Hiroshima Math. J. **24** (1994), 111–121

Classification and uniqueness of positive solutions of $\Delta u + f(u) = 0$

Dedicated to Professor Takaŝi Kusano on his 60th birthday

Fu-Hsiang WONG and Cheh-Chih YEH* (Received May 25, 1992)

Abstract

Given $0 \le \theta < \infty$. In this paper, we classify the solutions of the initial value problem

(*)
$$\begin{cases} u''(r) + \frac{m}{r}u'(r) + f(u(r)) = 0 \text{ on } (\theta, R(\xi)), \\ u(\theta) = \xi > 0 \text{ and } u'(\theta) = 0, \end{cases}$$

where f is locally Lipschitz on $(0, \infty)$ and there exist two positive constants α , β such that f(u) < 0 on $(0, \alpha)$, f(u) > 0 on (α, ∞) and $F(\beta) > 0$. Here $R(\xi) := \sup \{r \in (\theta, \infty) | u(s) > 0$ for all $s \in [\theta, r) \}$ and $F(u) := \int_0^u f(s) ds$ for $u \ge 0$. Moreover, we establish an existence-uniqueness theorem of a solution for equation (*) satisfying u'(0) = 0 and $\lim_{r \to \infty} u(r) = 0$.

1. Introduction

Let $\theta \in [0, \infty)$ be given and $\mathbb{R}^n (n \ge 2)$ denote the usual *n*-dimensional Euclidean space. Consider the following two problems:

(I₁)

$$\begin{cases}
\Delta u + f(u) = 0 & \text{in } \Omega(R(\xi)), \\
\frac{\partial u}{\partial n} = 0 & \text{if } |x| = \theta, \\
u(x) = \xi > 0 & \text{if } |x| = \theta; \\
u(x) = \xi > 0 & \text{if } |x| = \theta; \\
\frac{\partial u}{\partial n} = 0 & \text{if } |x| = \theta, \\
\frac{\partial u}{\partial n} = 0 & \text{if } |x| = \theta, \\
\lim_{|x| \to \infty} u(x) = 0,
\end{cases}$$

where $R(\xi) := \sup \{r \in (\theta, \infty) | u(x) > 0 \text{ for } \theta \le |x| < r\}$ and

^{*} This research was supported by the National Science Council.

Fu-Hsiang WONG and Cheh-Chih YEH

$$\Omega(\lambda) := \begin{cases} \{x \in \mathbf{R}^n \mid \theta < |x| < \lambda\} & \text{if } \theta > 0, \\ \{x \in \mathbf{R}^n \mid |x| < \lambda\} & \text{if } \theta = 0 \end{cases}$$

for every $\lambda \in (\theta, \infty]$.

When we confine ourselves to positive radial solutions, it is well-known that the above two problems (I_1) and (I_2) can be reduced to the following equivalent problems

(I₃)
$$\begin{cases} u''(r) + \frac{n-1}{r} u'(r) + f(u(r)) = 0 \text{ on } (\theta, R(\xi)), \\ u(\theta) = \xi > 0 \text{ and } u'(\theta) = 0 \end{cases}$$

(I₄)
$$\begin{cases} u''(r) + \frac{n-1}{r} u'(r) + f(u(r)) = 0 \text{ on } (\theta, \infty), \\ u'(\theta) = 0, \\ \lim_{r \to \infty} u(r) = 0, \end{cases}$$

respectively, where r is the radial variable. See, for example, Kaper and Kwong [2, 3], Kwong [4], Kwong and Zhang [5]. Recently, Kwong and Zhang [5] and Kwong [4] separate the set of solutions of (I_3) into the following three subsets under suitable conditions on f:

$$N := \{\xi \in (0, \infty) | R(\xi) < \infty\},\$$

$$G := \{\xi \in (0, \infty) | R(\xi) = \infty \text{ and } \lim_{r \to \infty} u(r, \xi) = 0\},\$$

$$P := (0, \infty) - N - G,\$$

where $u(r, \xi)$ denotes the solution of (I₃).

