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0. Introduction

Computation of the Stokes' multipliers and / or central connection
matrices (hereafter referred to as connection data) for systems of the form

(0.1) zx' = (zA0 + A,)x,

with n x n constant matrices A09 Al9 or equivalently computation of connection
constants for the so-called hyper-geometric system (compare below), has
attracted considerable attention lately. In case n = 2 and A0 having two
distinct eigenvalues, the connection data can be explicitly computed using
Gamma functions in the parameters of (0.1); see Jurkat, Lutz, and Peyerimhoff

[4], and Kohno and Yokoyama [10], e.g. The same holds true for general
n and A0 being a diagonal matrix with zeros and a single one along the
diagonal; see Balser [3] and Okubo, Takano, and S. Yoshida [6]. Other

cases of (0.1) have been treated by Yokoyama [8], [9], [10], who obtained
under various assumptions upon n and / or the eigenvalues of A0 and Aί9

together with other generic restrictions, explicit formulas in terms of classical
special functions.

Aside from very special situations as the ones described above, no such
explicit formulas for the connection data of (0.1) have been found and, to the
author's opinion, may not exist. Instead, it appears reasonable to regard these
data as being "new" special functions in the parameters of (0.1) and look for
representations of them in terms of infinite series, or integrals, etc. In [2],

such representations for the Stokes' multipliers of (0.1) (in case A0 has n
distinct eigenvalues) are given. The terms of these series involve functions
which are recursively defined and, although interesting in their own right, are

relatively complicated. In the present paper, we obtain representations which
are much simpler and (aside from explicit rational terms) involve solutions of
a difference equation closely related to a system of the form (0.1), but of

dimension n — 1. To do so, we use results of R. Schafke [7], who showed
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(for A0 having distinct eigenvalues) that the connection data of (0.1) can be

computed from certain connection constants of the so-called hyper geometric

system

(0.2) (A0-t)^y = (A1-s)y
at

(with t being a complex variable and s a parameter), and instead of (0.2) one
may also regard the difference equation

(0.3) (A0 - t)ζ(s, t) = (s- A,)ζ(s + 1, ί),

where now 5 acts as a variable and t becomes a parameter. The same results
follow from a (more general) discussion by Balser, Jurkat, and Lutz [1], and

for convenience we use the notation and terminology introduced there.

1. A difference equation

Throughout, let A0 = diag[λl9...9λn] denote a (complex) diagonal matrix
of distinct diagonal entries λί9...9λn9 and let A1 be an arbitrary n x n

matrix. By A' = diag[λ(,...9λή'] we denote the diagonal matrix consisting of
the diagonal elements of A^. Moreover, let Bl9 a, b be so that

and let

ΛB = diag[λ( -^,...,^-1 - ]̂.

With these data, we consider the first order system of difference equations in

dimension n — 1

(1.1) G(s + l)(s + B! - s'labτ) = G(s)B0.

Since

•s-^fe7

= s
0

we find

(1.2) s det(s + B1 - s~labτ] = det(s + Aί - λ'n) = f] (5 + μj
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if μ !,..., μn are the eigenvalues of Al9 repeated according to their multiplicity.

Let η be an arbitrarily fixed admissible number, and choose

(1.3) η - π < arg(/Lπ - λj) < η + π, 1 <j < n - 1.

Then we have

THEOREM 1. The system (1.1) admits a solution G(s), uniquely characterized by

the following conditions'.

ϊ) The matrix G(s) is analytic for s = x 4- iy, provided x is sufficiently large, and

(1.4) B-sΓ(s + Λ'B)G(s) = I + Oy(χ-1) as x - .00,

where BQS is defined according to (1.3).

ii) For every s as in i) and every fc, 1 < k < n — 1, let g k ( s ) denote the kth row of

G(s). Then (λn — λk)~sgk(s), regarded as a function in any one of the

parameters

is analytic in a complex plane with a cut from 1 to oo along the positive real

axis, and extends continuously to the lower border of the cut, excluding 1 and oo.

