Classification and uniqueness of positive solutions
 of $\Delta u+f(u)=0$

Dedicated to Professor Takaŝi Kusano on his 60 th birthday

Fu-Hsiang Wong and Cheh-Chih Yeh*
(Received May 25, 1992)

Abstract

Given $0 \leq \theta<\infty$. In this paper, we classify the solutions of the initial value problem (*) $$
\left\{\begin{array}{l} u^{\prime \prime}(r)+\frac{m}{r} u^{\prime}(r)+f(u(r))=0 \text { on }(\theta, R(\xi)), \\ u(\theta)=\xi>0 \text { and } u^{\prime}(\theta)=0, \end{array}\right.
$$ where f is locally Lipschitz on $(0, \infty)$ and there exist two positive constants α, β such that $f(u)<0$ on $(0, \alpha), f(u)>0$ on (α, ∞) and $F(\beta)>0$. Here $R(\xi):=\sup \{r \in(\theta, \infty) \mid u(s)$ >0 for all $s \in[\theta, r)\}$ and $F(u):=\int_{0}^{u} f(s) d s$ for $u \geq 0$. Moreover, we establish an existence-uniqueness theorem of a solution for equation (*) satisfying $u^{\prime}(0)=0$ and $\lim _{r \rightarrow \infty} u(r)=0$.

1. Introduction

Let $\theta \in[0, \infty)$ be given and $R^{n}(n \geq 2)$ denote the usual n-dimensional Euclidean space. Consider the following two problems:
$\left(\mathbf{I}_{1}\right) \quad \begin{cases}\Delta u+f(u)=0 & \text { in } \Omega(R(\xi)), \\ \frac{\partial u}{\partial n}=0 & \text { if }|x|=\theta, \\ u(x)=\xi>0 & \text { if }|x|=\theta ;\end{cases}$
(I_{2})

$$
\begin{cases}\Delta u+f(u)=0 & \text { in } \Omega(\infty) \\ \frac{\partial u}{\partial n}=0 & \text { if }|x|=\theta \\ \lim _{|x| \rightarrow \infty} u(x)=0, & \end{cases}
$$

where $R(\xi):=\sup \{r \in(\theta, \infty) \mid u(x)>0$ for $\theta \leq|x|<r\}$ and

[^0]\[

\Omega(\lambda):= $$
\begin{cases}\left\{x \in \boldsymbol{R}^{n}|\theta<|x|<\lambda\}\right. & \text { if } \theta>0, \\ \left\{x \in \boldsymbol{R}^{n}| | x \mid<\lambda\right\} & \text { if } \theta=0\end{cases}
$$
\]

for every $\lambda \in(\theta, \infty]$.
When we confine ourselves to positive radial solutions, it is well-known that the above two problems $\left(I_{1}\right)$ and $\left(I_{2}\right)$ can be reduced to the following equivalent problems
$\begin{array}{ll}\left(\mathrm{I}_{3}\right) \quad & \left\{\begin{array}{l}u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+f(u(r))=0 \text { on }(\theta, R(\xi)), \\ u(\theta)=\xi>0 \text { and } u^{\prime}(\theta)=0\end{array}\right. \\ \left(\mathrm{I}_{4}\right) \quad & \left\{\begin{array}{l}u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+f(u(r))=0 \text { on }(\theta, \infty), \\ u^{\prime}(\theta)=0, \\ \lim _{r \rightarrow \infty} u(r)=0,\end{array}\right.\end{array}$
respectively, where r is the radial variable. See, for example, Kaper and Kwong [2, 3], Kwong [4], Kwong and Zhang [5]. Recently, Kwong and Zhang [5] and Kwong [4] separate the set of solutions of (I_{3}) into the following three subsets under suitable conditions on f :

$$
\begin{aligned}
N & :=\{\xi \in(0, \infty) \mid R(\xi)<\infty\}, \\
G & :=\left\{\xi \in(0, \infty) \mid R(\xi)=\infty \text { and } \lim _{r \rightarrow \infty} u(r, \xi)=0\right\}, \\
P & :=(0, \infty)-N-G,
\end{aligned}
$$

where $u(r, \xi)$ denotes the solution of $\left(\mathrm{I}_{3}\right)$.
Recently, Kwong and Zhang [5], Kaper and Kwong [3] also established some existence theorems for solutions of $\left(\mathrm{I}_{3}\right)$ as follows:

