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Introduction

The main objective of this paper is to investigate a relation between a
central extension of the Hauser group, which would be a subgroup of "Geroch
group", and the conformal factor of the Einstein vacuum filed equations in
a 2-dimensional reduction. The conformal factor is considered to be τ-function
(for example see [10] [17]) in case of the Einstein vacuum filed equations. As
far as the author knows, approaches in this directions were undertaken by
P. Breitenlohner and D. Maison [1], K. Okamoto [16] and B. Julia [9].

On the other hand, "solution generating methods" of the stationary
axisymmetric Einstein vacuum equations and the Einstein-Maxwell equations
have been drastically investigated since Geroch [6] had found that each given
stationary axisymmetric solution of the Einstein field equations are accom-
panied by an infinite family of potentials. Geroch's observation has led to
W. Kinnersley's formulation [11] and to the fact that there exists an action
of some infinite dimensional group, so called Geroch group, on the space of
solutions. Geroch conjecture was proved affirmatively by I. Hauser and
F. J. Ernst [8] following Kinnersley's formulation. In [2] H. Doi and
K. Okamoto generalized the results of [8] to the case that the field equations
take their values in an affine symmetric space, so that a "Kac-Moody" Lie
group acts transitively on the space of solutions. However the action of center
of the "Kac-Moody" Lie group was trivial. For another formulation and
discussions, for example, see Y. S. Wu and M.L. Ge [21].

In the previous paper [7] (cf. [3] [4]), a σ-model with values in an affine
symmetric space, that is, 5(17(1) x (7(2)) \ 5(7(1, 2) was formulated with a
linearization method explored by P. Breitenlohner and D. Maison [1] and a
formal loop group method established by K. Takasaki [18]. And a recipe
for constructing solutions was given there, which gives the gravitational field
interacting with electro-magnetic fields. But no conformal factor was dealt
with.

In this Daoeπ a σ-model with values in K \ PSL(2* R) is treated with the
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be a formal loop group with values in PSL(2, R). We define a potential

space Sf& and the Hauser group ^(oo) are realized in subspaces of J .̂ Then

our result is that ^(oo) acts transitively on <9̂ , that is, y& is an infinite

dimensional homogeneous space.

In order to incorporate the conformal factor, we consider a central

extension ^(oo) by the additive group R and a central extension of 3F*S by the

additive formal group F = R[[z, p]].

Then for the total space E(£fgP) and the centrally extended Hauser group

°̂} we have the following commutative diagram for gce = (g,

•i -I

And #£» acts transitively on
In our theory, it should be noticed that all the solutions of the Einstein

vacuum filed equations don't correspond to elements of the potential space

ίf&. In fact, there exists no potential of the Weyl solution (see Section 3).

Finally I would like to express my sincere gratitude to Professor
K. Okamoto for his suggestion and to T. Hashimoto for discussions with him.

1. Preliminaries

We shall devote this section to a summary of those concepts and results from

the theory of the formal loop groups and the central extensions which are

needed for our mathematical formulation in this paper. Most of these results

are well known and adequately treated in many papers and books (see for

example Takasaki's paper [18] for the formal loop groups and [10] [12] [19]

for the general theory of Lie groups and Lie algebras).

Although the theory of the formal loop groups is generally formulated

with the coefficient field C, the field R is used in this paper by the reason

why we shall discuss about the formal loop groups with values in real Lie

groups. But there is no essential change for the theory (see Lemma 1.2).
As to the notation of map, we employ the following rules:

(a) Variables of maps are eliminated except that it is necessary to write
the variables.

(b) The spetral parameter of maps is eliminated if the maps have both of

its negative and positive powers. Otherwise we shall write it in order to
indicate powers which maps have.

However the exceptions exist also.
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1.1. Formal loop groups

Following [18], let A be an associative (in general noncommutative)
algebra over R which has a unit element 1 and a filtration {^4j}jeNu{0} satisfying
the following conditions:

( ί ) Mι}i6Nu{o> is decreasing; A = A0 => A1 => A2 => ••• ,

( i i ) AlAv^Al + l for /, ΓeNu{0},

(πϊ) For any sequence alεAl (ίeNu{0}) there exists a unique element
n

aeA such that a — ]Γ aleAn + l for Vrc > 0.
z = o

And for the convenience of our disussions we extend the filtration by defining

Al = A for / < 0.

The topology induced from the filtration (i.e. {A^^ form a system of
neighborhoods of the zero element) is complete. Throughout this paper we
consider all formal groups to be endowed with the topology induced from
the filtration.

Let A be an associative algebra equipped with the filtration {>4z}ίeZ. Then
A is called the associative filtered algebra.

Let F be an associative filtered algebra over R with a filtration {Fj/eZ

and t be a new variable (so-called spectral parameter). The set ^LG
satisfying the following conditions is called a formal loop group:

(1.1.1) &LG consists of elements Σ ̂ (^egϊ^, Ft) for /eZ),
ZeZ

(1.1.2) ^LG forms a group with respect to the matrix multiplication in the
formal power series category.

For the associative filtered algebra F with the filtration {Fι}leZ we define

(1.1.3) ^L% = {g=Σ 0ιtl'> fteslfa F,), g0 is invertible in gl(
/eZ

(1.1.4) 3?L<% = (b(t) = Σ bJe&LIt; bt = 0 for / < 0},
/eZ

(1.1.5) J^LΛ/* = (n(l/ί) - £ nJe&LIf', nλ = 0 for / > 0, n0 - 1}.
teZ

Then J^L^, J^LJ^ and J^LJ^ become the formal loop groups, and &L® and
are subgroups of J^L^. For the above defined formal loop groups
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we have the Birkhoff decomposition, that is,

LEMMA 1.1. (see K. Takasakί [18])
Any element ge^L^ can be unίuely decomposed as

(1.1.7) g = n ~ l ( l / t ) b ( t ) 9

As stated above, we discuss the theory of the formal loop groups by
taking R as a coefficient field. It is easy to see that the decomposition of
Lemma 1.1 goes on well in case of the formal loop groups with values in
real and special linear Lie groups. However we prepare the following lemma
directly applicable to our later discussions, and give its proof.

LEMMA 1.2. Let ^^ be a formal loop group with values in SL(n, R) defined
by an associative filtered algebra F with a filtration {Fj/eZ, and let ^ffl and
tf'jV be its subgroups defined by the definitions (1.1.4) and (1.1.5), respectively.
Then, any element g of 2FΉ can be uniquely decomposed as

(1.1.6) g = n - 1 ( l / t ) b ( t ) , n(l/t)e^^, b(i)e&@.

PROOF. It is noticed that if the decomposition is possible, its uniqueness
holds. Let ̂ L^, ^L^t and ^LJf be the same formal loop groups in Lemma
1.1. First we prove the decomposability in case of the coefficient field
R. Since R is considered to be included in C, gtϊiFy is an element of

Therefore, by Lemma 1.1, g is uniquely decomposed as

On the other hand, there is also the unique decomposition g = n ~ l ( \ / i ) b ( t )
for g E ̂ L^. Since g — g and the uniqueness of decomposition, we have
n(l/t) = n(ί/t) and b(t) = b(t).

Next we prove the decomposition in ^^. Since any element
belongs to ^L^, we have the unique decomposition (1.1.7). Let
and ^N be the formal loop groups with respect to the Laurent power
series. Then it is clear that det : 3FLΉ -> 3F¥ is a well-defined homomorphism.
So taking the determinant of the both sides of (1.1.7), we have

1 =(detn(l/ί))" 1 detfe(ί)

which is the decomposition in IFF. Following the trivial decomposition of
1 and its uniqueness in ^¥, we conclude that detn(l/t) = det £(ί) = 1. Π

1.2. Formal loop Lie algebras

Let F and t be the same as in Subsection 1.1. We call the set
satisfying the following conditions a formal loop Lie algebra:
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(1.2.1) J^Lg consists of elements ^Xlt
l(Xle^\(n, F,) for /eZ),

leZ

(1.2.2) J^Lg forms a Lie algebra with the Lie bracket [AT, 7] = XY- XY in
the formal power series category.

Let F be the associative filtered algebra with the filtration {Ft}leZ and let

^L$ = {ΣXlt
l;XlεQl(n,Fl) for /eZ}.

leZ

It is obvious from the filtration that the Lie bracket IX, 7] for any two
elements X and Y of J*Lg is well-defined in the formal power series
category. Therefore J*Lg becomes a formal loop Lie algebra over F.

Let ZFLΉ be the formal loop group defined by (1.1.3). Then, following

to the usual matrix exponential, we introduce the exponential map

by defining

(1.2.3) ex= 1+* + ... +

for Xe^LQ. It is obvious that ex is well-defined and the exponential gives

a map of J^Lg into the formal loop group ^L^.
Also the formal log map from an open neighborhood of tFL^ around the
identity to J^Lg is defined.

Suppose ^Lg is any formal loop Lie algebra over F. For any
let ad X denote the endomorphism of ^"Lg given by

(1.2.4) a d X : 7 ι - > [_X, 7]

Since the exponential map is a formal map around Oe^Lg, so an open

neighborhood J^Lα of 0 and a formal map C : J^Lα x J^Lα -* J^Lg can be
found such that

exp X exp Y = exp C(X : Y) (X, Ye & La).

Let C(vX: vY) = £ cz(X: Y)ιΛ
f = 0

Then Cj's are given by the recursion formula:

(1.2.5)
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(/ > 1, X, Ye^La) and by the condition c^X: Y) = X + Y,
where K2p's are defined by

(1.2.6) /(x) = ]-̂  - lχ = 1 + £ K2px
2*>.

The expression for C is called the Baker-Campbell-Hausdorff (BCH) formula.
It is easily seen from the BCH formula that

(1.2.7) C(X: vY) = X + _ ^ y + O(v2).

Also, there exists a formal loop Lie algebra valued function L: J^Lα x J^Lα
such that

(1.2.8) C(X: Y) = X + Y+ [X, L(X, 7)] + [ί L(- Y9 - X)],

where we fix L in order to remove the ambiguity, coming from the
Jacobi identity.

The existence of L follows from the recursion formula (1.2.5), by letting

L(vX, vY) = £ Lξ(X, Y)vl.