Recently, Kwong and Zhang [5], Kaper and Kwong [3] also established some existence theorems for solutions of (I_3) as follows:

THEOREM A. Assume that

- (F₁) f is continuous on $[0, \infty)$ and locally Lipschitz on $(0, \infty)$,
- (F₂) there exists a $u_0 > 0$ such that F(u) < 0 for $0 < u < u_0$, $F(u_0) = 0$, f(u) > 0 for $u \ge u_0$, where $F(u) := \int_0^u f(s) ds$,
- (F₃) with u_0 as in (F₂), $\int_0^{u_0} (-F)^{-1/2}(u) du < \infty$,
- (F₄) lim $\inf_{u \to \infty} f(u) > 0$,
- (G₁) $g(r) \ge 0$ for all $r \ge 0$,
- $(\mathbf{G}_2) \quad \lim_{t \to \infty} g(r) = 0,$
- (G₃) g is continuous on $[0, \infty)$.

Then, the boundary value problem

Positive solutions of $\Delta u + f(u) = 0$

(I₅)
$$\begin{cases} u''(r) + g(r)u'(r) + f(u(r)) = 0 \quad on \quad (0, p), \\ u'(0) = 0; u(r) > 0 \quad on \quad (0, p); u(p) = u'(p) = 0 \end{cases}$$

has a solution on (0, p), where $p \in (0, \infty)$.

THEOREM B. Let $(F_1) - (F_4)$, $(G_1) - (G_2)$ hold. If $(F_5) \quad u \to f(u)/(u - u_0)$ is nonicreasing for $u > u_0$, $(F_4) \quad g \text{ is continuous on } (0, \infty) \text{ and } g(r) = 0(r^{-1}) \text{ as } r \to 0^+$, then, (I_5) has a solution on (0, p).

The purpose of this paper is to classify the solutions of (I_3) under fewer assumptions than those of Kaper and Kwong [3] and Kwong and Zhang [5]. We also establish a uniqueness theorem of a solution for (I_4) .

2. Main results

Let m > 0 and $\theta \ge 0$ be given constants. Consider the following initial value problem

(IVP)
$$\begin{cases} u''(r) + \frac{m}{r}u'(r) + f(u(r)) = 0, \quad r > 0\\ u(\theta) = \xi \quad \text{and} \quad u'(\theta) = 0, \end{cases}$$

where f satisfies the following two assumptions:

- (A₁) f is locally Lipschitz continuous on $(0, \infty)$,
- (A₂) there exist two constants α , β such that f(u) < 0 on $(0, \alpha)$, f(u) > 0 on (α, ∞) and $F(\beta) > 0$, where $F(u) := \int_0^u f(s) ds$ for $u \ge 0$.

Clearly, if $f(u) = u^p - u^q$, where $p > q \ge 0$, then (A₁) and (A₂) hold.

Throughout this paper, $u(r, \xi)$ denotes the solution of (IVP) and $R(\xi) := \sup \{r \in (\theta, \infty) | u(s, \xi) > 0 \text{ for } s \in (\theta, r) \}.$

In order to discuss our main results, we need the following two well-known theorems.

THEOREM C. For any given $\xi > 0$, the initial value problem (IVP) has a unique positive solution $u(r) := u(r, \xi)$ on the interval $[\theta, R(\xi))$.

THEOREM D. For any given $\xi > 0$, the positive solution $u(r, \xi)$ of (IVP) on $[\theta, R(\xi))$ satisfies the following two identities:

$$\begin{cases} (E_1) \\ \left\{ \frac{1}{2} u'^2(r,\,\xi) + F(u(r,\,\xi)) \right\}_{r=a}^{r=b} = -\int_a^b \frac{m}{s} u'^2(s,\,\xi) ds \quad \text{for any } a,\, b \in [\theta,\,R(\xi)), \end{cases}$$

Fu-Hsiang WONG and Cheh-Chih YEH

(E₂)
$$u'(r, \xi) = -\frac{1}{r^m} \int_{\theta}^{r} s^m f(u(s, \xi)) ds \quad \text{for all } r \in [\theta, R(\xi)).$$

LEMMA 1. Let $\xi \in (0, \infty) - \{\alpha\}$. If there exists $a \in [\theta, R(\xi))$ such that $u'(a, \xi) = 0$, then $u(r, \xi) \neq u(a, \xi)$ for all $r \in (a, R(\xi))$.