Theorem A. Assume that
$\left(\mathrm{F}_{1}\right) f$ is continuous on $[0, \infty)$ and locally Lipschitz on $(0, \infty)$,
$\left(\mathrm{F}_{2}\right)$ there exists a $u_{0}>0$ such that $F(u)<0$ for $0<u<u_{0}, F\left(u_{0}\right)=0$, $f(u)>0$ for $u \geq u_{0}$, where $F(u):=\int_{0}^{u} f(s) d s$,
$\left(\mathrm{F}_{3}\right)$ with u_{0} as in $\left(\mathrm{F}_{2}\right), \int_{0}^{u_{0}}(-F)^{-1 / 2}(u) d u<\infty$,
(F_{4}) $\lim \inf _{u \rightarrow \infty} f(u)>0$,
$\left(\mathrm{G}_{1}\right) \quad g(r) \geq 0$ for all $r \geq 0$,
$\left(\mathrm{G}_{2}\right) \quad \lim _{t \rightarrow \infty} g(r)=0$,
$\left(\mathrm{G}_{3}\right) \quad g$ is continuous on $[0, \infty)$.
Then, the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(r)+g(r) u^{\prime}(r)+f(u(r))=0 \quad \text { on } \quad(0, p) \tag{5}\\
u^{\prime}(0)=0 ; u(r)>0 \quad \text { on } \quad(0, p) ; u(p)=u^{\prime}(p)=0
\end{array}\right.
$$

has a solution on $(0, p)$, where $p \in(0, \infty)$.
Theorem B. Let $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{4}\right),\left(\mathrm{G}_{1}\right)-\left(\mathrm{G}_{2}\right)$ hold. If
($\left.\mathrm{F}_{5}\right) \quad u \rightarrow f(u) /\left(u-u_{0}\right)$ is nonicreasing for $u>u_{0}$,
$\left(\mathrm{F}_{4}\right) \quad g$ is continuous on $(0, \infty)$ and $g(r)=0\left(r^{-1}\right)$ as $r \rightarrow 0^{+}$, then, $\left(\mathrm{I}_{5}\right)$ has a solution on ($0, p$).

The purpose of this paper is to classify the solutions of $\left(I_{3}\right)$ under fewer assumptions than those of Kaper and Kwong [3] and Kwong and Zhang [5]. We also establish a uniqueness theorem of a solution for $\left(\mathrm{I}_{4}\right)$.

2. Main results

Let $m>0$ and $\theta \geq 0$ be given constants. Consider the following intial value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(r)+\frac{m}{r} u^{\prime}(r)+f(u(r))=0, \quad r>0 \tag{IVP}\\
u(\theta)=\xi \quad \text { and } \quad u^{\prime}(\theta)=0,
\end{array}\right.
$$

where f satisfies the following two assumptions:
$\left(\mathrm{A}_{1}\right) f$ is locally Lipschitz continuous on ($0, \infty$),
$\left(\mathrm{A}_{2}\right)$ there exist two constants α, β such that $f(u)<0$ on $(0, \alpha), f(u)>0$ on (α, ∞) and $F(\beta)>0$, where $F(u):=\int_{0}^{u} f(s) d s$ for $u \geq 0$.
Clearly, if $f(u)=u^{p}-u^{q}$, where $p>q \geq 0$, then $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ hold.
Throughout this paper, $u(r, \xi)$ denotes the solution of (IVP) and $R(\xi):=\sup \{r \in(\theta, \infty) \mid u(s, \xi)>0$ for $s \in(\theta, r)\}$.

In order to discuss our main results, we need the following two well-known theorems.

Theorem C. For any given $\xi>0$, the initial value problem (IVP) has a unique positive solution $u(r):=u(r, \xi)$ on the interval $[\theta, R(\xi))$.

Theorem D. For any given $\xi>0$, the positive solution $u(r, \xi)$ of (IVP) on $[\theta, R(\xi))$ satisfies the following two identities:
(E_{1})

$$
\left\{\frac{1}{2} u^{\prime 2}(r, \xi)+F(u(r, \xi))\right\}_{r=a}^{r=b}=-\int_{a}^{b} \frac{m}{s} u^{\prime 2}(s, \xi) d s \quad \text { for any } a, b \in[\theta, R(\xi))
$$

$$
\begin{equation*}
u^{\prime}(r, \xi)=-\frac{1}{r^{m}} \int_{\theta}^{r} s^{m} f(u(s, \xi)) d s \quad \text { for all } r \in[\theta, R(\xi)) \tag{2}
\end{equation*}
$$

Lemma 1. Let $\xi \in(0, \infty)-\{\alpha\}$. If there exists $a \in[\theta, R(\xi))$ such that $u^{\prime}(a, \xi)=0$, then $u(r, \xi) \neq u(a, \xi)$ for all $r \in(a, R(\xi))$.