From (1.2.7) we get

(1.2.9) L(X, vY) = Λy - -vY+ 0(v2).
\ adX(ί -e~ΛάX) 4j

The first few of c, and L, are given by

c3(X: Y) = [[*, y], 7] - [[X y],

and
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REMARK. Let F( + ) be an associative filtered algebra with the filtration
{Fj+)}ί6Z. Then we have another associative filtered algebra F with the opposite
filtration defined by {F{~) = F(^}I€Z. Also we have the formal loop group
defined by this opposite filtration, that is,

(1.2.5) ^L^-> = {X0,ί ί;0,egI(« )Fr )) far
/eZ

The above discussions and results, especially Lemma 1.2, hold.

1.3. Central extensions

In the rest of the section we discuss the central extensions of a formal
loop Lie algebra and a formal loop group. Fix notations such that F is an
associative filtered algebra of formal power series with respect to some variables
over R and ^^ is a formal loop group, and J*g is its formal loop Lie
algebra. In addition, let us assume that the exponential map : J*g -> ̂ ^ is
surjective.

Let us begin with a central extension of a formal loop Lie algebra J*g
by F. To do this we take the Lie algebra 2-cocycle ω : J*g x J*g -> F which
is as usual defined by

(1.3.1) ω(X(t)9 Y(t)) =
dt

The integration path in (1.3.1) is a closed contour around the origin. Note
that the Lie algebra 2-cocycle is well-defined due to the filtration. It should
be noticed that the integral of the right hand side of (1.3.1) picks up the
coefficient of t'1 in the integrand.

By the definition of the Lie algebra 2-cocycle ω we have the following
properties :

(1.3.2) ω(X, Y)= -ω(Y,X),

(1.3.3) ω([X, y], Z) + ω([Y, Z], X) + ω([Z, X], Y) = 0,

where the relations (1.3.2) and (1.3.3) are called skew symmetricity and Jacobi
identity, respectively. Let «^g0RF be the direct sum as a vector space over
R. Then defining its Lie bracket in the following manner:

t(X, μ), (Y9 v)] = ([X, y], ω(X, Y)) for (X, μ), (Y, v)eJ^g ©RF,

we get the central extension of J^g by F.

We now proceed to the central extension of the formal loop group
by the formal ablelian group F.
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The central extension is diagramatically expressed by

Following [1], let us define a group 2-cocycle Ξ: ^Ή x ^<g -* F by

(1.3.5) Ξ(ex

9 eγ) = ω(X, L(X9 Y)) + ω(- L(- ^ - X)9 Y).

Then, the group 2-cocycle Ξ satisfies the following identity

(1.3.6) Ξ(e\ ez) - Ξ(exeγ, ez) + Ξ(ex, eγez) - Ξ(ex, eγ) = 0,

for X, KZeJ^Lg.

Furthermore the group 2-cocycle Ξ has the following relations:

(1.3.7) Ξ(ex

9e
γ)= -Ξ(e-

χ,exeγ)

= -Ξ(exeγ,e~γ)

= -Ξ(e-γ,e~x).

The relations in (1.3.7) are called the anti-symmetric conditions.
By use of the group 2-cocycle Ξ defined above, it is possible to define a

central extension ^") of the group ^(oo) taking pairs ( g ί 9 ea), (g2, eb)e^(ao) x
F+ with the group multiplication

which is associative due to the identity (1.3.6).

So far we have defined the formal loop group 2-cocycle Ξ and the Lie
algebra 2-cocycle ω. In the rest of this subsection, we prepare two lemmas
about a mixed form which play a crucial role for proving our main
theorem. The mixed form Ξ': J^ x J^g -> F is defined by

(1.3.9) Ξ'(ex,Y) = ^-
dv

Ξ(ex, evγ) for X,

It is noticed that Ξ' is linear with respect to the 2-nd variable.

LEMMA 1.3. (see [1]) Then the mixed form Ξ' has the following expression:

(1.3.10)
2 π / -

1 sinh(x) — x
with the odd function χ(x) = - x - .

2 cosh(x) — 1

PROOF. The mixed form is calculated as follows:
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using the relation (1.2.9),
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(ω(X, L(X9 vY)) + ω(- L(- vY9 - X ) , vY))

-e~adx)

d
—
dt

d
Moving the adjoint action to —X in place of Y and using the identity

dt

(1.3.11) -X= adX

άχ
dt I- e~ΛάX dt

we get the following result for the mixed form:

Therefore the lemma is proved. Π

It is easy to see from the anti-symmetric conditions (1.3.7) that another
type of the mixed form is given by

(1.3.12) d-
dv

Finally in the following lemma we have an expression for the derivative
of a formal group 2-cocycle with respect to a variable in the associative filtered

algebra F.

LEMMA 1.4. Let F be an associative filtered algebra, whose underlying
associative algebra consists of formal power series with respect to some variables
over R, with a filtration {Fj}/6Z and let X and Y be the elements of the formal
loop Lie algebra J^Lg corresponding to the filtration. Then the derivative of
the 2-cocycle Ξ on the formal loop group 2FL& with respect to one of the
variables is described by the following relation:

(1.3.13) dΞ(ex

9 eγ) = Ξf(e-γe~x, dexe~x) - Ξf(e~x, dexe~x)

+ Ξ'(exeγ, e~γdeγ) - Ξ'(er, e~γdeγ).

PROOF. The left hand side of the above relation is calculated as follows:
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dv

dv

vdY\

d

'dv
Ξ(ex, eγ + vdγ).

(1.3.14)

We show that the first term of the right hand side of the above relation

d

dv 17 = 0

is equal to Ξ'(e~γe~x, dexe~x) - Ξ'(e~x, dexe~x).
Using the identity

- ee
adx

dexe'x9aάX

it follows from (1.2.9), (1.3.6) and (1.3.12) that (1.3.14) is calculated as follows:

d ^

~dv a=0*
(e ' e )

Ξ(exp(vdexe-χ)ex, eγ)
dv

_ d

~~dv

= Ξ'(e-γe-χ, de

By the same way we have

"- *0dvv = 0

Therefore we have the relation of the lemma for the derivative of Ξ. Q

Ξ(exp(vdexe x), exeγ) — Ξ(exp(vdexe x), ex)
)

?~*) — Ξ'(e~x, dexe~x).

= Ξ'(exe\ Ξ'(er,

2. 2-dimensional reduction of the Einstein vacuum field equations

In this section we give a starting point of our mathematical discussions in
this paper, which comes from a physical motivation. Namely, the starting
point consists of definitions of the solution space of the Einstein vacuum field
equations in stationary axisymmetric space-times and the conformal factor.

Our space-time manifold is considered to be locally a Lorentzian manifold
which has the signature (1, -1, -1, -1). Let ds2 = gμvdxμ®dx" be a space-time
metric on the manifold. The coordinate x° always indicates the time axis t.
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Then the Einstein vacuum filed equations (see [13]) for couplings of the
gravitational fields without other fields are given by

(2.1) Rμv - -gμvR = 0 (μ, v = 0, 1, 2, 3),

where Rμv is the Ricci tensor for a 4-dimensional space-time manifold and R
is the scalar curvature in the Riemannian geometry, as usual, given by:

Γβ

μv = -9βκ(Sμgvκ + Svgμκ - dκgμv),

«-» μv

Taking the contraction about the indices μ, v, we get R = 0. So the Einstein
vacuum equations become

(2.2) Rμv = 0 (μ, v = 0, 1, 2, 3).

In physics, stationary and axially symmetric space-times are characterized
by the existence of two independent Killing vector fields, where one is time-like
and the other is space-like corresponding to the time translations and the
axial rotations, respectively. Suppose that a space-time metric is given.
Adapting coordinates t and φ by integrating the Killing vector fields and
expressing other two coordinates by z, p, we have a metric dependent on z
and p (independent of t and φ). This is called a 2-dimensional reduction.
Since a 2-dimensional space is conformally flat, we can choose coordinates
z, p so that the metric with respect to z, p is diagonal, which is called the
conformal gauge.

Thus we assume that the stationary and axially symmetric space-times
have the following metric form in cylindrical polar coordinates

(2.3) ds2 = hpqdxp (x) dxq - λ2(dz ®dz + dρ® dp),

where the indices p, q run over 0 and 1, and hpq and λ are functions of the
variables z, p. λ in (2.3) is called the conformal factor, which is assumed to
be a positive function (see Definition 2.6).

Let the indices p, q and r take values in 0 or 1, and let α, b be 2 or
3. Then the Einstein vacuum equations are calculated by use of the above
metric form as follows:
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+ dbλdalogj-deth - δabVλ - Plog,/- det h) + -dah
pqdbhpq = 0,

where δab is the Kronecker's delta and d2 = d/Bz, d3 = d/δp, A = δ2 + dp9

v = (5,, sp).
Only for a technical reason we put hpq to the following matrix form:

ΛOI /loo

It is noticed that h00 is assumed to be positive by a physical requirement,
and that det h < 0 because of the indefinitness of the space-time metric. Here-
after we put /= h00.

Taking the trace of the equation (2.4. a), we get

A canonical coordinatization allows to us that p = v/— det h can be taken as

long as d«J — det h =£ 0 (WeyΓs canonical coordinates).
Finally we put

(2.5) τ =

which is considered to be our τ-function.
From the equations (2.4.b) we get the following two equations (2.6.b) and

(2.6.c) by taking the equation (2.6.a) into account.
In summary we have the following equations for the 2-dimensional

reduction of the Einstein vacuum field equations:

(2.6. a) d(p-1hε*dh) = Q,

(2.6.b) τ Bzτ = — --tτ(Bzh dph),

(2.6.C) τ 13,1 = -^- —+ -tr(S,Λ ld,h-8ph *dph),

where ε = ( 1 and * = Hodge operator for the metric dz2 + dp2.
\ /

Since Λ is symmetric, det h = — p2 and / > 0, so we can parametrize h
by introducing a new function y as

(27) , ,'fy2-p2/ffy

It follows from det h = — p2 and / > 0 that
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(2.8.α) y(z,0) = 0,

/O 0
(2. 8. b) h(z, 0) =

\0 /(z,

By use of the parametrization of h, the matrix form equation (2.6. a)
becomes the following equations:

(2.9.a) d(p-1f2*dy) = Q,

(2.9. b) d(pf~l*df + ρ~1f2y^dy) = 0.

Now we define our solution space of the Einstein vacuum field equations.

DEFINITION 2.1. Let 5^£ denote the set of all formal solutions h of the equation
(2. 6. a) which satisfy the following conditions:

(0 /zegI(2,R[[z,p]]),
(iϊ) h = % d e t / z = -p 2,/>0.