PROOF. Assume, on the contrary, that there exists $r_0 \in (a, R(\xi))$ such that $u(r_0, \xi) = u(a, \xi)$. It follows from (E₁) that

$$0 \leq \frac{1}{2} u'^{2}(r_{0}, \xi) = - \int_{a}^{r_{0}} \frac{m}{s} u'^{2}(s, \xi) ds \leq 0,$$

which implies $u'(r, \xi) = 0$ on $[a, r_0]$. Hence, $u''(r, \xi) = 0$ on $[a, r_0]$. It follows from (IVP) that $f(u(r, \xi)) = 0$ on $[a, r_0]$. By (A_2) and $r_0 < R(\xi)$, we see that $u(r, \xi) = \alpha$ on $[a, r_0]$. Thus, $u(r, \xi) = \alpha$ on $[\theta, R(\xi))$ by Theorem C, which contradicts $\xi \neq \alpha$. Hence, the proof is complete.

For any given $\xi > \alpha$, it follows from $u(\theta, \xi) = \xi > \alpha$ that there exists $r_1 \in (\theta, R(\xi))$ such that $u(r, \xi) > \alpha$ on $[\theta, r_1)$. It follows from (A₂) and (E₂) that $u'(r, \xi) < 0$ on (θ, r_1) . Hence,

(1)
$$R_1 := \sup \left\{ r \in (\theta, R(\xi)) | u'(s, \xi) < 0 \text{ for } s \in (\theta, r) \right\}$$

exists and satisfies $r_1 \le R_1 \le R(\xi)$. Seeing such a fact, we have the following lemma.

LEMMA 2. For any given $\xi > \alpha$, $u(r, \xi)$ must satisfy one of the following properties:

- (P₁) If $R_1 = R(\xi) < \infty$, then $u(r, \xi)$ is strictly decreasing to 0 as $r \to R(\xi)$,
- (P₂) If $R_1 = R(\xi) = \infty$, then $u(r, \xi)$ is strictly decreasing to 0 or α as $r \to R(\xi) = \infty$,
- (P₃) If $R_1 < R(\xi)$, then $u(R_1, \xi) < \alpha$ is the absolute minimum of $u(r, \xi)$ on $[\theta, R(\xi))$.

Moreover, $u(r, \xi)$ monotonically converges to α eventually as $r \to \infty$ or $u(r, \xi)$ is oscillatory about α , that is, there exists an increasing sequence $\{R_k\}_{k=1}^{\infty}$ satisfying $\lim_{k \to \infty} R_k = \infty$,

$$0 < u(R_1, \xi) < u(R_3, \xi) < u(R_5, \xi) < \dots < \alpha,$$

$$\xi > u(R_2, \xi) > u(R_4, \xi) > u(R_6, \xi) > \dots > \alpha$$

and $u'(r, \xi) > 0$ on (R_{2k-1}, R_{2k}) , $u'(r, \xi) < 0$ on (R_{2k}, R_{2k+1}) for $k = 1, 2, 3, \cdots$, where R_1 is defined as in (1).

PROOF. Case (1). Since $R_1 = R(\xi)$, it follows from the definitions of R_1 and $R(\xi)$ that $u(r, \xi)$ is strictly decreasing and bounded below by 0 on $(\theta, R(\xi))$.

114

Hence, $\lim_{r \to R(\xi)} u(r, \xi) = u(R(\xi), \xi) \ge 0$. It is clear that $u(R(\xi), \xi) = 0$. In fact, if $u(R(\xi), \xi) > 0$, then $u(R(\xi) + \varepsilon, \xi) > 0$ for any sufficiently small $\varepsilon > 0$. This contradicts the definition of $R(\xi)$. Thus, $u(R(\xi), \xi) = 0$.