Proof. Assume, on the contrary, that there exists $r_{0} \in(a, R(\xi))$ such that $u\left(r_{0}, \xi\right)=u(a, \xi)$. It follows from (E_{1}) that

$$
0 \leq \frac{1}{2} u^{\prime 2}\left(r_{0}, \xi\right)=-\int_{a}^{r_{0}} \frac{m}{s} u^{\prime 2}(s, \xi) d s \leq 0
$$

which implies $u^{\prime}(r, \xi)=0$ on $\left[a, r_{0}\right]$. Hence, $u^{\prime \prime}(r, \xi)=0$ on $\left[a, r_{0}\right]$. It follows from (IVP) that $f(u(r, \xi))=0$ on $\left[a, r_{0}\right] . \quad$ By $\left(A_{2}\right)$ and $r_{0}<R(\xi)$, we see that $u(r, \xi)=\alpha$ on $\left[a, r_{0}\right]$. Thus, $u(r, \xi)=\alpha$ on $[\theta, R(\xi))$ by Theorem C, which contradicts $\xi \neq \alpha$. Hence, the proof is complete.

For any given $\xi>\alpha$, it follows from $u(\theta, \xi)=\xi>\alpha$ that there exists $r_{1} \in(\theta, R(\xi))$ such that $u(r, \xi)>\alpha$ on $\left[\theta, r_{1}\right)$. It follows from (A_{2}) and (E_{2}) that $u^{\prime}(r, \xi)<0$ on $\left(\theta, r_{1}\right)$. Hence,

$$
\begin{equation*}
R_{1}:=\sup \left\{r \in(\theta, R(\xi)) \mid u^{\prime}(s, \xi)<0 \quad \text { for } s \in(\theta, r)\right\} \tag{1}
\end{equation*}
$$

exists and satisfies $r_{1} \leq R_{1} \leq R(\xi)$. Seeing such a fact, we have the following lemma.

Lemma 2. For any given $\xi>\alpha, u(r, \xi)$ must satisfy one of the following properties:
$\left(\mathrm{P}_{1}\right)$ If $R_{1}=R(\xi)<\infty$, then $u(r, \xi)$ is strictly decreasing to 0 as $r \rightarrow R(\xi)$,
$\left(\mathrm{P}_{2}\right)$ If $R_{1}=R(\xi)=\infty$, then $u(r, \xi)$ is strictly decreasing to 0 or α as $r \rightarrow R(\xi)=\infty$,
$\left(\mathrm{P}_{3}\right)$ If $R_{1}<R(\xi)$, then $u\left(R_{1}, \xi\right)<\alpha$ is the absolute minimum of $u(r, \xi)$ on $[\theta, R(\xi))$.
Moreover, $u(r, \xi)$ monotonically converges to α eventually as $r \rightarrow \infty$ or $u(r, \xi)$ is oscillatory about α, that is, there exists an increasing sequence $\left\{R_{k}\right\}_{k=1}^{\infty}$ satisfying $\lim _{k \rightarrow \infty} R_{k}=\infty$,

$$
\begin{aligned}
& 0<u\left(R_{1}, \xi\right)<u\left(R_{3}, \xi\right)<u\left(R_{5}, \xi\right)<\cdots<\alpha \\
& \xi>u\left(R_{2}, \xi\right)>u\left(R_{4}, \xi\right)>u\left(R_{6}, \xi\right)>\cdots>\alpha
\end{aligned}
$$

and $u^{\prime}(r, \xi)>0$ on $\left(R_{2 k-1}, R_{2 k}\right), u^{\prime}(r, \xi)<0$ on $\left(R_{2 k}, R_{2 k+1}\right)$ for $k=1,2,3, \cdots$, where R_{1} is defined as in (1).

Proof. Case (1). Since $R_{1}=R(\xi)$, it follows from the definitions of R_{1} and $R(\xi)$ that $u(r, \xi)$ is strictly decreasing and bounded below by 0 on $(\theta, R(\xi))$.

Hence, $\lim _{r \rightarrow R(\xi)} u(r, \xi)=u(R(\xi), \xi) \geq 0$. It is clear that $u(R(\xi), \xi)=0$. In fact, if $u(R(\xi), \xi)>0$, then $u(R(\xi)+\varepsilon, \xi)>0$ for any sufficiently small $\varepsilon>0$. This contradicts the definition of $R(\xi)$. Thus, $u(R(\xi), \xi)=0$.

Case (2). If follows from $R_{1}=R(\xi)=\infty$ and the definitions of $R_{1}, R(\xi)$ that $u(r, \xi)$ is strictly decreasing on (θ, ∞) and bounded below by 0 on (θ, ∞). This implies $\lim _{r \rightarrow \infty} u(r, \xi)=u_{1}$ exists. Hence, $\lim _{r \rightarrow \infty} u^{\prime}(r, \xi)=$ $\lim _{r \rightarrow \infty} u^{\prime \prime}(r, \xi)=0$, which and (IVP) imply $f\left(u_{1}\right)=0$. By $\left(\mathrm{A}_{2}\right)$, we see that $u_{1}=0$ or α.