For any given h of the solution space £fE there exists a conformal factor
λ, equivalently τ, which is obtained by solving the equations (2.6.6) and
(2.6.c). But we postpone this discussion till rewriting these by use of the
Ernst potential.

Because thus obtained non-linear differential equations describing the
stationary and axially symmetric space-times are not appropriate for applying
group theoretical methods, we have to change these equations into another
equivalent matrix equation.

First we consider the so-called Ernst potential ψ, which was first
introduced by F. J. Ernst (for example see [5]), defined by

(2.10) dψ -p'1/2*^,

setting ι/^(0, 0) = 0. The existence of ψ is trivial from the equation (2.9.α),
and then we deduce the following equations from the equations (2.9.α) and
(2.9.6):

(2.11.6) d(pf~l*df+ pf~2ψ*dψ) = 0,

which are called the Ernst equations.
Conversely, we can get the equations (2.9.α) and (2.9.6) from the Ernst

equations (see Lemma 2.3).
Let M(R[[z, p]]) be s follows:

(2.12)

{megl(2, R[[z, p]]); lm = m, det m = 1, the (2, 2) component of m > 0}.
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Then, we fix the parametrization of meM(R[[z, p]]), which is widely used
(for example see [1]) by

(2.13) m =

Now we describe the Ernst equations (2. 11.0) and (2. 11. ft) in a matrix form.

DEFINITION 2.2. Le/ M(R[[z, p]]) be as above. Then we define the solution
space ^M by:

(0 meM(R[[z,p]]),
( i i ) d(pm~1*dm) = 0 and
(in) ψ(z, 0) = 0 in the parametrization (2.12).

The defining differential equation of ^M is equal to the differential
equations (2.11.α) and (2. 11. ft). This is easily verified as follows. Taking the
(2, 1), (2, 2) and (2, 1) components of the defining differential equation of <^M
by use of the parametrization (2.13), we actually get these equations. Its (2, 1)
component becomes

(2.14) d(p*dψ - 2pf~1ψ*df- pf-2ψ2*dψ) = 0

It follows from the equations (2.11.0) and (2. 11. ft) that the equation (2.14)
always vanishes.

The lemma below is well-known (for example see [1][5][15]).

LEMMA 2.3. Let ϊfE be the solution space of the Einstein equations in the
stationary and axisymmetrίc space-times and let ^M be the solution space of
the Ernst equation in the matrix form. Then we have a standard isomorphism

(2.15) εr^M-iU^E.

PROOF. Let m be any element of ΪSM. From the parametrization (2.13) of
m we have the equations (2.11.0) and (2. II. b). Let us consider the differential
equation

(2.16) dy= - pf~2d\l/

Then it follows from the equations (2.11.0) and (2. 11. ft) that there exists a
unique yeR[[z, p]] such that γ(z9 0) = 0. Also it is easy to show that / and
7 satisfies the differential equations (2.9.0) and (2.9. b). So using the
parametrization (2.7) we have he&Έ. Hence we put
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(2.17) ε(m) = h.

It follows from the discussions so far that ε is a bijective map. Π

Now we return to the discussion of the conformal factor.
By use of the above introduced Ernst potential ψ, the equations (2.6. b) and
(2.6. c) of τ become

(2.18.0) τ~1dzτ = — ^ ( d z f d o f + dzψdoΨ)>
2f2

(2.18.fr) τ-^τ = -^((dpf)
2 - (dj)2 + (δ»2 - (dzψ)2).

And using the matrix m we have a more elegant expression as follows:

(2.19.a) τ-^τ - --tr^m^m),

(2.19.b) τ~ldpτ = - -\τ(dpm'ldpm - dzm~ldzm).
8

This is one of the reason why τ is considered to be the τ-function.
As stated above, the existence of the conformal factor is referred to the

lemma below.

LEMMA 2.4. For any element m of the solution space ^M there exists a unique
conformal factor τ up to a multiplicative ositίve constant, which satisfies the
equations (2.19.0) and (2.19.fr).

PROOF. In order to prove the existence of τ, we have only to show that the
1-form

tr(dzm~1dpm)dz tr(3pm~13pm — dzm~^dznί)dp

is a closed form under the assumption that m satisfies the equations (2.19.0)
and (2.19.fr). So taking the exterior differentiation of the above 1-form, we

immediately conclude that

— dz(ptΐ(m~1dpmm~1dpm — m~1 d zmm~ ^ d zm))

is equal to zero by means of the equations.
Therefore the existence of the conformal factor τ is proved. The remained

is obvious by expressing τ~1dτ = dlogτ. Π
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00

DEFINITION 2.5. Let A be {τ = £ wVe*[[>> P]]; *oo = 1} Then for
a,b = 0

any given solution me^M we define the mapping

(2.20) η: ¥M > A

and call λeA the conformal factor in a strictly meaning.

Hereafter whenever the conformal factor is referred to, it is an element of A.

Finally we remark that the Minkowski space-time, which has the metric

in the cylindrical polar coordinate

(2.21) ds2 = dt®dt- p2dφ ® dφ - dz® dz - dp ® dp,

is explicitly expressed by

. '1 0
(2.22) me =

τe = 1 eΛ.

3. Linearization and Potentials

In this section, we discuss a linearization, and define ZfgP and £fP in the

category of formal power series which are our main concerns.

Let 5L(2, R) denote the group of all real 2 x 2 matrices with determinant

1 and let I2 its identity element. The center of SL(2, R) consists of matrices

± I2. So we take G = PSL(2, R) = SL(2, R)/{± /2} as a target group, which
is isomorphic, as a Lie group, to S00(l, 2). And let θ be the Cartan involution

defined by θ(g) = tg~1 for geG. Then a maximal compact subgroup of G is

given by K = (0eG; θ(g) = g}.

Hence we have an Iwasawa decomposition (for example see [12]) of G:

G = KAN with

' Λ 0

,0 I/a

1 0

,x 1

and K = the above defined maximal compact subgroup of G. For the

convenience of our discussions we rewrite this decomposition as G ̂  K x AN,
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and put α to use the mapping from G onto AN through it.

Let G(R[[z, p]]) = PSL(2, R[[z, p]]) be the formal group of all 2 x 2
matrices with determinant 1 modulo center, whose entries lie in the formal
power series R[[z, p]] with respect to the the variables z and p. Taking the

same one as the Cartan involution, we can go to the parallel discussions in
the above finite dimensional case by the properties of R[[z, p]]. So,
corresponding to the Iwasawa decomposition, we have the decomposition

(3.1) G(R[[z, p]]) * K(R[[z, p]]) x ΛΛΓ(R[[z, p]])

where K(R[[z, p]]) and AN(R[[z, p]]) are the formal groups with values
in K and AN, respectively. Hereafter we consider G, K and AN to be

naturally embedded into G(R[[z, p]]), K(R[[z, p]]) and XJV(R[[z, p]]),
respectively. And we as usual employ the following parametrization for the
element P in Λ7V(R[[z, p]]) (for example see [15]):

/77
(3.2) P =

0

\77 77;
which is called the triangular representation.

Now we give a correspondence between ,4Λf(R[[z, p]]) and M(R[[z, p]])
in which the latter was defined in Section 2. First for any element m of
M(R[[z, p]]) we can construct an element P of ,4Λf(R[[z, p]]) by means
of the following manner:

M(R[[z,p]])9iιι =
f f

1

\

P =

77

A.
77 77 I

Conversely, a map

θ: , p]]) —>M(R[[z,

is given by denning θ(P) = θ(P~ί)P for PeΛJV(R[[>, p]]). It is clear that

θ is a bijective map.
Hence the solution space &ΊM of the Ernst equation (see Definition 2.2)

is equivalently translated into the equation of ΛN(R[[z,

DEFINITION 3.1. Fix the above paramerlization of ΛΛΓ(R[[z, p]]). Γλe«

ί/ze solution space ίfP, which is equivalent to £fM, by
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(3.3) yp = {PeΛΛΓ(R[|>, p]]); d(pp-1θ(P)^d(Θ(p-ί)P)) = 0, ψ(z, 0) = 0}.

Therefore we have

Hereafter a restriction of a map is, for simplicity, written by the same symbol
of the map. That is, Θ\^P is written as θ.
We remark that it is easily seen from

that the defining equation of ^P is equivalent to

1) - d(pθ(*dPP~1))
(3.4)

+ p(dPP~1 Λ θ^dPp-1) - θ(dPP~1} Λ tάPP'1) = 0.

Let α be the map from G(R[[z, p]]) to A/V(R[[z, p]]) through the
decomposition (3.1). We denote by α the map X(R[[z, p]])\G(R[[z, p]])^
AN(R[[z, p]]) induced from α. Then an action of G(R[[z, p]]) on
AN(R[[z, p]]) is defined such that for #eG(R[[z, p]]) the following diagram
is commutative:

p]])\G(R[[z, p]]) ^-,X(R[[Z, p]])\G(R[[z, p]])

(3.5) α| |ά

z, p]]) — . ^N(R[[z, p]]).

Now it is easy to see from the defining equation (3.4) of £fP that for any
element geG we have the following commutative diagram:

z9 p]])\K(R[[z,

(3.6) α| |ά

This action of G, which gives no intrinsic change for the metric, is called the
gauge transformation.

Let F(+) be an associative filtered algebra of R[[z, p]] with a filtration

Then the formal loop groups J^<+> and J^^<+) are denned, introducing a
new parameter ί (see Section 1), as follows:

(3.8) ,̂ <+> = {g = Σ0,f'; <7,egl(2,
leZ
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and its subgroup

(3.9) J^(+) = (P(t) = f /V' e J^(+); P0e AΛΓ(R[[z, p]])} .

We remark that J^( + ) will be identified with && (see Section 5).
Let proj be a map from J^( + ) to G(R[[z, p]]) defined by

proj: J^(+)90 = Σ0,ίΊ - ̂ ^0eG(R[[z, p]]).

Hence we have proj: J^( + ) -> XN(R[[z, p]]).

Let Λ*R[[z, p]] denote the set of all the exterior differential /-forms in
the variables z and p whose coefficients lie in R[[z, p]], where / is a

non-negative integer. And we also denote by d: Λ*R[[z, p]]-> Λ ί+1R[[z, p]]
the exterior differentiation.