Case (2). If follows from $R_1 = R(\xi) = \infty$ and the definitions of R_1 , $R(\xi)$ that $u(r, \xi)$ is strictly decreasing on (θ, ∞) and bounded below by 0 on (θ, ∞) . This implies $\lim_{r\to\infty} u(r, \xi) = u_1$ exists. Hence, $\lim_{r\to\infty} u'(r, \xi) = \lim_{r\to\infty} u''(r, \xi) = 0$, which and (IVP) imply $f(u_1) = 0$. By (A₂), we see that $u_1 = 0$ or α .

Case (3). We claim that there exists $r_2 \in (R_1, R(\xi))$ such that $u'(r, \xi) > 0$ on (R_1, r_2) . Assume, on the contrary, that there exists $r_3 \in (R_1, R(\xi))$ such that $u'(r, \xi) = 0$ on (R_1, r_3) or $u'(r, \xi) < 0$ on (R_1, r_3) . Thus, $u''(R_1, \xi) = 0$ by the C^2 -continuity of u at R_1 . This and $u'(r, \xi) = 0$ imply $f(u(R_1, \xi)) = 0$. It follows from (A_2) that $u(R_1, \xi) = \alpha$. By Theorem C, we see that $u(r, \xi) = \alpha$ is a constant solution of (IVP) on $[\theta, R(\xi))$, which contradicts $u(\theta, \xi) = \xi > \alpha$. Hence, there exists $r_2 \in (R_1, R(\xi))$ such that $u'(r, \xi) > 0$ on (R_1, r_2) . Thus, $u''(R_1, r) > 0$ and

$$R_2 := \sup \{ r \in (R_1, R(\xi)) | u'(s, \xi) > 0 \text{ on } (R_1, r) \}$$

exists. It follows from $u'(R_1, \xi) = 0$, $u''(R_1, \xi) > 0$ and (IVP) that $u''(R_1, \xi) = -f(u(R_1, \xi)) > 0$, which and (A₂) imply $u(R_1, \xi) < \alpha$. By Lemma 1, $u''(R_1, \xi) > 0$ and $u'(R_1, \xi) = 0$, we see that $u(R_1, \xi)$ is the absolute minimum of $u(r, \xi)$ on $[\theta, R(\xi))$. Furthermore, if $R_2 = \infty$, then $R(\xi) = R_2 = \infty$. Hence, $u(r, \xi)$ is strictly increasing on (R_1, ∞) . It follows form Lemma 1 that $u(r, \xi)$ is bounded above by ξ on $[R_1, \infty)$. Thus, $\lim_{r \to \infty} u(r, \xi) := u_2$ exists and $\lim_{r \to \infty} u'(r, \xi) = \lim_{r \to \infty} u''(r, \xi) = 0$. By (IVP), we see that $f(u_2) = 0$. This and (A₂) imply $u_2 = 0$ or α . Since

$$u_2 = \lim_{r \to \infty} u(r, \xi) > u(R_1, \xi) > 0,$$

we see that $u_2 = \alpha$. On the other hand, if $R_2 < \infty$, then it follows from $u(R_2, \xi) > 0$ and the definition of $R(\xi)$ that $R_2 < R(\xi)$. As discussed at the beginning of this case, we see that there exists $r_4 \in (R_2, R(\xi))$ such that $u'(r, \xi) < 0$ on (R_2, r_4) . Thus, $u''(R_2, \xi) < 0$ and

$$R_3 := \sup \{ r \in (R_2, R(\xi)) | u'(s, \xi) < 0 \text{ on } (R_2, r) \}$$

exists. It follows from $u'(R_2, \xi) = 0$, $u''(R_2, \xi) < 0$ and (IVP) that $u''(R_2, \xi) = -f(u(R_2, \xi)) < 0$. This and (A₂) imply $u(R_2, \xi) > \alpha$. By Lemma 1, we see also that $u(R_2, \xi) < \xi$. Furthermore, if $R_3 = \infty$, then $R(\xi) = R_3 = \infty$. Hence, $u(r, \xi)$ is strictly decreasing on (R_2, ∞) . It follows from Lemma 1 that $u(r, \xi)$ is bounded below by $u(R_1, \xi)$ on (R_1, ∞) . Thus, $\lim_{r \to \infty} u(r, \xi) := u_3$ exists and $\lim_{r \to \infty} u'(r, \xi) = \lim_{r \to \infty} u''(r, \xi) = 0$. By (IVP), we see that $f(u_3) = 0$,

which and (A₂) imply $u_3 = 0$ or α . Since

$$u_3 = \lim_{r \to \infty} u(r, \xi) > u(R_1, \xi) > 0,$$

we see that $u_3 = \alpha$. Continuing in this way, we can obtain the desired result. By Cases (1), (2) and (3), the proof is complete.