Case (3). We claim that there exists $r_{2} \in\left(R_{1}, R(\xi)\right)$ such that $u^{\prime}(r, \xi)>0$ on (R_{1}, r_{2}). Assume, on the contrary, that there exists $r_{3} \in\left(R_{1}, R(\xi)\right)$ such that $u^{\prime}(r, \xi)=0$ on $\left(R_{1}, r_{3}\right)$ or $u^{\prime}(r, \xi)<0$ on $\left(R_{1}, r_{3}\right)$. Thus, $u^{\prime \prime}\left(R_{1}, \xi\right)=0$ by the C^{2}-continuity of u at R_{1}. This and $u^{\prime}(r, \xi)=0$ imply $f\left(u\left(R_{1}, \xi\right)\right)=0$. It follows from $\left(\mathrm{A}_{2}\right)$ that $u\left(R_{1}, \xi\right)=\alpha$. By Theorem C , we see that $u(r, \xi)=\alpha$ is a constant solution of (IVP) on [$\theta, R(\xi)$), which contradicts $u(\theta, \xi)=\xi>\alpha$. Hence, there exists $r_{2} \in\left(R_{1}, R(\xi)\right)$ such that $u^{\prime}(r, \xi)>0$ on $\left(R_{1}, r_{2}\right)$. Thus, $u^{\prime \prime}\left(R_{1}, r\right)>0$ and

$$
R_{2}:=\sup \left\{r \in\left(R_{1}, R(\xi)\right) \mid u^{\prime}(s, \xi)>0 \quad \text { on } \quad\left(R_{1}, r\right)\right\}
$$

exists. It follows from $u^{\prime}\left(R_{1}, \xi\right)=0, u^{\prime \prime}\left(R_{1}, \xi\right)>0$ and (IVP) that $u^{\prime \prime}\left(R_{1}, \xi\right)=$ $-f\left(u\left(R_{1}, \xi\right)\right)>0$, which and $\left(\mathrm{A}_{2}\right)$ imply $u\left(R_{1}, \xi\right)<\alpha$. By Lemma $1, u^{\prime \prime}\left(R_{1}, \xi\right)$ >0 and $u^{\prime}\left(R_{1}, \xi\right)=0$, we see that $u\left(R_{1}, \xi\right)$ is the absolute minimum of $u(r, \xi)$ on $\left[\theta, R(\xi)\right.$). Furthermore, if $R_{2}=\infty$, then $R(\xi)=R_{2}=\infty$. Hence, $u(r, \xi)$ is strictly increasing on $\left(R_{1}, \infty\right)$. It follows form Lemma 1 that $u(r, \xi)$ is bounded above by ξ on $\left[R_{1}, \infty\right)$. Thus, $\lim _{r \rightarrow \infty} u(r, \xi):=u_{2}$ exists and $\lim _{r \rightarrow \infty} u^{\prime}(r, \xi)=\lim _{r \rightarrow \infty} u^{\prime \prime}(r, \xi)=0$. By (IVP), we see that $f\left(u_{2}\right)=0$. This and $\left(A_{2}\right)$ imply $u_{2}=0$ or α. Since

$$
u_{2}=\lim _{r \rightarrow \infty} u(r, \xi)>u\left(R_{1}, \xi\right)>0,
$$

we see that $u_{2}=\alpha$. On the other hand, if $R_{2}<\infty$, then it follows from $u\left(R_{2}, \xi\right)>0$ and the definition of $R(\xi)$ that $R_{2}<R(\xi)$. As discussed at the beginning of this case, we see that there exists $r_{4} \in\left(R_{2}, R(\xi)\right)$ such that $u^{\prime}(r, \xi)<0$ on $\left(R_{2}, r_{4}\right)$. Thus, $u^{\prime \prime}\left(R_{2}, \xi\right)<0$ and

$$
R_{3}:=\sup \left\{r \in\left(R_{2}, R(\xi)\right) \mid u^{\prime}(s, \xi)<0 \quad \text { on } \quad\left(R_{2}, r\right)\right\}
$$

exists. It follows from $u^{\prime}\left(R_{2}, \xi\right)=0, u^{\prime \prime}\left(R_{2}, \xi\right)<0$ and (IVP) that $u^{\prime \prime}\left(R_{2}, \xi\right)=$ $-f\left(u\left(R_{2}, \xi\right)\right)<0$. This and $\left(\mathrm{A}_{2}\right)$ imply $u\left(R_{2}, \xi\right)>\alpha$. By Lemma 1, we see also that $u\left(R_{2}, \xi\right)<\xi$. Furthermore, if $R_{3}=\infty$, then $R(\xi)=R_{3}=\infty$. Hence, $u(r, \xi)$ is strictly decreasing on $\left(R_{2}, \infty\right)$. It follows from Lemma 1 that $u(r, \xi)$ is bounded below by $u\left(R_{1}, \xi\right)$ on $\left(R_{1}, \infty\right)$. Thus, $\lim _{r \rightarrow \infty} u(r, \xi):=u_{3}$ exists and $\lim _{r \rightarrow \infty} u^{\prime}(r, \xi)=\lim _{r \rightarrow \infty} u^{\prime \prime}(r, \xi)=0$. By (IVP), we see that $f\left(u_{3}\right)=0$,
which and $\left(A_{2}\right)$ imply $u_{3}=0$ or α. Since