This unique solution G(s) then is meromorphic throughout the complex s-plane

with possible poles only at points

(1.5)

and

(1.6) det G(s) = bs

0Γ(s){ Π Γ(s + μ, - λ'n}}~\
j=ι

with b0 = det B0\ hence G(s) is a fundamental solution of (1.1).

PROOF. Suppose that G(s) with i), ii) exists, then (1.1) implies G(s) meromor-

phic with poles as stated, and using (1.2), (1.1), and (1.4) one can easily obtain

(1.6). Now let C(s) be a one-periodic matrix so that C(s)G(s) again satisfies

i), ii). Let c*(s) be the kth row of C(s), 1 < k < n - 1, then

n(λn — λk)
as x — , ao

follows. If |wjk ) | < 1, j / /c, 1 <j < n — 1, then this implies c k ( s ) = ek. Since

(λn — λk)~sck(s)G(s) is analytic in wj fe), this gives ck(s) = ek in any case, and

hence G(s) is uniquely characterised by i), ii).

To show existence, let
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A\= λ'n — A^, A0 = — A0.

According to [1], part II, section 3, the difference equation

(5 - A1)ξ(s + 1, ί) = (A0 - t)ξ(s, ί), t€&ktη, \<k<n-\ (fixed),

has a solution vector ξk(s9 t) which is an entire function of s, is given by a

power series expansion for |f — Λ k | small and is analytic for te&ktη. For

5 = x + /y? and x sufficiently large, ξk(s, t) has a limit ξk(s9 — λn) as t -> — An

in ^M. The proof of Proposition 4 in [1], part II, may be seen to give

f- Λ "(u + ̂ Γ*-ι f
— - <

J _ λ k Γ(S-S) 1

tς. (s, w) — efc - > du
_ λ k

 k l ' '

provided Re(s — s) > 0, Re(s + λ'k — λ'^ > — 1, Res > 0, is we integrate in ^k f f /

along some fixed, but arbitrary, path from — λj to — λn. For 5 = p + λ'n — λk9

with sufficiently large integer p, a direct estimate of the integral, observing

gives

Γ(s + λ'k-λ'n) _
-—TJ-P—r ξt(s, - λn) = ek + Oy(x ') as x » oo.

If we define gk(s) by dropping the last component from (λn — λk)
ί~λk + λn

ξk(s, - λn), then G(s) = [0ι(s),...,#π(s)]Γ satisfies i). To show ii), we restrict

for notational convenience to k = 1 for other /c, the proof follows the same

lines. Defining

^(s, t) = (λ, - λ^-^-'ξ^s, t(λ, - λn) + AJ,

one can see that

- ΛB

From the expansion formulas in [2], one finds that ^(s, 1) (for sufficiently

large x) is analytic in the parameters Uj = — - -, 2 <j < n — 1, for uj in a
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complex plane including oo, with a cut from 0 to 1 along the real axis, and

continuous, e.g., on the lower border of this cut (excluding the endpoints). The

mapping w = (1 — u)'1 maps this cut plane onto the w-plane with a cut from

1 to oo (and the lower borders of the cuts onto each other), and u 3 is mapped

onto wj 1*, 2 <j < n — 1. Hence this completes the proof.

2. A series representation for G(s)

In this section, we represent gl(s) by a convergent series, provided the

parameters wy° are all inside the unit disc (j = 2,...,n — 1). A similar

representation holds for the other rows of G(s).

Let hι(s) be a solution of

(2.1) (s + BΪ)M*+l) = BoM*),

satisfying (with s = x + iy)

(2.2) Ms)Γ(' + A i~ s

A" )=e 1 + Oy(χ-1), as x — * oo,
(/,„ — /ij

and being an entire function in s. Such an h^(s) exists, according to [1],

Proposition 4 of part II. Let

(2.3) B(s) = B Q I ( S + B, - s~labτ),

and use the notation

(B(s))0 = /, (B(s))j = B(s +j - l ) . . . B ( s ) 9 j > 1.

Then we have

THEOREM 2. For

(2.4) |w^|<l, 2 < ; < n - l ,

the first row gl(s) of G(s) of Theorem 1 is given by

(2.5) gl(s) = hl(s) -Σ

for every s in G, wiίh

G = φ-{0, -1, -2,..-},

and the series converges compactly with respect to s in G.