Clearly, if $\xi \in (0, \alpha)$, then

$$r_5 := \sup \left\{ r \in (\theta, R(\xi)) | u(s, \xi) < \alpha \text{ on } (\theta, r) \right\}$$

exists. It follows form (A₂) and (E₂) that $u'(r, \xi) > 0$ on (θ, r_5) . Hence,

$$r_6 := \sup \left\{ r \in (\theta, R(\xi)) \, | \, u'(s, \xi) < \alpha \text{ on } (\theta, r) \right\}$$

exists and satisfies $r_5 \le r_6 \le R(\xi)$. Seeing such a fact, we have the following lemma.

LEMMA 3. For any given $\xi \in (0, \alpha)$, $u(r, \xi)$ must satisfy one of the following properties:

- (P₄) If $r_5 = \infty$, then $u(r, \xi)$ converges increasingly to α as $r \to \infty$,
- (P₅) If $r_5 < \infty$, then $r_5 < r_6 < R(\xi)$, $u(r_6, \xi) > \alpha$ and $u'(r_6, \xi) = 0$. Moreover, $u(r, \xi)$ satisfies (P₃).

PROOF. Case (1). Since $r_5 = \infty$, we see that $r_6 = R(\xi) = \infty$. It follows from the definitions of r_5 and r_6 that $u(r, \xi)$ is strictly increasing and bounded above by α on (θ, ∞) . Hence, $\lim_{r\to\infty} u(r, \xi) = u_4$ exists, which implies $\lim_{r\to\infty} u'(r, \xi) = \lim_{r\to\infty} u''(r, \xi) = 0$. By (IVP), we see that $f(u_4) = 0$. This and (A₂) implies $u_4 = 0$ or α . Since

$$u_4 = \lim_{r \to \infty} u(r, \xi) > u(\theta, \xi) = \xi > 0,$$

we see that $u_4 = \alpha$.

Case (2). It follows from $r_5 < \infty$ that $u(r_5, \xi) = \alpha$ and $u'(r_5, \xi) > 0$. Thus, by the continuity of $u(r, \xi)$, we see that $r_5 < r_6$. We claim that $r_6 < \infty$. Assume, on the contrary, that $r_6 = \infty$. Take $\eta \in (\alpha, \infty)$ satisfying $F(\eta) > 0$. It is clear that $u(r, \xi) < \eta$ on (θ, ∞) . In fact, if there exists $r_7 \in (\theta, \infty)$ such that $u(r_7, \xi) = \eta$. It follows from (A₂) and (E₁) that

$$0 < \frac{1}{2} u'^{2}(r_{7}, \xi) + F(\eta) - F(\xi) = -\int_{\theta}^{r_{7}} \frac{m}{s} u'^{2}(s, \xi) ds \le 0,$$

which is a contradiction. Hence $u(r, \xi) < \eta$ on (θ, ∞) . Since $r_6 = \infty$, we see that $u(r, \xi)$ is strictly increasing and bounded above by η on (θ, ∞) . Thus, $\lim_{r\to\infty} u(r, \xi) = u_5$ exists and $\lim_{r\to\infty} u'(r, \xi) = \lim_{r\to\infty} u''(r, \xi) = 0$. By (IVP),

116

we see that $f(u_5) = 0$, which and (A_2) imply $u_5 = 0$ or α . Since $u(r, \xi)$ is strictly increasing on (θ, ∞) , we see that

$$u_5 = \lim_{r \to \infty} u(r, \xi) > u(r_5, \xi) = \alpha,$$

which gives a contradiction. Thus, $r_6 < \infty$, and hence $u'(r_6, \xi) = 0$. It follows from $u(r_6, \xi) > u(r_5, \xi) = \alpha > 0$ that $r_6 < R(\xi) \le \infty$. Using Lemma 1, we see that $u(r, \xi)$ is bounded below by $\xi > 0$ on $[r_6, R(\xi))$. This and Lemma 2 imply $u(r, \xi)$ satisfies (P₃).