$$
u_{3}=\lim _{r \rightarrow \infty} u(r, \xi)>u\left(R_{1}, \xi\right)>0
$$

we see that $u_{3}=\alpha$. Continuing in this way, we can obtain the desired result.
By Cases (1), (2) and (3), the proof is complete.
Clearly, if $\xi \in(0, \alpha)$, then

$$
r_{5}:=\sup \{r \in(\theta, R(\xi)) \mid u(s, \xi)<\alpha \text { on }(\theta, r)\}
$$

exists. It follows form $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{E}_{2}\right)$ that $u^{\prime}(r, \xi)>0$ on $\left(\theta, r_{5}\right)$. Hence,

$$
r_{6}:=\sup \left\{r \in(\theta, R(\xi)) \mid u^{\prime}(s, \xi)<\alpha \text { on }(\theta, r)\right\}
$$

exists and satisfies $r_{5} \leq r_{6} \leq R(\xi)$. Seeing such a fact, we have the following lemma.

Lemma 3. For any given $\xi \in(0, \alpha), u(r, \xi)$ must satisfy one of the following properties:
$\left(\mathrm{P}_{4}\right)$ If $r_{5}=\infty$, then $u(r, \xi)$ converges increasingly to α as $r \rightarrow \infty$,
$\left(\mathrm{P}_{5}\right)$ If $r_{5}<\infty$, then $r_{5}<r_{6}<R(\xi), u\left(r_{6}, \xi\right)>\alpha$ and $u^{\prime}\left(r_{6}, \xi\right)=0$. Moreover, $u(r, \xi)$ satisfies $\left(\mathrm{P}_{3}\right)$.

Proof. Case (1). Since $r_{5}=\infty$, we see that $r_{6}=R(\xi)=\infty$. It follows from the definitions of r_{5} and r_{6} that $u(r, \xi)$ is strictly increasing and bounded above by α on (θ, ∞). Hence, $\lim _{r \rightarrow \infty} u(r, \xi)=u_{4}$ exists, which implies $\lim _{r \rightarrow \infty} u^{\prime}(r, \xi)=\lim _{r \rightarrow \infty} u^{\prime \prime}(r, \xi)=0$. By (IVP), we see that $f\left(u_{4}\right)=0$. This and $\left(\mathrm{A}_{2}\right)$ implies $u_{4}=0$ or α. Since

$$
u_{4}=\lim _{r \rightarrow \infty} u(r, \xi)>u(\theta, \xi)=\xi>0,
$$

we see that $u_{4}=\alpha$.
Case (2). It follows from $r_{5}<\infty$ that $u\left(r_{5}, \xi\right)=\alpha$ and $u^{\prime}\left(r_{5}, \xi\right)>0$. Thus, by the continuity of $u(r, \xi)$, we see that $r_{5}<r_{6}$. We claim that $r_{6}<\infty$. Assume, on the contrary, that $r_{6}=\infty$. Take $\eta \in(\alpha, \infty)$ satisfying $F(\eta)>0$. It is clear that $u(r, \xi)<\eta$ on (θ, ∞). In fact, if there exists $r_{7} \in(\theta, \infty)$ such that $u\left(r_{7}, \xi\right)=\eta$. It follows from $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{E}_{1}\right)$ that

$$
0<\frac{1}{2} u^{\prime 2}\left(r_{7}, \xi\right)+F(\eta)-F(\xi)=-\int_{\theta}^{r_{7}} \frac{m}{s} u^{\prime 2}(s, \xi) d s \leq 0
$$

which is a contradiction. Hence $u(r, \xi)<\eta$ on (θ, ∞). Since $r_{6}=\infty$, we see that $u(r, \xi)$ is strictly increasing and bounded above by η on (θ, ∞). Thus, $\lim _{r \rightarrow \infty} u(r, \xi)=u_{5}$ exists and $\lim _{r \rightarrow \infty} u^{\prime}(r, \xi)=\lim _{r \rightarrow \infty} u^{\prime \prime}(r, \xi)=0$. By (IVP),
we see that $f\left(u_{5}\right)=0$, which and $\left(\mathrm{A}_{2}\right)$ imply $u_{5}=0$ or α. Since $u(r, \xi)$ is strictly increasing on (θ, ∞), we see that

$$
u_{5}=\lim _{r \rightarrow \infty} u(r, \xi)>u\left(r_{5}, \xi\right)=\alpha,
$$

which gives a contradiction. Thus, $r_{6}<\infty$, and hence $u^{\prime}\left(r_{6}, \xi\right)=0$. It follows from $u\left(r_{6}, \xi\right)>u\left(r_{5}, \xi\right)=\alpha>0$ that $r_{6}<R(\xi) \leq \infty$. Using Lemma 1, we see that $u(r, \xi)$ is bounded below by $\xi>0$ on $\left[r_{6}, R(\xi)\right)$. This and Lemma 2 imply $u(r, \xi)$ satisfies $\left(\mathrm{P}_{3}\right)$.