Let us consider R[[z, p]] [p"1]. Then it is clear that R[[z, p]] [p"1]
is an associative algebra over R with the addition and multiplication in the
category of formal power series. And we also denote by Λ*R[[z, p]] [p"1]
and d the set of all the /-forms and the exterior differentiation in

Then the exterior differentiation

(3.10)

d:Ql(2, Λ ' R C f e p Ή C p - ^ O R C M ] )

is defined as follows.

We have only to give a d operation for 1 (x) ί, which is one of the generators
of R[[z, pHCp-^RCM], that is,

(3.H) at = (1^2)((1 - ^dp + 2tdz).

It follows from the definition (3.11) that dd = 0. Therefore d is well-defined
as an exterior differentiation. It should be noticed that

is a well-defined correspondence from (3.11) and the filtration of
Let g(R[[z,p]]) = sI(2, R[[z,p]]) be the Lie algebra of G(R[[z, p]]),

i.e.,

9(R[|>, P]]) = {*egl(2, R[[z, p]]); tτ(X) = 0}.

Let θ be the Cartan involution defined in the beginning of this section. We
also denote by θ the involution of g(R[[z, p]]) induced from the Cartan

involution of G(R[[z, p]]), that is, Θ(X) = - *X for Xeg(R[[z, p]]). Then
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we have the Cartan decomposition g(R[[z, p]]) = ϊ(R[[z, p]])Θp(R[[z, p]])

of the formal Lie algebra g(R[[z, p]]).

Then let us start the discussions of a linearization of the defining equation

(3.4) of PP.

First, following [1], we introduce a 1-form with the spectral parameter.

DEFINITION 3.2. For PeAΛΓ(R[[z, p]]), let j / e ϊ ( Λ ^[[z, p]]) and J e

P(Λ *R[[z, p]]) be the I and p valued I- forms defined by

'1 + θ(dPP~1}}, J = i(dPP~1 - θ(dPP~1}).

A ^-valued I- form ΩP for P is defined by

(3.12) ΩP = sf
+ t 1 + t

Using the paramerization (3.2) of P, we have an explicit expression of

ΩP as follows:

ΩP = — ( ( 1 - tήdPp-1 + ί(*

(3.13)

- 2(ί2

2/(l + ί2) V 2(1 - t*)dψ - (1 - t2 - 2t*)df

Next we introduce the potential space designated by <9̂ , whose

compatibility condition recovers the defining equation of £fP (this will be

proved in Proposition 3.4).

DEFINITION 3.3. Let J^( + ) be the formal loop group defined in (3.9). We

define <f0> to be the set of all elements 0>(t) = £ Pmtm of 3?0>(+) satisfying

the following conditions:

,0) 0

0 l/Jf(z, 0)

where we put P = P0 ««ί/ t/^rf the parametrization (3.2) 6>/ P.

It is noted that ί2P|f = 0 = dPP"1 ensures ^(0) - P.

The defining equation (i) of ϊfgP is explicitly expressed by
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o .̂ 2

(3 14 a) d &(f) H d ^(t) = ΩP ^(t)
p(l + t2) '

C% 14 h\ r) όp(i\ -I- -?\ όP(t\ — O &P(i\V A i t-'y \JQt-S \LJ \^ ~~ UftS \Lj — aύp n<-s v*'/?

where ΩP z and ΩP p are the coefficients of dz and dp in ΩP, respectively.

Remind us that the map proj is defined on &*& as follows:

proj: y0>30>(t) = £ PjίΊ ^P0G>lN(R[[z, p]]).
1 = 0

Then we have the proposition below, which states that proj is considered to

be a map into if P.

PROPOSITION 3.4. Let &(t) be any element of the potential space ifSP. Then

proj(&(t)) is an element of if P.

PROOF. For a given ^(ί)e5^, put P =proj(0>(t)). Note that 1-form ΩP

satisfies the integrability condition:

(3.15) dΩp-ΩPAΩP = Q.

Using (3.11) and (3.13), we obtain

dΩP -ΩPΛΩP= -- t——(d(p*dPp-1) -
(1 + t2)p

+ p(dPP~1 Λ θ^dPP'1) - θ(dPP~1} Λ

Therefore P belongs to if P. Π

It should be noticed that proj : if£P — > if P is not surjective. For example, let
us consider the simplest Weyl solution (see [20]) given by

-'ny^-s^T?,
Then a simple calculation gives us the following candidate for the potential:



270 Ryuichi SAWAE

exp
- P(l + t 2 )

\
exp

But we obviously find that ^w(ί) is not an element of £f0* because of the
mismatch in the filtration, even if we shift the z variable in order to remove

the singularity at the origin.

In summary, from Proposition 3.4 and the discussions so far we have the
following well-defined diagram:

• Λ

For the sake of later discussions we change the linealized equations into
two other equivalet forms. The first one is described the following lemma.

LEMMA 3.5. The defining equations (3.14.0) and (3.14. b) of the potential space
are equivalent to the following equations:

(3.17.α)

(3.17.fr)

where

p ( d z + -t

1

P ~

2/ °

P ~

"ϊf :

(3.18.0)

(3.18.6) Ωl =

PROOF. From the equations (3.14. α) and (3.14.fo) we immediately get the above
equations. Q

The other equivalent form is obtained by the replacement t -» , under
t
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which the solution space £fP is invariant, for the equations (3.17.α) and
(3.17.&). It is easy to see that

(3.19.α)

(3.19.&)

where

(3.20.a) Ω2 =

(3.20.b)

Let

\ t "' 2V i*) " t " I

= ZPlt> = (a(t) -(with
i-o \c(t) d(t).

a(t) = X βlt', b(t) = fr.ί1, c(ί) = Σ c.t1 and d(t) = d,t'.
ϊ = 0 / = ! Z = l ϊ = 0

Since ^(ί) is determined by P0 as an element of the potential space, it is
possible to write down P,(/ > 1) by use of P0. To prove Proposition 5.9 we
calculate only Pj. It follows from the parametrization of P0 that

(3.21) α0 =

Simple calculations for (3.17.α) tells us that the following differential
equations for each component of P1 are satisfied:

(3.22. a)

(3.22.b)

(3.22.C)
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(3.22.d) dz(Pv/M) = jϊ(- Spf +

and for the equation (3.17.fc)

/ nn. \ n

(3.23. a)

(3.23.b)

(3.23. c)

(3.23.d)

The last condition for the components of Pί comes from the fact that
det ^(ί) = 1, which is given by

(3.24) a1 = ψb1-fd1.

Finally we comment that the Minkowski potential in the potential space
(f Uft ίo

Π 25^ ^ — T\-> <£*•>) o^ — i2

4. Action of the Hauser group

The aim of this section is to give an action of the Hauser group on the

potential space y& defined in Section 3. The formulation of its action is

that of a homogeneous space in the finite dimensional Lie group theory.

DEFINITION 4.1. Let &(co} = PSL(2, R[[s]]) be an infinite dimensional group

{g(s)egl(2, R[[s]]); d e t g ( s ) = l}/{± /2}»

where R [ [5] ] is the associative algebra of formal power series in s over R. We

call ^(oo) the Hauser group.

It is noticed that the parameter s differs from the one in the papers [1] [7],

in which it is the inverse of that in this paper.

Let {F{+)}ZeZ, {^ί+)}/ez
 and {Fι}iez be filiations of the associative algebra

of the formal power series R[[z, p]] over R given by

( + > = p™χ(ί,o)R|-|-Z5 p]] (the filtration introduced in Section 3),
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(-) = F(+) (the opposite filiation of F(+)) and

I = PUIR[[>, P]] (a two-sided filtration).

Then F( + ), F(~} and F denote the associative filtered algebras with the

filtration {F{ + )}/eZ, {F<-}}/6Z and {F,}tez, respectively.

So we define the following formal loop groups for the associative filtered

algebras F (+) and F(-):

j^(±) = {0(±) = Σί/(±¥; 0|±>6βi(2, Fp>), det </*> = l}/{± /2},
ίeZ

and its subgroups

= (n(±\l/t) = £ ni± )ί lε# »(±); πj± ) = 0(ί > 0), n(

0

±) = 1},
ίeZ

0)}.
/eZ

Moreover we define the formal loop group J^ = ̂ ^( + )r\^^(~\ which

has the two-sided filtration and is explicitly expressed as

(4.1) y<3 = {g = Σfcί 1; ft68I(2, F,), det g =
leZ

and define its subgroups tFJf and J^J* with the filtration {F,}/6Z as we did

^^Γ(±) and ̂ ^(±).
We apply Lemma 1.2 to J^( + ) and J^(~}. Since J^^ is the subgroup

of J^(+) and ^^(~\ it immediately follows from these that we have the

following Birkhoff decomposition.

LEMMA 4.2. Let the notations be as above. Then, any element g of 2FΉ can

be uniquely decomposed as

g = n~

To formulate an action of the Hauser group ^(oo), we embed it into the

formal loop group 2FΉ by use of the homomorphism:

(A 9\ . <^(oo) ^$τ^
\~^.^l I . O' r tX ^'5

given by substituting pi ί ) + 2z into the parameter s in elements of

^(oo). Then, it is easy to see that this formal group homomorphism is

well-defined and injective. Hence we identify the Hauser group ^(oo) with the

subgroup 2F2tf = Im (7) of the formal loop group J .̂ From the special
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substitution for s, we have the following lemma, which characterizes the
elements of ^tf in

LEMMA 4.3. Let g be an element of the formal loop group 2FΉ. Then g is
an element of its subgroup ^ 3? if and only if the following equations are

satisfied'.

(4.3.6) dtg= -

PROOF. Let g be an element of 3F3/P. Then, since g is expressed by a formal

power series of the parameter 5 = pi M + 2z over R, we immediately get

the equations (4.3.a) and (4.3.b) by appropriately differentiating the generators
sl(l > 0) with respect to the variables ί, z and p.

Conversely, let us assume that ge^^ satisfies the equations (4.3.a) and

(4.3.6). Then, we can consider g to belong to R[[ί, ί"1, z, p]] without a
loss of generality.

Expanding g as follows:

leZ

oo

we make a formal power series g'(s) = ]£ c^s* such that c, = gt(Q, 0) for / > 0.
/ = o

So we prove that w = g — g'( pi ί ) + 2z j = 0, that is to say, if

, p]] + pR[[z, p]] for / > 0,

W l 6 p ] ] f o r / < 0

satisfies the equations (4.3.α) and (4.3.b), then w is equal to zero.
We divide the proof of the above statement into two steps, that is, the

first stands for / > 0 and the last for / < 0.
Step 1. We expand wt for each /(> 0) as follows:

Then, we express vvz in the matrix form
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0 vv W j 02 ••• \

*Ί,10 WM1 WM2 "

where the (0, 0) component is zero by the assumption, and the down and

right directions are indicated to the powers with respect to p and z, respectively.
We now show the following:

(i) Arbitrarily fix i0 > 0 and j0 > 0. If wM</ = 0 for 0 < i < z'0, 0 <j <j0

and / > 0 , then wMoϋ 0 + 1) = 0.