PROOF. For seG we have
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B0(B(s))J+l = (s+j + B1-(s +jΓ1abτ)(B(s))j9 j > 0,

hence from (1.1) we conclude that G(s +j)B0(B(s) )7 is independent of 7, and
therefore (observe 7 = 0)

G(s)B0 = G ( s + j ) B 0 ( B ( s ) ) j 9 7>0.

Hence from (1.4), (2.2), (2.4)

hl(s +j + l)abτ(B(s))jBό ί = hl(s +j + \)abτB^G^(s +j)G(s)

= O s ( j ~ 1 ) as 7 - >oo,

with a Os-constant that may be seen to be locally uniform with respect to
seG. This implies the convergence of (2.5). If we momentarily make (2.5)
the definition of #[(s), then an immediate computation shows that gl(s) is a
solution of (1.1), hence cτ(s) = gl(s)G~1(s) is one-periodic in s. But from (2.5),

d(s) = hl(s)G-l(s) -Σ(s +jΓlhΐ(s +j + l)abτG~l(s

If we replace 5 by s + fc, k a natural number, then the series may be easily
seen to vanish for k -> oo.
Hence

c[(s) = lim hl(s + k)G~l(s + k) = e\.
k-> oo

This completes the proof.

3. A series representation for the characteristic constants

We now turn our attention to the computation of the characteristic
constants of (0.2) (or equivalently, the Stokes' multipliers of (0.1)). Here we
concentrate upon the constants in the nth columns of the Stokes' multipliers;
an easy variation of the resulting formulas gives the other constants as
well. So we are to find a constant vector of length n — 1, say

v = [yι, ,vn-ι]τ>

which, according to [1], part II, Corollary 1 in section 5, or the (earlier)
results of R. Schafke [7], satisfies

(3.1) fn(k) = ΛΣvj*j(λ'Λ-k+l), k>\
J = V

with
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<*j(s) = ξ f ( s , αj,

and fn(k) the coefficients of the nth formal solution of (0.1). For this vector,
we obtain the following representation:

THEOREM 3 With G(s) as in Theorem 1, and

(3.2) D = 2πί diag [(AΛ - λ^-^-\...,(λn - V^--^1],

we have

(3.3) υ = DG(\)a.

In particular, if (2.4) holds, then

) = 2πi(λn -

(3.4)
. ,

with

PROOF. It may be seen to follow from [2], Part II, Expansion Theorem +
Theorem 2, that (λn - λ1)

λ'n~λ'ίυl is an analytic function of wf\ 2 <j < n — 1,
in a complex plane with a cut from 1 to oo along the positive real axis, and
extends continously to the lower border of this cut. Hence in view of Theorem
1 it is sufficient to show

(3.5) vl

in the situation of (2.4). Under this assumption, let βj(s) be the (n - l)-vector
obtained from α/^ - s + 1) by dropping the last component. Since ξj(s, t)

is a solution vector of (0.3), we find

(s + B, - s-1 αbr)j3;(s) = BJj(s +1), 1 <j < n - 1,

and from [1], Part II we conclude

2πiβj(s) = (λn-λj)
λ»-λ'j-sΓ(s + λ'j-λ'n)(ej + Q y ( χ - 1 ) ) ι as x - .00.

The matrix

may be seen to exist for x sufficiently large and is a solution of (1.1). The
first row gl(s) of G(s) then satisfies

as x— .00

and due to assumption (2.4) (under which the first row of G(s) is uniquely
determined by (1.4)) we conclude
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If/(/c) is obtained homfn(k) by dropping the last component, then (3.1) implies

υ = G(k)Bj(k) ( f e > l ) ,

and since (compare the recursion formulas for formal solutions)

this proves (3.5).

REMARK. In case n = 2 it is easy to find h(j) explicitly, and to see that (3.4)
becomes the expansion of a hypergeometric function with the variable equal
to one. Since such a series may be summed in terms of Gamma functions,
one can easily rediscover the known formulas for the Stokes' multipliers in
this case.
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