paths are continuous on
[0, o0).

i) For all 1, the causal representation (x) of {M$ , ,.(t)} is canonical.

Proor. i). Let us prove {M3,,(t)} has a modification in the form of
(3.2). The kernel

1 1
Fault, w) = (=1)C(2, I)J L=
L dx

x=ult

satisfies k1) and 1°) (thus the first term of (3.2) vanishes), and is differentiable
in u on [0, t) for every t > 0. Note that

0 2)-1/2¢
‘Fz,z(t, u) = <a polynomial in u> X {1 — <£> } —.
ou t " ”

. 0 C
So, according as a—Fz,,(t, u)—> o0 or — oo as ult (whether the limit is oo or
u
0
— oo depends only on ), we have some ¢ = ¢(t, [) > O such that a—Fz,,(t’, u)
u

increases or decreases monotonously in u and decreases or increases
monotonously in t' on {(t',u);t —e<u <t <t+ ¢} respectively.
Hence the second term of (3.2)

f Z8 (u, w) < 2 Fylt, u)) du, (3.6)
(0,11 ou

where {Z{(t, w)} is a D-modification of {Z%,,.(t)}, is well-defined for all
t > 0 because

‘j Zg(u9 w)<ﬁF2,l(t, u)>du
[t—e,t] ou

t 9
< sup |Zg(u, w)|’j —F, ,(t, uydu
- OU

uelt —e,t]

< 0.

Let us prove the right continuity of (3.6) at t > 0. Let h be 0 < h < ¢ then

0
J Z2(u, w)(——FZ,,(t + h, u) — in’,(t, u))du —0 (h]0).
[0.t—¢] ou Ju
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By k1),

‘f Zg(u, < Fp lt +hou) — in,z([, “)) du
(t—¢&,t] a

< sup |Z2(u, w)lU ( Fy,(t+h u)— ;Fz',(t, u))du —0 (h10),
ue(t —¢,t]
and
D 0
Zo(u, w)| —F,,(t + h, u) |du
(t,t+h] ou
< sup IZOuwIIJ FZ,t+h u)ydu| — 0 (h]0).
uelt,t +h]

To prove the left continuity of (3.6) at ¢ > 0, we have only tolet hbe 0 < h <¢
and prove similarly that

»

0 0

Z3(u, w)( Fau(t —hyu) — —F, (¢, u)>du,
JI0,t—¢] ou
[ 0 0

Z¥(u, w) F2 Wt — h, u) — ——F2 (t, u) | du and

J(t—¢,t—h]
r b a

Zou, w)| —F,,(t, u) |du
J(t—h,t] au

converge to 0 as h 0.

t
. 0 . . .
Using the fact that f 6_F 2.(t, u)|du is bounded (constant in fact) in the
0 u
neighborhood of t =0, we show the right continuity at ¢t =0. Hence i) is
proved.

ii). The proof is similar to i) of Lemma 2.3. We apply an integral
o t S’ 1 )
operator ¢~ ¢ 1)j mds to {M$5 ,.(s); 0 <s <t} (I>1)and we obtain

a new process with a causal representation whose kernel is a polynomial in
u/t (like the odd dimensional cases). The kernel of the new process satisfies
either 1°) or 2°). In the case 2°), we apply Theorem 3.4 to finish the proof. In
the case 1°), we have only to differentiate the process a certain times until
2°) is satisfied. O

If n > 4, the kernel F, ,(t, u) satisfies k5) and the reduction formula below
(see the proof of Lemma 2.1).
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0 u
—F, t,u)=2nF, t, u)— for n> 2.
o +2.(8 ) a+1( )t2

Finally, we have the following theorem.

THEOREM 3.7. For 0 <a < 2.
i) For all n and I, the causal representation ()

t
nim(t) = f Fout, wdZy , ,,(u)
0
is canonical.

ii) Ifnisodd(=2d+1,d>1), then {M},,(t)} has a modification whose
paths belong to C* (0, o0) and d-ttmes differentiable in both sides at all t > 0.
({t*M¢, ()} has a modification whose paths belong to C*~'[0, c0) and d-times
differentiable in both sides at all t >0.) If n is even (= 2d), then {MZ, ,(t)}
has a modification whose paths belong to C*~'(0, ). ({t*"'My, .(t)} has a
modification whose paths belong to C4 1[0, 0).)

Let us sum up the results of the path properties of {MZ, . (t); t >0} and
the canonicalities of their causal representations () as the following list.

l 1=0,1,2 1>3
n o O<a<? =2 O<ax<l l<a<?2 o=2
paths D C
n=1
(I=0,1) proper
(*)
canonical
paths Cd—l Cd—l Cd—l Cd—l
n:even
(=2d) proper unknown not proper
(%)
canonical canonical not canonical
paths cit ct cét ct
n: odd
(=2d+ 1) proper unknown not proper
(%)
canonical canonical not canonical
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