(ii) Arbitrarily fix i0 > 0 and Ό > 0. If w / f 0 = 0 for 0 < i < ΐ 0 > 0 <;' <j0

and / > 0 , then w,i(Jo + 1)Λ) = 0.

Taking the coefficients of ί*(/ > 0) in the equations (4.3. a) and 2 x (4.3.ί?), we

have

(4.4.0) 3zw/ = - 2(/ 4- l)w/ + 1 - pδpw l + 1,

(4. 4.6) d z wj = — 2(/ H- l)w / + 1 - p25zw ί + 2, respectively.

Let us assume the conditions of (i). Then it is clear that wMo(7 0 + 1) = 0

for / > 0, by taking the coefficient of piozjo in (4.4. a).
Let us assume the conditions of (ii). Since dpwl + l = pdzwl + 2 from the

relations (4.4.α) and (4.4.b), we have vv i j ( ί o + 1 ) J 0 = 0 for / > 0 also by taking its

coefficient of piozjo.
Therefore we can conclude that w^z, p) = 0 for / > 0 in full chase of the

matrices with (i) and (ii).

00

Step 2. Next we show that w = £ \v_lt~
l vanishes under the asumption that

1 = 1
w satisfies the equations (4.3. α) and (4.3. b).

Taking the coefficients of t~l(l> 1) in he equations (4. 3. a) and 2 x (4.3.fo),

we have also

2C ~ 1)w-/ + ι = P2Szw_1 + dzw_l + 2, respectively.

Then it follows from these relations by shifting / - > / + ! that

(4 6) 2 / w _ ί = -pS p w_ f + 3 z w_ 1 + 1 for / > 1.

We prove w^ = 0 for / > 1 by induction. For the case / = 1 the relation (4.6)
becomes
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(4.7) W ! = --5nw ι .I -i 2 P -i

It is clear from the p factor in the right hand side of (4.7) that if \v_1 had
a non-zero solution of this equation, w _ j epR[[z, p]]. On the other hand,
from the equation (4.5.a) in case of / = 1, we have pδ z \v_! = 0. This implies
w_ιeR[[p]]. So we conclude from the equation (4.7) that w _ ! is equal to
zero. Hence the case / = 1 is O. K. Suppose / > 1. Then it follows from the

assumption of induction that we have also W-t= <3 z w_j. Just in the

same way as the case / = 1, w _ x belongs to R[[p]]. Since w _ f is a solution

of the equation w _ j = δ z w _ / s w _ j vanishes. This completes the proof of

this lemma. Π

In order to construct an infinite dimensional homogeneous space
analogous to the finite dimensional Lie group case, we need an involutive
automorphism of 3FΉ, a "maximal compact" subgroup and a decomposition
of 2FΉ. Now let us start this discussions.

First we introduce an involutive automorphism 0(oo) of ^^ by

(4.8) 0(00):

which is well-defined and satisfies 0(oo) o #(oo) = identity as at once checked, and
is called the Cartan involution, too.

By use of the Cartan involution we define the subgroup of ̂ ^ such that

(4.9) &tf = {ke&&; 0(oo)(fc) = k}9

corresponding to the maximal compact subgroup in case of the finite
dimensional theory.

Let v4ΛΓ([[z, p]]) be the set of the formal power series with values in
AN of the Iwasawa decomposition and let

(4.10) 2F& = {0>(t)= PjePy-, P0eAN(R[[z, p]])}
ι = o

as in Section 3.
Then it is easy to see that the following lemma holds.

LEMMA 4.4. Let the notations be as above.

Then,
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PROOF. The case in the finite dimensional has no problem. Otherwise any
element of J^Jf has negative power terms of the spectral parameter t. Π

DEFINITION 4.5. Let g = X/eZ#ί(z, p)tl be an element of the formal loop group
^y. If 00 (0, 0) is positive definite, then we say that g is positive definite. So
is the Hauser group ^(oo).

We define subspaces of ^Ή and ^(oo) as follows :

(4. 12. a) Jt(&<3} = {ge3?<$\ fl^fe'1) = fif, fif is positive definite}

and

(4. lib) Jί(y(™}) = {#e^(oo); θ(g~1) = g, g is positive definite}.

The following lemma and proposition are included in the proof of Theorem
4.1 in [7].

LEMMA 4.6. Let g be any element of J^(^^). Then we have a unique
decomposition of g as follows :

(4.13) g = θ(

PROOF. Since gεJί^y) belongs to ^ ,̂ it follows from applying Lemma 4.2

to g that we have the following unique decomposition:

g = n(l/t)b(t)

Expressed b(t) = feo^iWί in which fo0 is the leading term of b(f), we calculate

Since θ(b^(- l/ί)'1)^^ and θ(b^)θ(n(- tγ^e&», we get the decomposi-
tion of θ(co}(g~l). Hence, since &00}(g~ί) = g, it follows from the uniqueness
of the Birkhoff decomposition that we get the equalities

Hence θ(b^1) = b0 holds. In addition, taking it into account that

6o = fl(e>)((friW1)-1)^i(i)"1

is also positive definite, bQ can be uniquely decompose as

b0 = θ(p^)Po for p0

Therefore we have the unique decomposition:
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where we put ^(f) = Po^iW D

PROPOSITION 4.7. The formal loop group &<§ is uniquely decomposed as

(4.14) jz^ = J ĵf ĵ >.

PROOF. First we show that any element gz<F<S belongs to J^JΓJ^. To
do this, let us consider the following map

defined by δ(x) = θ(x~1)x for xe^y. Put m = δ(g). Then, since m has the
property :

= m

and m is positive definite, it follows that δ is well-defined.
From Lemma 4.6 we have

(4.15) m = fr*>\»(ή-^9Hfy (0>(t)e&&).

Now let k = g»(tΓl. Then, from fceJ^ and θ(co)(k) = k we conclude that
/ceJ^Jf. Hence we get the decomposition of ge&<S into k&We&jr&P.

Finally we prove the uniqueness of the decomposition. Suppose that we
have an another pair fc'eJ^Jf and 0>'(t)e&0> such that g = k'0>'(t). Then
k'-lk = 0>'(t)0>(tΓ1' On the other hand, by Lemma 4.4, we have k'~1k =

l = 1. Therefore the uniqueness is proved. Π

From Proposition 4.7 we have the following decomposition:

(4.16) &% ^ &tf x &0>.

Let α be the map J^^-^J^^ through the decomposition (4.16). We
denote by α the map from J^JfΛJ^ to &0> induced from α. Then for any
0eJ^ we define an action on && such that the following diagram is

commutative :

-SU & jf \ &%

(4.17) α| }ά
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For the action of geJ2^ on ϊPgP we use g as a notation, that is,

g :

LEMMA 4.8. Let α: J^-> J*^ 6e as a60ι;<? <2«d /<?/ ^(ί) be any element of
such that

Then

PROOF. Let j be the injective homomorphism defined by (4.2). Then, since
θ(*\0>(tΓl)&(ί)e&tf, we have 0P =7"1(β(oo)(^(ί)"1)^(ί))e»<QO). Now let us
consider the following map

δ: ^(00) - >,Jf(^(oo)),

defined by δ(g) = θ(g~ί)g for 0e^(oo). Then it is clear that δ is well-
defined. If δ is surjective, there exists g'P such that δ(g'P) = gp. Since

&g, it follows from Lemma 4.6 that α(y(#p)) is equal to
Therefore we have only to prove that δ is surjective. From a direct

calculation we find that it is true. Π

PROPOSITION 4.9. For any element &(t) of the potential space £?&, the product

(4.18) fl(00)(^-1(ί))^(ί)

belongs to the Hauser group 2F 3? which is the subgroup of the formal loop
group

PROOF. Since ^(f)e J ,̂ &*\&~l(t))0>(t) is also an element of &%. Then,
due to Lemma 4.3, in order to prove the proposition we check only to satisfy
the following equations:

(4.19.α) [d, + p I d . + -d. M^00'^"1 (0)^(0) = 0,
V V t //

/ Pi 1 \ \ , >(4.19.&) ( d , + - 1 + — }dz }(&a>)(&-1(t))0>(t)) = 0,

on the assumption that ^(ί) satisfies the equations (3.17.α) and (3.17.b), or
equivalently (3.19.α) and (3.19.fe).

First we show the equality of (4.19.0). To do this we make a relation

about the derivative dt + ρ(dz + -dp\ of 6>(oo)(^)~1(ί)) by subtracting the
\ ^ /

equation (3.19.6) from the twice of the equation (3.19.α):
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(4.20)

Hence, using (3.17.α), the left hand side of (4.19.a) becomes

0(^-i(_ l/ί))<(2ί53 -

It follows from '(2^3 — Ω2) = — Ω0 that the above equation vanishes.
Next the left hand side of the equation (4. 19. ft) becomes, by use of the

equations (3. 17.Z>), (3.19.0) and (3.19.&),

Since Ω0 = — 1Ω3, the above equation also vanishes.
Therefore 0(oo)(^~1(t))^)(ί) is an element of & 2tf under the assumption

that 9(ήeSe». D

It follows from Proposition 4.9 and Lemma 4.8 that any ^(t)e^^ is
given by the action of some element of & ffl to the Minkowski potential ^e,
which is the identity element of J ,̂ that is, ¥& is included in

Conversely, we have the following theorem.

THEOREM 4.10. Let J^Jf be the Hauser group embedded into the formal loop
group ^y.
Then, y&^je czj^jf &>&. Therefore for any element g of J^ we have
the following commutative diagram:

(4.21) 4

PROOF. In order to prove the theorem, from the discussion above, it is
sufficient to show that for any element g of ^3F a(g) is an element of
y0>. Put m = θ(*}(g~l)g for an arbitrarily given #eJ^. Then, since m
belongs to J^^f, the equations of Lemma 4.3

(4.22.a) 8tm = - p(dz + -3P

(4.22.b)
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are satisfied. It is noticed that applying Lemma 4.6 to w
is uniquely expressed by θ(co)(0>(t)~l)0>(t), using 0>(t) = a(g)e &&.