Lemma 4. Let $\tau:=\inf \{u \in[\alpha, \infty) \mid F(u)>0\}$. Then, for any $\xi \in(0, \tau]$, $\lim _{r \rightarrow R(\xi)} u(r, \xi)>0$ and $R(\xi)=\infty$.

Proof. Assume, on the contrary, that there exists $\xi \in(0, \tau]$ such that $\lim _{r \rightarrow R(\xi)} u(r, \xi)=0$ It follows from (E_{1}) that

$$
0 \leq \lim _{r \rightarrow R(\xi)} \frac{1}{2} u^{\prime 2}(r, \xi)-F(\xi)=-\lim _{r \rightarrow R(\xi)} \int_{\theta}^{r} \frac{m}{s} u^{\prime 2}(s, \xi) d s \leq 0
$$

which implies $u^{\prime}(r, \xi)=0$ on $[\theta, R(\xi))$. Hence, $u(r, \xi)=\xi$ on $[\theta, R(\xi))$. It follows from $\lim _{r \rightarrow R(\xi)} u(r, \xi)=0$ and $u(r, \xi)=\xi$ on $[\theta, R(\xi))$ that $\xi=0$, which contradicts $\xi>0$.
Thus, the proof is complete.
It follows from Lemmas 2, 3 and 4 that we can decomposite the set of solutions of (IVP) into the following three disjoint subsets:

$$
\begin{aligned}
N^{*} & :=\{\xi \in(0, \infty) \mid R(\xi)<\infty \text { and } u(r, \xi) \text { is decreasing to } 0 \text { as } r \rightarrow R(\xi)\}, \\
G^{*}: & =\{\xi \in(0, \infty) \mid R(\xi)=\infty \text { and } u(r, \xi) \text { is decreasing to } 0 \text { as } r \rightarrow \infty\}, \\
P^{*} & :=(0, \infty)-N^{*}-G^{*} \\
& =\left\{\begin{array}{l}
\xi \in(0, \infty) \mid R(\xi)=\infty \text { and } u(r, \xi) \text { strictly monotonically } \\
\text { converges to } \alpha \text { eventually as } r \rightarrow \infty \text { or } u(r, \xi) \text { is oscillatory } \\
\text { about } \alpha \text { and has an absolute minimum on }(\theta, \infty)
\end{array}\right\} .
\end{aligned}
$$

In particular, by Lemma 4 and the property of continuous dependence on initial value, we see that $(0, \tau] \subset P^{*}$ and N^{*} is an open subset of $(0, \infty)$, where τ is defined as in Lemma 4.

Theorem 5 (Existence). If $f^{\prime}(\alpha)>0$, then for every $\xi \in P^{*}, \lim _{r \rightarrow \infty} u(r, \xi)$ $=\alpha$. In particular, the boundary value problem
(BVP1)

$$
\left\{\begin{array}{l}
u^{\prime \prime}(r)+\frac{m}{r} u^{\prime}(r)+f(u(r))=0 \text { on }(\theta, \infty) \\
u^{\prime}(\theta)=0 \\
\lim _{r \rightarrow \infty} u(r)=\alpha>0
\end{array}\right.
$$

possesses infinitely many solutions.
Proof. It suffices to show that $\lim _{r \rightarrow \infty} u(r, \xi)=\alpha$ if $u(r, \xi)$ is oscillatory about α. It follows from Lemma 2 that

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} u\left(R_{2 k-1}, \xi\right)=\beta_{1} \in(0, \alpha], \\
& \lim _{k \rightarrow \infty} u\left(R_{2 k}, \xi\right)=\beta_{2} \in[\alpha, \xi)
\end{aligned}
$$

and

$$
u^{\prime}\left(R_{k}, \xi\right)=0 \quad \text { for } \quad k=1,2,3, \cdots
$$

we can obtain $\beta_{1}=\beta_{2}=\alpha$. In fact, it follows from $\left(E_{1}\right)$ that

$$
\begin{equation*}
F\left(u\left(R_{2 k-1}\right)\right)-F\left(u\left(R_{2 k}\right)\right)=\int_{R_{2 k-1}}^{R_{2 k}} \frac{m}{s} u^{\prime 2}(s, \xi) d s>0 \quad \text { for } k=1,2,3, \cdots \tag{2}
\end{equation*}
$$