LEMMA 4. Let $\tau := \inf \{ u \in [\alpha, \infty) | F(u) > 0 \}$. Then, for any $\xi \in (0, \tau]$, $\lim_{r \to R(\xi)} u(r, \xi) > 0$ and $R(\xi) = \infty$.

PROOF. Assume, on the contrary, that there exists $\xi \in (0, \tau]$ such that $\lim_{r \to R(\xi)} u(r, \xi) = 0$. It follows from (E₁) that

$$0 \leq \lim_{r \to R(\xi)} \frac{1}{2} u'^{2}(r, \xi) - F(\xi) = -\lim_{r \to R(\xi)} \int_{\theta}^{r} \frac{m}{s} u'^{2}(s, \xi) ds \leq 0,$$

which implies $u'(r, \xi) = 0$ on $[\theta, R(\xi))$. Hence, $u(r, \xi) = \xi$ on $[\theta, R(\xi))$. It follows from $\lim_{r \to R(\xi)} u(r, \xi) = 0$ and $u(r, \xi) = \xi$ on $[\theta, R(\xi))$ that $\xi = 0$, which contradicts $\xi > 0$.

Thus, the proof is complete.

It follows from Lemmas 2, 3 and 4 that we can decomposite the set of solutions of (IVP) into the following three disjoint subsets:

 $N^* := \{\xi \in (0, \infty) | R(\xi) < \infty \text{ and } u(r, \xi) \text{ is decreasing to } 0 \text{ as } r \to R(\xi)\},\$ $G^* := \{\xi \in (0, \infty) | R(\xi) = \infty \text{ and } u(r, \xi) \text{ is decreasing to } 0 \text{ as } r \to \infty\},\$ $P^* := (0, \infty) - N^* - G^*$ $= \left\{ \begin{array}{l} \xi \in (0, \infty) | R(\xi) = \infty \text{ and } u(r, \xi) \text{ strictly monotonically} \\ \text{converges to } \alpha \text{ eventually as } r \to \infty \text{ or } u(r, \xi) \text{ is oscillatory} \\ \text{about } \alpha \text{ and has an absolute minimum on } (\theta, \infty) \end{array} \right\}.$

In particular, by Lemma 4 and the property of continuous dependence on initial value, we see that $(0, \tau] \subset P^*$ and N^* is an open subset of $(0, \infty)$, where τ is defined as in Lemma 4.

THEOREM 5 (Existence). If $f'(\alpha) > 0$, then for every $\xi \in P^*$, $\lim_{r \to \infty} u(r, \xi) = \alpha$. In particular, the boundary value problem

(BVP1)
$$\begin{cases} u''(r) + \frac{m}{r}u'(r) + f(u(r)) = 0 \text{ on } (\theta, \infty), \\ u'(\theta) = 0 \\ \lim_{r \to \infty} u(r) = \alpha > 0 \end{cases}$$

117

possesses infinitely many solutions.

PROOF. It suffices to show that $\lim_{r\to\infty} u(r, \xi) = \alpha$ if $u(r, \xi)$ is oscillatory about α . It follows from Lemma 2 that

$$\lim_{k \to \infty} u(R_{2k-1}, \xi) = \beta_1 \in (0, \alpha]$$
$$\lim_{k \to \infty} u(R_{2k}, \xi) = \beta_2 \in [\alpha, \xi)$$

and

$$u'(R_k, \xi) = 0$$
 for $k = 1, 2, 3, \cdots$

we can obtain $\beta_1 = \beta_2 = \alpha$. In fact, it follows from (E_1) that

(2)
$$F(u(R_{2k-1})) - F(u(R_{2k})) = \int_{R_{2k-1}}^{R_{2k}} \frac{m}{s} u'^2(s, \xi) ds > 0$$
 for $k = 1, 2, 3, \cdots$.