So, the equations (4.22. a) and (4.22.6) equivalently become

^ dt&(t) + p(dz + -
(4.23.a)

^(4.23.6)
/ . p / 1

= - θ(&(— 1/0) dtθ(&(— 1/0~ ) + — 1 H
\ 2 V ί2

To prove the theorem, we have only to show that (4.23.α) and (4.23.6) are
the equations (3.17.α) and (3.17.6). Comparing the both sides of the equation
(4.23.α), we conclude that its coefficients except ί° and ί-1 are equal to zero.

Hence it is obtained that

pd, +

In fact, this is equal to the equation (3.17.α).
Also comparing the both sides of the equation (4.23.6), we conclude that

its coefficients except ί°, ί"1 and t~2 are equal to zero. In order to know
the coefficient of ί"1 in (4.23.6) we write down the coefficient of ί"1 in the
equation (4.23.α) as follows:

(4.24) dppp-ι = {

by dropping the multiplying variable p.
Taking it into account that the coefficient of ί"1 in the right hand side

of the equation (4.23) is

it follows from the equations (4.23.6) and (4.24) that

= .- θ(P)dzθ(P~1) + dzPP~l + ~(dpPP~l + θ(P}dzθ(P~1))p

ΐ
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We immediately find that the above equation is equal to (3. 17. ft). Therefore

the theorem is proved. Π

From Theorem 4.10 and the discussions so far we have the following
diagram for

And, by taking Proposition 4.9 into account, we conclude that the Hauser

group ^3tf(^ &(co}) acts transitively on the potential space Sf9\y& is an
infinite dimensional homogeneous space.

5. Central extensions

In this section we shall describe the main results of this paper, that is,

the facts that the conformal factor τ of a stationary and axially symmetric

spacetime metric is related to the central exension of the formal loop group

^^ with values in PSL(2, R) by the additive formal group F, and is expressed

by the evaluation of the group 2-cocycle Ξ on the corresponding potential.

Let F be the associative filtered algebra with the filtration {Fj/eZ, where

Fl = p |z|R[[z, p]], defined in Section 4. We define the following formal loop
Lie algebra:

^ = {X = X V; xzegl(2, Fz), tr(X) = 0}.
leZ

Then it should be noticed that since the exponential map exp : si (2, R) ->

P5L(2, R) is surjective, so is the exponential map exp : J^g -> J*^.

At the first place, we consider the central extension of the Hauser group
^(00) (see Section 4) by the aditive group R.

Thus the central extension is described by using the following exact
sequence

0 - > R - > #£> - > ̂ (00) - » 0.

Since the cohomology group H2(^(oo), R) is trivial, so the central extension

^?} is always isomorphic to the direct product ^(oo) x R as groups. In order

to relate the center with the integral constant of the conformal factor we take

the multiplicative group R+ = {ev; veR} in place of R. Then the group

multiplication is defined by
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(5.1) (gl9 e») - (0r2, e») = (9lg2, ev+») for (gl9 e*)9 fo

DEFINITION 5.1. Let <S^ = #(00) x R+ with the group multiplication (5.1). We

call the subgroup &(

c$j = ^(oo) x {1} also the Hauser group.

Next we consider the central extensions of the formal loop group
(in details, see Section 4) by the additive formal group F = R[[z, p]]. Then
a central extension is equivalent that the following diagram is an exact

sequence.

0 - > F — > &<§ce - > J^ - > 0.

In this case, as discussed in Section 1, the cohomology group H2(^^, F) is
not trivial. Therefore we have the nontrivial central extension by the choice
of the representative Ξ in the nontrivial cohomology class. From the same
reason in the central extension of the Hauser group, we choose the center
F+ = eμ;μeF.

DEFINITION 5.2. We define the centrally extended formal loop group ^^ce to
be the direct product ^^ x F+ with the group multiplication:

(5.2) (gl9 eμ)o(g2, *") = (9lg2, e" + * + *<"•">) for (gl9 e*)9 (g29

In the following, the group multiplication ( g ί 9 eμ)o(g2, ev) is simply written

as ί
From the anti-symmetric conditions (1.3.7) of our 2-cocycle Ξ the inverse

element of (g, eμ)e^^ce becomes (g~l

9e~μ).
Here we prepare the lemma below needed for the proof of Proposition 5.10.

LEMMA 5.3. For any element g.g'e^^, we have the identity.

(5.3) Ξ ( g 9 g f ) = Q.

PROOF. Express g = ex and g' = eγ. Since g(- 1/f), g'(- 1/ί) for g9

are respectively equal to g, g', so are X(— 1/ί), Y(— l/t). Using the definition
(1.3.5) of the group 2-cocycle Ξ, the left hand side of (5.3) becomes

(5.4) Ξ(ex, eγ) = - ω(L(X, 7), X) + ω(- L(- 7, - X), Y).

It follows from the definition (1.3.1) of the Lie algebra 2-cocycle ω that the
right hand side of (5.4) is

')tr(-L(X, Y)dtX-L(- Y, -X)dtY)dt.

Let us consider the replacement ί-> in the integrand (cf. Lemma 6.2).
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Then, since X, Y are invariant under the replacement, we get Ξ(ex, eγ) =

- Ξ(ex, eγ). Therefore (5.3) identically holds. Π

Especially for ge^Jt? we have Ξ(θ(g~1)y g) = 0.

From now on, we proceed to discussions theoretically parallel to those
in Section 4.

Define the mapping^ from &[%$ to ^&ce by the mapping product j x z'0,
where j is defined in Section 4 (see (4.2)) and i0 sends 1 to leF. Then it is
clear from Lemma 5.3 that jce is an injective homomorphism. And the images

of jce is denoted by ^^e. As in Section 4, we identify them.
We introduce an involutive automorphism θ(

c™
} of 3F*&ce defined by

(5.5) #?>: ^Cβ3fo, e»)>—>(θ^(g), <Γ")e^eβ,

which is well-defined and satisfies θ(

c™
} °θ(

c^ = identity as required, and is called
the Cartan involution.

By use of the above Cartan involution we define the subgroup of ̂ ^ce by

which turns out to be

{i}.

Let && denote the subgroup of ^^ defined in Section 4. Then, we
define the subgroup of ^^ce as follows :

(5.7)

LEMMA 5.4. Let the notations be as above. Then,

Φ ' yΓ n ΦΦ — [\\ί^ t/Z- ce I I e-x tX ce — ^ 1 J

PROOF. The proof of this lemma is obvious. Π

DEFINITION 5.5. Let ^^ce be the centrally extended formal loop group of
3Fy. We say that gce = (g, eμ) e ̂ ^ce is positive definite if g in (g, eμ) is positive
definite (cf. Definition 4.5).

Let

(5.8) Jt(^yce] = {gcee^$ce; θ(

c^(g~e

l) = gce, gce is positive definite}.

LEMMA 5.6. Let gce = (g, eμ) be any element of Jί(^^ce). Then g is uniquely
decomposed as

(5-9) %?(Pce(tΓl)PCe(t) far
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PROOF. Applying Lemma 5.6 to geJ^ in (g, eμ), we have the following

unique decomposition:

g =

So, let

\ exp(μ - Ξ(θ^

Then, we have ^ce(t)e^^ce and gce = θ(

c^(^ce(t)~l)^ce(t). It is obvious that

the decomposition is unique. Π

PROPOSITION 5.7. Let ^^ce be the centrally extended formal loop group of

. Then ^^ce is uniquely decomposed as

(5. 10)

PROOF. Let us consider the map δ: &<3ce-*Jt(lF($c^9 defined by δ(gce) =
θ(™\g~l)gce for gcee^^ce. Then it is obvious that δ is well-defined.

Let gce = (g, μ) be an arbitrarily given element of J^ce. Then from
Lemma 5.6 we have the following decomposition:

Put kce = gce0>ce(t)~l. Then kce belongs to ^JΓce. Therefore we have a

decomposition of g \Ά' 3Ftfce3F&ce.
The uniqueness of this decomposition is proved by the same way in

Proposition 4.4. Π

From Proposition 5.7 we have the following decomposition:

(5. 1 1)

Let α be the map: ^^ce^^^ce through the decomposition (5.11). We
denote by α the map from ^J^ce\^^ce to &&ce induced from α. Then for

any Qce^^^ce we define the action on &&ce such that the following deagram
is commutative:

(5.12)

For the action of gcee ̂ ^ce on 3F2Pce we use gce as a notation, that is,

Q <&<& >. &£&>
Vce ^ ^ce * ̂  ^ce

DEFINITION 5.8. Let ¥0> be the potential space defined in Section 3 and let
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A be the formal power series with respect to z, p over R, whose constant term

is equal to 1. The latter is defined in Section 2.
Then we define

where ή : ^0* -> A is given by the following diagram :

A.

We call Γ(Sf0*) the centrally extended potential space.

It is noticed that the centrally extended potential ^eeΓ(^^) correspond-

ing to the Minkowski space-time is (/2, 1) from (2.20) and (3.25).
Let gce = (g, 1) be any element of 3?3?®e. Since g in (g, 1) is an element

of &#e, due to Theorem 4.6 we have g~1e^JίTίe^. So we write

9 fce^JΓ). Let P denote proj(0>(t))9 that is, P(0).

PROPOSITION 5.9. Let the notations be as above. For the derivative of the

group 2-cocycle Ξ with respect to z and p we have

(5.13.a) δfΞ(!P(t), g) = ~^(djdpf+dzφdpφ),

(5.lib) dfΞ(0(t), g) = ̂ ((Spf)
2 - (dj)2 + (dpψ)2 - (dzφ)2),

where /, ψ are given by the parametrizatίon (3.2) of P.

This proposition will be proved in Section 6.

PROPOSITION 5.10. For any element 0*ce(t) of the centrally extended potential
defined above, the product

belongs to the Hauser group $* 3?®e which is the subgroup of the formal loop
group 3?yce.

PROOF. Let »ce(t) = (0>(t), τ'1) be any element of Γ(&&). Since ^(ί) in
(^(ί), τ'1) belongs to &0>, it follows from the results of Section 4 that we
can write
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We consider kce = (k, 1) and gce = (g, 1), which respectively belong to
and ^J^ce So the product of these becomes as follows:

(k, l)(g, I)'1 = (kg'1, eΞ(k <>-l))

Put τ' = es(9(t) β\ Then it follows from Proposition 5.9 that τ' satisfies the
same differential equations (2.18.α) and (2. IS.fc). Hence, we conclude from

S(P(t), ff)|p-o = 0 that

τ' = τ.