Hence,

$$
F\left(u\left(R_{2 k}\right)\right)<F\left(u\left(R_{2 k-1}\right)\right) \leq F\left(u\left(R_{1}\right)\right)<0 \quad \text { for } k=1,2,3, \cdots,
$$

which implies $u\left(R_{2}\right)<\tau$. Using the same technique of Ni [7], we can prove that $\beta_{1}=\beta_{2}=\alpha$. Hence, $\lim _{r \rightarrow \infty} u(r, \xi)=\alpha$. Since $(0, \tau] \subset P^{*}$, we see that (BVP1) possesses infinitely many solutions.

Lemma 6. If $f^{\prime}(\alpha)>0$, then
$P^{*}=\{\xi \in(0, \infty) \mid u(r, \xi)$
is oscillatory about α and has an absolute minimum on $(\theta, \infty)\}$,
P^{*} is a nonempty open subset of $(0, \infty)$, and hence, G^{*} is a closed subset of $(0, \infty)$.

Proof. Assume, on the contrary, that there exists $\xi \in P^{*}$ such that $u(r, \xi)$ is not oscillatory about α, that is, $u(r, \xi)$ strictly monotonically converges to α eventually. Since $f^{\prime}(\alpha)>0$, there exists $r_{8} \in(\theta, \infty)$ such that

$$
\frac{f(u(r, \xi))}{u(r, \xi)-\alpha} \geq \frac{1}{2} f^{\prime}(\alpha)>0 \quad \text { on } \quad\left[r_{8}, \infty\right) .
$$

Clearly, the differential equation
(I_{6})

$$
v^{\prime \prime}(r)+\frac{m}{2} v^{\prime}(r)+\frac{1}{2} f^{\prime}(\alpha)=0
$$

is oscillatory and $w(r):=u(r, \xi)-\alpha$ is a negative or positive solution of

$$
\begin{equation*}
w^{\prime \prime}(r)+\frac{m}{r} w^{\prime}(r)+\frac{f(u(r, \xi))}{u(r, \xi)-\alpha} w(r)=0, r \in\left[r_{8}, \infty\right) . \tag{7}
\end{equation*}
$$

By Sturm's comparison theorem, we see that $w(r)$ is oscillatory, which contradicts $w(r)$ being negative or positive on $\left[r_{8}, \infty\right)$. Hence, we see that

$$
P^{*}=\{\xi \in(0, \infty) \mid u(r, \xi)
$$

is oscillatory about α and has an absolute minimum on $(\theta, \infty)\}$.
Moreover, it follows from the property of continuous dependence on initial value, $u(r, \xi)$ has an absolute minimum on (θ, ∞) and Lemma 4 that P^{*} is a nonempty open subset of $(0, \infty)$.

Remark 7. The condition " $f^{\prime}(\alpha)>0$ " is better than (F_{5}) (see, Theorem B in Section 1). For example let $f(u):=u^{2}-u^{1 / 2}$. We see easily that $u_{0}=2^{2 / 3}>0$ and $u \rightarrow f(u) /\left(u-u_{0}\right)$ is increasing for $u>2^{5 / 3}>u_{0}$. Thus, $f(u)=u^{2}-u^{1 / 2}$ does not satisfy consition $\left(\mathrm{F}_{5}\right)$. But, for any given p, q with $p>q \geq 0$, the function $u^{p}-u^{q}$ satisfies the condition " $f^{\prime}(\alpha)>0$ ".

It follows from Lemma 6 and N^{*} is an open subset of $(0, \infty)$ that the boundary value problem
(BVP2)

$$
\left\{\begin{array}{l}
u^{\prime \prime}(r)+\frac{m}{r} u^{\prime}(r)+f(u(r))=0 \text { on }(\theta, \infty) \\
u^{\prime}(\theta)=0 \\
\lim _{r \rightarrow \infty} u(r)=0
\end{array}\right.
$$

has one solution on $[\theta, \infty)$ if N^{*} is a nonempty set or P^{*} is a bounded set.
Theorem 8 (Existence-Uniqueness). Assume that $\theta=0, \varepsilon>0,0 \leq q<p$ $<(m+2) /(m-1)$ and $m>1$. If $f(u):=u^{p}-u^{q}$ or $u^{p}-\varepsilon$, then (BVP2) has a unique positive solution on $[\theta, \infty)$.

Proof. It follows from Wong [8], Wong and Yeh [9] and Wong, Yeh and Yu [10] that (BVP2) has at most one solution on $[\theta, \infty$). Next, we prove that (BVP2) has a positive solution by the following two cases.