Hence,

$$F(u(R_{2k})) < F(u(R_{2k-1})) \le F(u(R_1)) < 0$$
 for $k = 1, 2, 3, \dots$,

which implies $u(R_2) < \tau$. Using the same technique of Ni [7], we can prove that $\beta_1 = \beta_2 = \alpha$. Hence, $\lim_{r \to \infty} u(r, \xi) = \alpha$. Since $(0, \tau] \subset P^*$, we see that (BVP1) possesses infinitely many solutions.

LEMMA 6. If $f'(\alpha) > 0$, then

 $P^* = \{\xi \in (0, \infty) | u(r, \xi)$

is oscillatory about α and has an absolute minimum on (θ, ∞) ,

 P^* is a nonempty open subset of $(0, \infty)$, and hence, G^* is a closed subset of $(0, \infty)$.

PROOF. Assume, on the contrary, that there exists $\xi \in P^*$ such that $u(r, \xi)$ is not oscillatory about α , that is, $u(r, \xi)$ strictly monotonically converges to α eventually. Since $f'(\alpha) > 0$, there exists $r_8 \in (\theta, \infty)$ such that

$$\frac{f(u(r, \xi))}{u(r, \xi) - \alpha} \ge \frac{1}{2} f'(\alpha) > 0 \quad \text{on} \quad [r_8, \infty).$$

Clearly, the differential equation

(I₆)
$$v''(r) + \frac{m}{2}v'(r) + \frac{1}{2}f'(\alpha) = 0$$

is oscillatory and $w(r) := u(r, \xi) - \alpha$ is a negative or positive solution of

Positive solutions of $\Delta u + f(u) = 0$

(I₇)
$$w''(r) + \frac{m}{r}w'(r) + \frac{f(u(r, \xi))}{u(r, \xi) - \alpha}w(r) = 0, r \in [r_8, \infty).$$

By Sturm's comparison theorem, we see that w(r) is oscillatory, which contradicts w(r) being negative or positive on $[r_8, \infty)$. Hence, we see that

$$P^* = \{\xi \in (0, \infty) | u(r, \xi)$$

is oscillatory about α and has an absolute minimum on $(\theta, \infty)\}.$

Moreover, it follows from the property of continuous dependence on initial value, $u(r, \xi)$ has an absolute minimum on (θ, ∞) and Lemma 4 that P^* is a nonempty open subset of $(0, \infty)$.

REMARK 7. The condition " $f'(\alpha) > 0$ " is better than (F₅) (see, Theorem B in Section 1). For example let $f(u) := u^2 - u^{1/2}$. We see easily that $u_0 = 2^{2/3} > 0$ and $u \to f(u)/(u - u_0)$ is increasing for $u > 2^{5/3} > u_0$. Thus, $f(u) = u^2 - u^{1/2}$ does not satisfy consition (F₅). But, for any given p, q with $p > q \ge 0$, the function $u^p - u^q$ satisfies the condition " $f'(\alpha) > 0$ ".

It follows from Lemma 6 and N^* is an open subset of $(0, \infty)$ that the boundary value problem

(BVP2)
$$\begin{cases} u''(r) + \frac{m}{r}u'(r) + f(u(r)) = 0 \text{ on } (\theta, \infty) \\ u'(\theta) = 0 \\ \lim_{r \to \infty} u(r) = 0 \end{cases}$$

has one solution on $[\theta, \infty)$ if N^* is a nonempty set or P^* is a bounded set.

THEOREM 8 (Existence-Uniqueness). Assume that $\theta = 0$, $\varepsilon > 0$, $0 \le q and <math>m > 1$. If $f(u) := u^p - u^q$ or $u^p - \varepsilon$, then (BVP2) has a unique positive solution on $[\theta, \infty)$.

PROOF. It follows from Wong [8], Wong and Yeh [9] and Wong, Yeh and Yu [10] that (BVP2) has at most one solution on $[\theta, \infty)$. Next, we prove that (BVP2) has a positive solution by the following two cases.