Therefore

(5.14) &ce(t) = kcegce.

Now we put mce = flif^ceW"1)^^)- Using (5.14) we calculate mce as
follows :

Then it follows from Ξ(θ(g~1), g) = 0 (see Lemma 5.3) that

This completes the proof of the proposition. Q

Now we have our main

THEOREM 5.11. Let &3tf*e and Γ(&&) be the Hauser group and the centrally
extended potential space.
Then, Γ(^^)^^e c ^JίTceΓ(^^}. Therefore for any gce^^^e, the follow-
ing diagram is well-defined'.

(5.15) ά| |α

PROOF. Since any element ^ce(t)eΓ(£^^) is obtained from the action of some
gcee^3ίfce to the centrally extended Minkowski potential &e

ce, we have only
to prove that <Ftf*e c ^^ceΓ(^^).

Let gce = (g, 1) be any element of 2F3f c°e. Then from Proposition 5.7 we
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have the following decomposition:

Using gce = (g, 1), kce = (fc, 1) and 0>ce(t) = (^(ί), e")9 the above decomposition

becomes

Then it follows from the results of Section 4 and the proof of Proposition

5.10 that 0>ce(t)<ΞΓ(y&). Π

COROLLARY 5.12. For any centrally extended potential 0*ce(t) = (&(t), τ'^e
)9 we have the following relation:

(5.16) τ = exp

PROOF. For a given 0>ce(t) = (0>(t)9 τ'^eΓ^P) we put

(5.17) mce = θ£\0>ce(tΓl)&ce(t).

Then we get the following result for mce with use of the properties of the
group 2-cocycle Ξ:

On the other hand, since ^ceeΓ(^^), it follows from Proposition 5.10 that
mce belongs to & '3?®e. That is to say, mce can be written as

(5.18) mce = (θM(g-i)g, 1) for some

Comparing the center components of the relations (5.17) and (5.18) for mce,
we get the desired identity. Π

Let Γ(&P)9 Γ(&M) and Γ(&E) be subspaces of ^P x A, ¥M x A and
x A defined by the same way in Γ(y&) (see Definition 5.8). And, let

ί : A -» A be the identity map.

Then from Theorem 5.11 and the discussions so far we have the following
diagram for g

4
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Furthermore the Hauser group 3F tff ^e(= ^(oo)) acts transitively on the potential
space Γ(<?gP) Γ(ϊfgP) is an infinite dimensional homogeneous space.

Recall that any element τ(z, p) of our conformal factor space A is
normalized by τ(0, 0) = 1 (see Definition 2.5). This normalization is ensured
from Lemma 2.4.

Now we consider the following total solution space

, (put m = θ(proj(0(t)))

dpμ= —-tτ(dpm~1dpm-dzm~1dzm)}
o

and denote by π: E(Sfff)-*Sf& the surjective map defined by

= 0>(t) for

Then a triplet (£(&&), π, £f3F) is considered to be a fiber space with fiber
R + , in fact a principal bundle. Since Γ(SfgP) is a global section of the fiber
space, the fiber space is trivial (cf. the above discussions). It is noticed that
the relation (5.16) in Corollary 5.12 is satisfied only for the elements of Γ(^^}.

Let y™ = ̂ (00) x R+ be the centrally extended Hauser group (see
Definition 5.1). We define an action of #£> on E(ίS&) by imbedding #£>
into ^^ce, using the map jce.

Then from the discussions of this section we have the following
commutative diagram for gce = (g,

,\
It is clear that the center R+ of ̂ } corresponds to the fiber R+ of
and <S(£} acts transitively on

6. Proof of Proposition 5.9

In this section we prove the relations (5.13. a) and (5.13.b) in Proposition
5.9. The way of the proof is very elementary and tedious one (there should
exist more elegant proof).
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Before starting the proof of Proposition 5.9, we prepare three lemmas.

LEMMA 6.1. For w = R[[ί, z, p]~\ or R[[ί~1,z, p]~] we have the following
relations :

- dfw(t)d,w(- ί/t))dt = 0,

ι + 'V.- i γ

2 π / - i

2*7-1-

(dzw(f)dpw(- 1/0 + dpw(t)dzw(- l/t))dt = 0,

where I is a non-negative integer.

PROOF. Taking it into account that the residue is to pick up the coefficient
of ί"1 in the integrand, we have the same result for the residue when we

divide the integrand by — t2 after replacing t -> . As executing this

procedure for the left hand side of the relations, we find that the results
become the negative sign of the original ones, respectively.

Therefore these should be equal to zero. Q

In order to fix the notations, we return to the setting of Proposition 5.9.
Let g be any element of ϊFjtf. If we take the Minkowski potential 0>e e &*&
in Theorem 4.10, &eg~l belongs to &tf &>&. Hence we write

Although there is a simpler proof for the following lemma, we insist on
a rather complicated proof. The reason is that we need other relations (6.6.a)
and (6.6.6).

LEMMA 6.2. Let the notations be as above. Let Ξ' be the mixed form defined
by (1.3.9), and let δ denote the partial derivatives dz or dp.

Then, the following relations hold'.

(6.3.0) Ξ'(g, g~1dg) = 0,

(6.3.6) Ξ'(k, k~ldk) = ^.

PROOF. First we show that (6.3.0) holds. It follows from the formula (1.3.10)
that the right hand side of (6.3.0) is expressed by

(6.4)
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Since g e ̂ Jtif, g is invariant under the replacement t -> -- . And so is

log g. Taking it into consideration that the same replacement of the integrand
of (6.4) yields a change of sign (pay attention to the existence of the derivative
with respect to t in the integrand), we find that the execution of the procedure
for (6.4) yields the opposite sign. Therefore (6.4) should be zero.

Lastly, (6.3. b) is expressed by

(6.5) -- 1

Since 0(oo)(/c) = k for fee J^Jf, we conclude from the analogous way in (6.3. α)
that (6.5) should vanish. Π

Note that from the process of the proof in the above lemma we
immediately find the following relations:

(6. 6. a) - l—=i tr(g-ldgg-ldtg)dt = 0,

(6.6.b)

LEMMA 6.3. For &(fyt&9, gt^M and kt&tf as above, we have

(6.7)

= x
2 2π χ/-l

where d denotes the partial derivatives dz or dp.

PROOF. From Lemma 1.4, we have the following relation:

dΞ(0>(t), g) = Ξf(k

The second term of the right hand side obviously vanishes, and so is the
fourth term by Lemma 6.2.

Inserting @>(i) = kg~^ and using the expression of Ξ' in Lemma 1.3, we
get the result below for the above equation:

1
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1

It immediately follows from the oddness of the function χ that

ί tr(g-1dgk-1dtk)dt.

Then, expressing the above relation by use of ^(ί) and g in consideration of
(6.6. a) and (6.6.b), we obtain two relations:

, g) =

(6.8)

2πΛ

Thus the relation (6.7) is satisfied. Π

Let

(6.9)
(a(t) b(t)

= \
\c(t) d(t)

Then, taking the components of the equation (3.17.i>), we get the following
equations :

(ό.lO.α) dtb(t) + |(l + ̂  W(f) = o,b(t) + o2d(t),

(6.10. ft)

(ό.lO.c)

(ό.lO.d)

where

δtα(ί) + l + -
ί

-0^(0,

+ o2c(ί),
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2J \r t

And it follows from the equations (3.17.α) and (3.17.6) that

(6.12) \ i i uzzr \ij -I upy \i) = — v^0

/

Also taking the (1, 2) and (2, 2) components of the equation (6.12), we
get the following equations:

I M 2

V t 2 ) z t p ~q' q2

(6.13.6) (1 - -i}a s d(t) + -3pd(ί) = g36(ί) - 1ιd(t)9\ t2 J t

where

aλ — 1 1 H }drf. a? = 1 dz\l/ H—dnφ } and
</! 2 / r ^ f 2 y ,̂  42 f ^ rV t p^y

(6.14)

It follows from the (1, 1) and (1, 2) components of (6.12) that

/ 1 \ 2
(6.15.α) I 1 - \Sza(t) + δpfl(ί) - ̂ ^(ί) + <?2c(ί),

(6.15.6) Π - . Szc(t) +

It should be noticed that the above 0 l 5 02» °3» fliJ #2 an<^ ^3 ^ave

following properties for dividing — ί2 after the replacement t-> -- :

(6.16.α) O i l - » o l 9 o2\ — >o 3, o 3 ι - >o 2 ,

(6.16.6) ^ι - ̂  -ql9 q2ι - > - (?3, . g 3 ι - > - ̂ 2

Let us consider parametrizations of gf and k.
For ge^Jjf, without loss of generality, we can assume that
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So we have

_l ( r~ldr 0

\dn — 2nr~1dr —r~1dr

Since r and n come from the formal power series with respect to s, so these

are invariant under the replacement ί -> and satisfy the following

differential equations:

(6.17.0) δ t r= -

(6.17-c)

As to ke&'Jf, since ^""'(/c) = k, we can employ the following parametriza-

tion:

k2(t)

-/c2(-l/ί) fc^

where k,(t)k,(- l/t) + k2(t)k2(- 1/ί) - 1.

It should be noticed that the above entries /q and k2 have both of negative
and positive powers with respect to the spectral parameter t (this is the
exception of the convention to maps, see Section 1).

By 0>(t) = kg'1, we have the relations:

a(t) = MΦ + k2(t)r~1n9 b(t) = k2(t)r~1

9

c(t) = - M- 1/0^ + fcι(- l/Or- 'w, d(ί) = fe^- I/Or' 1.

It follows from the above relations, eliminating fct and /c2, that

(βΛS.a) b(i)n = a(t) - d(- l/ί)r2,

(6. 18.fr) d(t)n = c(t) + b(- l / t ) r 2 .

By the parametrization of g and ^(ί)> (6.7) and det gP(t) = 1, we have the
following relation:
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dΞ(P(t), g) = ̂ x 1—i((d(t)dtb(t) ~ b(t)dtd(t))dn

(6.19) - (b(- l/t)dtb(t) + d(- l/t)dtd(t))dr2 - (d(t)db(t) - b(t)dd(t))dtn

+ (b(- l/t)db(t) + d(- l/t)dd(t))dtr
2)dt.