Case (1). Suppose that $f(u):=u^{p}-u^{q}$. Let $A \in(0, \infty)$ be given and define

$$
r:=A^{-q(p-1) / 2(p-q)} t \quad \text { and } \quad v(t):=A^{-q /(p-q)} u(r) .
$$

Then,

$$
u^{\prime \prime}(r)+\frac{m}{r} u^{\prime}(r)+f(u(r))=0
$$

can be transformed into
(I_{8})

$$
v^{\prime \prime}(t)+\frac{m}{t} v^{\prime}(t)+v^{p}(t)-A^{-q} v^{q}(t)=0 .
$$

Now, consider a simpler equation

$$
\begin{equation*}
w^{\prime \prime}(t)+\frac{m}{t} w^{\prime}(t)+w^{p}(t)=0 . \tag{9}
\end{equation*}
$$

The solution $w(t)$ of $\left(\mathrm{I}_{9}\right)$ which satisfies the initial condition

$$
\begin{equation*}
w(0)=1 \quad \text { and } \quad w^{\prime}(0)=0 \tag{3}
\end{equation*}
$$

has a zero in $(0, \infty)$ (cf. Kaper and Kwong [3], Ni [6]). It is clear that for each solution $u\left(r, \xi_{1}\right)$ of (IVP), there exists a solution $v(t)$ of (I_{8}) satisfying $v(0)=1$ and $v^{\prime}(0)=0$, where $\xi_{1}:=A^{q / p-q}$. Because $v(t)$ is bounded by 1 , we see that the last term in (I_{8}) can be small arbitrarily by choosing A large enough. Hence, $v(t)$ has a zero in ($0, \infty$) which implies $u\left(r, \xi_{1}\right)$ has a zero in ($0, \infty$). Hence, N^{*} is nonempty and (BVP2) has a positive solution on $[0, \infty)$.

Case (2). Suppose that $f(u):=u^{p}-\varepsilon$. It follows from the existence theorem of Castro and Shivaji [1], and Kaper and Kwong [3] that N^{*} is nonempty. Hence, (BVP2) has a positive solution on [0, ∞).

By Cases (1) and (2), we complete the proof.
Remark 9. It follows from Uniqueness Theorems in Wong [8], Wong and Yeh [9], Wong, and Yu [10] that
(a) $\quad P^{*}=(0, \infty)$ and $N^{*}=\emptyset$ if $G^{*}=\emptyset$,
(b) $\quad P^{*}=\left(0, \xi_{0}\right)$ and $N^{*}=\left(\xi_{0}, \infty\right)$ if G^{*} is a singleton, say $G^{*}=\left\{\xi_{0}\right\}$.

Thus, if $f(u)$ satisfies $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ and the hypotheses of Lemma 6 and f is strictly decreasing near 0 (or, increasing near 0 and $m>1 / 2$) and if we can prove that P^{*} is bounded or $N^{*}=\left(\xi_{0}, \infty\right)$ is nonempty, then we can show that (BVP2) has exactly one solution.

References

[1] A. Castro and R. Shivaji, Non-negative solutions for a class of radially symmetric non-positone problems, Proc. Amer. Math. Soc. 106 (1989), 735-740.
[2] H. G. Kaper and Man Kam Kwong, Uniqueness of non-negative solutions of a class of semi-linear elliptic equations, in "Nonlinear Diffusion Equation and Their Equilibrium States II", (Edited by W. M. Ni, L. A. Peletier, and J. Serrin), Springer-Verlag, New York (1988), 1-17.
[3] H. G. Kaper and Man Kam Kwong, Free boundary problems for Emden-Fowler equations, Differential and Integral Equations 3 (1990), 353-362.
[4] Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in R^{n}, Arch. Rational Mech. Anal. 105 (1989), 243-266.
[5] Man Kam Kwong and Liqun Zhang, Uniqueness of the positive solution of $\Delta u+f(u)=0$, to appear.
[6] W. M. Ni, On the elliptic equation $\Delta u+K(x) u^{(n+2) /(n-2)}=0$, its generalization and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
[7] W. M. Ni, On the positive radial solutions of some semilinear elliptic equation on R^{n}, Applied Mathematics and Optimization 9 (1983), 373-380.
[8] F. H. Wong, Uniqueness of positive solutions of semilinear elliptic equation, Funkcial. Ekvac. 36 (1993), 45-51.
[9] F. H. Wong and C. C. Yeh, Uniqueness of positive solutions of nonlinear boundary value problems, Kobe J. Math. 7 (1990), 191-198.
[10] F. H. Wong and S. L. Yu, Uniqueness of positive solutions for non-positone problems with exterior boundary conditions, to appear.

Department of Mathematics
National Central University
Chung-Li, Taiwan
Republic of China

[^0]: * This research was supported by the National Science Council.