Case (1). Suppose that $f(u) := u^p - u^q$. Let $A \in (0, \infty)$ be given and define

$$r := A^{-q(p-1)/2(p-q)}t$$
 and $v(t) := A^{-q/(p-q)}u(r).$

Then,

$$u''(r) + \frac{m}{r}u'(r) + f(u(r)) = 0$$

can be transformed into

(I₈)
$$v''(t) + \frac{m}{t}v'(t) + v^p(t) - A^{-q}v^q(t) = 0.$$

Now, consider a simpler equation

(I₉)
$$w''(t) + \frac{m}{t}w'(t) + w^p(t) = 0.$$

The solution w(t) of (I_9) which satisfies the initial condition

(3)
$$w(0) = 1$$
 and $w'(0) = 0$

has a zero in $(0, \infty)$ (cf. Kaper and Kwong [3], Ni [6]). It is clear that for each solution $u(r, \xi_1)$ of (IVP), there exists a solution v(t) of (I_8) satisfying v(0) = 1 and v'(0) = 0, where $\xi_1 := A^{q/p-q}$. Because v(t) is bounded by 1, we see that the last term in (I_8) can be small arbitrarily by choosing A large enough. Hence, v(t) has a zero in $(0, \infty)$ which implies $u(r, \xi_1)$ has a zero in $(0, \infty)$. Hence, N^* is nonempty and (BVP2) has a positive solution on $[0, \infty)$.

Case (2). Suppose that $f(u) := u^p - \varepsilon$. It follows from the existence theorem of Castro and Shivaji [1], and Kaper and Kwong [3] that N^* is nonempty. Hence, (BVP2) has a positive solution on $[0, \infty)$.

By Cases (1) and (2), we complete the proof.

REMARK 9. It follows from Uniqueness Theorems in Wong [8], Wong and Yeh [9], Wong, and Yu [10] that

(a)
$$P^* = (0, \infty)$$
 and $N^* = \emptyset$ if $G^* = \emptyset$,

(b)
$$P^* = (0, \xi_0)$$
 and $N^* = (\xi_0, \infty)$ if G^* is a singleton, say $G^* = \{\xi_0\}$.

Thus, if f(u) satisfies (A_1) , (A_2) and the hypotheses of Lemma 6 and f is strictly decreasing near 0 (or, increasing near 0 and m > 1/2) and if we can prove that P^* is bounded or $N^* = (\xi_0, \infty)$ is nonempty, then we can show that (BVP2) has exactly one solution.

References

- A. Castro and R. Shivaji, Non-negative solutions for a class of radially symmetric non-positone problems, Proc. Amer. Math. Soc. 106 (1989), 735-740.
- [2] H. G. Kaper and Man Kam Kwong, Uniqueness of non-negative solutions of a class of semi-linear elliptic equations, in "Nonlinear Diffusion Equation and Their Equilibrium States II", (Edited by W. M. Ni, L. A. Peletier, and J. Serrin), Springer-Verlag, New York (1988), 1-17.

- [3] H. G. Kaper and Man Kam Kwong, Free boundary problems for Emden-Fowler equations, Differential and Integral Equations 3 (1990), 353-362.
- [4] Man Kam Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. 105 (1989), 243-266.
- [5] Man Kam Kwong and Liqun Zhang, Uniqueness of the positive solution of $\Delta u + f(u) = 0$, to appear.
- [6] W. M. Ni, On the elliptic equation $\Delta u + K(x)u^{(n+2)/(n-2)} = 0$, its generalization and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
- [7] W. M. Ni, On the positive radial solutions of some semilinear elliptic equation on R^n , Applied Mathematics and Optimization 9 (1983), 373-380.
- [8] F. H. Wong, Uniqueness of positive solutions of semilinear elliptic equation, Funkcial.
 Ekvac. 36 (1993), 45-51.
- [9] F. H. Wong and C. C. Yeh, Uniqueness of positive solutions of nonlinear boundary value problems, Kobe J. Math. 7 (1990), 191-198.
- [10] F. H. Wong and S. L. Yu, Uniqueness of positive solutions for non-positone problems with exterior boundary conditions, to appear.

Department of Mathematics National Central University Chung-Li, Taiwan Republic of China