Now, let us start the direct calculation for the proof of Proposition 5.9.
First we show that

~ P>g -2f2 z p + z p

It follows from the equations (6.10.α), (6.10.ft), (6.17.α) and (6.17.d) that the
right hand side of (6.19) with changing d into dz becomes

1 1 f
dzΞ(0>(t), g) = - x -==i>(d(t)(o1b(t) + o2d(t))dzn - b(t)(o3b(t)

2 2πv/- 1 J

- OtdWd^n - b(- \lt)(0lb(t) + o2b(t))dzr
2 - d(- ί/t)(o3b(t)

-Old(t))dzr
2)dt.

Using the following relations:

d(t)dzn = dz(d(t)n) - ndzd(t) = dz(c(t) + &(- l/ί)r2) - ndtd(t)9

b(t)dzn = dz(b(t)n) - ndzb(t) = dz(a(i) - d(- l/t)r2) - ndzb(t)9

it immediately follows that the right hand side of the above relation is given by

+ o2d(t))d,c(t) - (o3b(t) - O l d ( t ) ) d x a ( t )

(6.21) - (Olb(t) + o2d(t))ndzd(t) + (o3b(t) -

+ (Olb(t) + O2d(t))r2dzb(- 1/t) + (o3b(t) - Old(t))r2dzd(- l/t))dt.

Collecting the terms containing n in the integrand of (6.21), we obtain

1 Γ
(6.22) - λ(-(0lb(t) + o2d(t))ndzd(t) + (o3b(t) - Oίd(t))ndzb(t))dt.

o2c(ή)dzd(t) + (o3a(t) - Olc(t))dzb(t)

By eliminating n, (6.22) becomes

1

(6.23) - (- Oid(- 1/ί) + o2b(- l/t))r2Bzd(t)

+ (- o3d(- 1/ί) - o,b(- ί/t))r2dzb(t))dt.



296 Ryuichi SAWAE

Executing the procedure, which was used in the proof of Lemma 6.1, for
the terms containing r in (6.23) and using the properties (6.16.α), we find that
(6.22) is equal to

>(-(0lα(ί) + o2c(t))dzb(t) + (o3a(t) - o,c(t))dzd(t)

(6.24) - (- Old(t) + o3b(t))r2dzd(-

Inserting the result (6.24) into (6.21), we reach the following relation:

), g) = x - =<£ ((Olb(t) + o2d(t))dzc(t) - (o3b(t)

(6.25) - Old(t))d,a(t) - (Oίa(t) + o2c(t))dtd(t) + (o3a(t)

- Olc(t))dzb(t))dt.

Then, a straightforward calculation by use of (6.11.α), (6.11.ί>), (ό.ll.c), (3.21),
(3.22.a), (3.22.6), (3.22.d) and (3.24) shows that the right hand side of (6.25)
is just equal to that of (6.20).

Finally we show that the p derivative of the group 2-cocycle is expressed
by

(6.26) dpΞ(P(t), g) = 2 2 2 2

2

Since

dpΞ(s?(t), g) = - χ - =((d(t)dtb® ~ b(t)d,d(t))dfn
2- 2πN/— 1 J

- (b(- ί/t)dtb(t) + d(- l/t)8,d(t))dpr
2 - (d(t)dfb(t) - b(t)dfd(t))dtn

+ (b(- l/t)dpb(t) + d(- l/t)dpd(t))dtr
2)dt,

it is easy to see from the equations (6. lO.α), (6. lO.fe), (6. 17.ί>) and (6. Π.d) that
the right hand side of the above equation becomes

o2d(t))δpn - b(t)(o3b(t) - Old(t))dpn
2 2πy^l

- b(- l/t)(0lb(t) + o2d(t))dpr
2 - d(- l / t ) ( o 3 b ( t ) - Ol

+ b(t)dtd(t))dpn
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+ (d(t)d,b(t) - b(t)dpd(t))dzn + (b(- l/ί)d,ft(t) + d(- ί/t)dzd(t))8pr
2

- (b(- l/t)dfb(t) + d(- ί/t)dpd(t))dzr
2})dt.

Put Δ =
— 1

l + - x {(- d(t)dzb(t) + b(t)dzd(t))dpn

+ (d(t)dpb(t) - b(t)8pd(t))dzn + (b(- ί/t)dzb(t) + d(- \/t)dzd(t))dpr
2

- (b(- ί/t)dpb(t) + d(- ί/t)dpd(t))dzr
2}dt.

From the following relations:

(6.27.a) d(t)dpn = dp(c(t) + b(- l/t)r2) - nd,d(t),

(6.27. ft) b(t)d,n = d,(a(t) - d(- l/ί)r2) - nd,b(t),

and using the equations (6.18.α) and (6.18.fr), we obtain the following result:

(6.28)

dpΞ(P(t), g) = ̂  x ί-=ί((oίb(t) + o2d(t))dpc(t) - (o3b(t) - Old(t))dpa(t)
2 ' ) j r . — 1 J

- (Olft(ί) + o2d(t))ndpd(t) + (o3b(t) - Old(t))ndpb(t)

+ (Olb(t) + O2d(t))r2dpb(- 1/ί) + (o3ft(ί) - Old(t))r2dpd(-

1 1
((Olfc(t) + o - (o3ft(ί) - Ol

(Olβ(t) + o2c(t))dpd(t) + (o3a(t) - olC(t))dpb(t)

r2((0ίd(- 1/t) - o2ft(- l/ί))δpd(ί) - (o3d(- 1/ί) + o,ft(- l/t))apft(t)

(Olft(ί) + O2d(t))3pft(- 1/ί) + (o3ft(ί) - Oίd(t))dβd(-

_ 1

~ 2 X 2

-(Ola(t) + o2

( ( O l b ( t ) + o2d(t))dpc(t) - (o3b(t)

+ (o3a(t) - o t

where we have used the procedure in Lemma 6.1 and the properties (6.16. a)
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for the equality from the second relation to the third one.
Now, let us start the evaluation of A. Using the relations (6.27. α), (6.27. b)

and

(- l / t ) d p d ( t ) ) r 2 d t
2π>/ —

we obtain

Δ =

(- l/t) + dzd(t)dpd(- l/t))r2dt,

x {- dfb(t)dpc(t) + dzd(t)dpa(t) + dfc(t)dpb(t)
2π v/— 1

(6.29) - d2α(ί

+ (dtb(~ Vt)dpb(t) + dzd(~ l / t ) d p d ( t ) ) 2 r 2 } d t .

Note that from the equations (6. 13.α) and (6. 13.b) the relation below is
easily obtained:

(6.30)
dtb(t)δpd(t) - dzd(t)dpb(t)

- dzd(t)(q,b(t)

So, using (6.30), we calculate the terms containing n in (6.29) as follows:

l +(dIb(t)dpd(t)-dtd(t)dpb(t))2ndtI p - t p

- qtd(t))

using (6.18.α) and (6.18.&),

- dzd(t)(qιa(t) + q2c(t)) + dzb(t)(- q3d(- l/t) - €li(- l/ί))r2

q2b(- l / t ) ) r 2 ) 2 d t

applying the invariant procedure, which is related to the replacement ί i— > -- ,
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to the terms containing r in the integrand and using the properties (6.16.b)
in that time,

1

q2c(t))-dzb(-ί/t)(q2d(t)

+ d,d(- ί / t ) ( q ι d ( t ) - q3b(t))r2)2dt.

Combining this result with the following relation, which is contained in Lemma
6.1,

1 •"" dzd(- ί / t ) d z d ( t ) ) 2 r 2 d t = Q,

we reach the following relation:

(6.31)

Δ = l γ(\ + ̂ }x {-dzb(t)dpc(t) + dzd(t)δpa(t) + dzc(t)dpb(t)
2π^/ — 1 J ^ \ £ /

— dza(t)dpd(t) + t(dzb(t)(q3a(t) — q^c(t)) — dzd(t)(qla(t) -f q2c(t)))} at.

However, since the expression (6.31) for Δ has a nonzero coefficient of t3 in
the integrand, we change the relation into another one without it. This can

be down as follows. By the equations (6.10.0) and (6.10.b) the last term is

changed into

1 Γ

• o2d(t) — dtb(t))(q3a(t) — <hc(ί))
2πχ/-

- (o3b(t) - θιd(t) - dtd(t))(qίa(t) + q2c(t)))dt,

since det gP(i) — 1,

1 Γ
= τ=φί(— dtb(i)(q^a(t) — q±c(i)) + dtd(t)(q1a(t) 4- <?2

cw)
2πχ/^ΊJ

+ wla(t)b(t) + w2c(t)d(t) + w^b(t)c(t) + w4) A,

where we put

Inserting the above equality into (6.31) we get a desired expression:
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(6.32)

Δ = l—

— dza(t)dpd(t)) + t(— dtb(t)(q3a(t) — qιc(t)) + dt

- w4) }dt.

Hence, using the equations (ό.lO.α), (6. lO.b), (6. lO.c) and (6. lO.d), we have

the relation:

(6.33)

ί) 4-

Then, a tedious calculation by use of (6.11. a), (6.11. fe), (6.14), (6.11. c), (3.21),
(3.23.c), (3.23.rf) and (3.24) tells us that the proposition is proved.

7. Example

/ I Co + c^V1

Let g(s) = I 1 where c0, cx are arbitrary real numbers. So we

consider the action of jce(g x l)e^J^ce to the centrally extended Minkowski

potential ^e

ce, that is to say,

Then it follows that

with

σJl-p2

. ^σjl-cip2

where we put σ = ^ ( l — cίp
2)2 + (c0 4-
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Let (»q, τg) = (fc/'faΓ1), eΞ(k>9~1}). Then &g(t) and τg is given by

0>g(t) = PQ + Plt + P2t
2

with

p _ 1

°

clP ( c0 + 2cjz c2p2- 1 + (c0 + 2c1z)

O -
2

and

Hence mg = θ(proj(9g(t))) = θ(Pg(QΓ ')^(O) is given by

1 / 1 Co + lc^z

It follows from the parametrization (2.12) of mg that

, d

(Co + 2c l Z

and

, = Cp + 2c l Z

(Co + 2clZ)2 + (l-C

2

/>

Solving the differential equation (2.9), we get

Therefore the metric

*-« -

is given by

Ίy2 - p2/f fy
fy f
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.
1-cίp2

X

and

If c0 = 0 and cl = 1, then this is the first example given in [14] (also see

[7]).
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